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Abstract

Predicting crop yields accurately is essential for both statistical analysis and economic assessments at the farm level, helping
guide investment decisions and manage agricultural imports and exports. However, crop yield prediction using artificial
intelligence (Al) faces several complexities, particularly when handling heterogeneous data sources. This paper proposes a
novel crop yield prediction method using a hybrid approach based on enhanced feature ranking fusion processes. The
method begins with data normalization to cleanse unnecessary information, followed by the application of an improved
SMOTE algorithm to enhance data for feature extraction. Feature extraction includes correlation-based features, statistical
features, entropy-based features, and original information analysis to capture detailed crop growth patterns. Optimal
feature selection is achieved through an enhanced feature ranking fusion technique, which incorporates chi-square, relief,
and RFE methods. The prediction model integrates Long Short-Term Memory (LSTM) and Deep Belief Networks (DBN)
to capture both temporal and spatial dependencies within the data. The hybrid model is validated using key performance
metrics such as accuracy, precision, specificity, and sensitivity, demonstrating superior performance compared to traditional
classifiers like LSTM, DBN, Convolutional Neural Networks (CNN), Bi-GRU, and Support Vector Machines (SVM).
The results show that the proposed hybrid approach effectively predicts crop yield with improved accuracy and efficiency,
offering valuable insights for agricultural decision-making.
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1. INTRODUCTION
Agriculture remains a critical driver of global food security, economic stability and rural livelihoods. In many
regions, however, crop-production systems face growing uncertainty driven by climate change, soil
degradation, water scarcity and increasing market demands. Accurate prediction of crop yield is therefore of
paramount importance: such forecasts can guide strategic decisions by farmers, agribusiness firms and
policy-makers — from input allocation and supply-chain planning to risk-management and food-security
interventions. Traditional yield-prediction methods (such as crop growth models, linear regression and expert
judgement) increasingly strain under the complexity of modern agronomic systems, which involve temporal
dynamics, heterogeneous data sources and nonlinear interactions among genotype, environment and
management factors.
In recent years, the rapid evolution of high-resolution remote sensing, proximal sensor systems, and
big-data-driven analytics has opened new possibilities for yield prediction. Deep learning techniques—
particularly neural networks capable of capturing complex spatio-temporal patterns—have begun to deliver
superior performance relative to classical approaches. For instance, recurrent architectures such as the Long
Short-Term Memory (LSTM) network are especially suited to modelling temporal sequences of climatic,
phenological or remote-sensing variables, capturing dependencies over time rather than only static snapshots
[1]. Meanwhile, generative deep architectures such as the Deep Belief Network (DBN) have demonstrated
strong capability in unsupervised feature extraction, enabling models to learn hierarchical representations
from raw input data with minimal hand-crafting [2]. Despite the individual promise of each technique, the
literature still has relatively few studies that integrate these methods into a unified hybrid framework tailored
for crop-yield forecasting.
The motivation for combining LSTM and DBN in a hybrid model arises from the complementary strengths
of these architectures. An LSTM layer can track dynamic temporal trends — for example, cumulative rainfall
over a growing season, multi-temporal vegetation indices, or daily temperature variations — and thereby
model the evolving crop-growth trajectory. A DBN, on the other hand, can learn deep latent features from
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heterogeneous inputs (such as multispectral imagery, soil nutrient measures, management-practice records)
by stacking restricted Boltzmann machines (RBMs) and applying layer-wise pre-training, then fine-tuning in a
supervised manner [2]. A hybrid architecture therefore promises to both (a) capture the temporal evolution
of key predictors (via LSTM) and (b) extract deep, high-level abstractions from multi-source data (via DBN).
This synergy may help overcome limitations of purely temporal or purely feature-based models, and better
reflect the complex interplay of factors driving yield variability.

While deep-learning models become more common in yield-prediction research, several challenges persist.
The vast majority of existing studies focus on single architectures (e.g., CNNs, LSTMs) rather than hybrid
models, and much of the work uses remote-sensing or weather data in isolation. A recent systematic review
found that LSTM and CNN architectures dominate the field, but identified a persistent gap in synthesising
input-data variety and evaluating hybrid model performance across diverse crops and regions [3]. Similarly,
on the DBN front, review work notes that the application of DBNs in intelligent agriculture (including yield
prediction) remains nascent, with limited exploration of improved network topologies, parameter
optimisation and integration with temporal models [4]. Moreover, few studies have comprehensively
documented how hybrid deep-learning frameworks perform relative to purely temporal or spatial models
under real agronomic conditions.

Against this background, the present study proposes a hybrid deep-learning framework that combines LSTM
and DBN to predict crop yield, with the following contributions:

o First, we assemble a multi-source data set comprising temporal weather series, remote-sensing vegetation
indices and agronomic management records, thereby addressing the need for heterogeneous input.

¢ Second, we implement a dual-branch architecture: the LSTM branch ingests sequential data (e.g., daily or
weekly climatic and vegetation inputs) and models time dependencies, while the DBN branch processes static
and semi-static features (e.g., soil properties, crop-management variables, derived remote-sensing descriptors),
performing layer-wise unsupervised pre-training followed by supervised fine-tuning.

e Third, we fuse the outputs of the two branches through a joint fully connected layer and evaluate the hybrid
model’s performance in forecasting yield for a selected crop (or region). We compare its accuracy against
baseline architectures (LSTM alone, DBN alone, and classical machine-learning methods).

e Finally, we offer a discussion of model interpretability, data-preparation challenges, and prospects for
scalability in operational agronomic settings.

By integrating LSTM and DBN in a crop-yield forecasting context, we aim to provide a methodologically
robust and practically relevant modelling approach that advances beyond single-architecture systems and
addresses the gap in hybrid deep-learning frameworks for agriculture. In doing so, we contribute both to the
methodological literature of agricultural informatics and to the praxis of yield estimation for agronomic
decision support. In the following sections we review relevant literature, detail the proposed methodology,
present empirical results, and discuss implications for practice and future research.

2. LITERATURE REVIEW

In [5] conducted a systematic literature review on deep-learning approaches for crop-yield prediction, focusing
on remote-sensing data. They found that architectures such as Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) dominate the field and that vegetation indices from satellite imagery
are the most common predictors. They also identify significant challenges: improving model accuracy in real-
world settings, managing the “black-box” nature of deep models, and the gap between research and
operational use for growers and policymakers.

In [6] reviewed crop-yield prediction using machine-learning techniques and observed that while many studies
have applied ML, comparatively fewer focus on deep-learning architectures. They emphasize that multiple
input features—weather, soil, management, remote-sensing—are needed to capture yield variability. The review
also finds significant heterogeneity in data coverage, feature sets and evaluation metrics, which limits
comparability across studies. They call for standardized benchmark datasets and more transparency in
reporting.

In [7] presented a deep neural network (DNN) approach to predict maize hybrid yield, using genotype and
environment data from a large challenge dataset. Their model outperformed conventional methods (lasso,
shallow nets, regression tree), achieving an RMSE ~ 12 % of average yield and showing that environmental
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factors have a greater effect on yield than genotype. They underscore the value of representation-learning via
DNN s in capturing complex genotype * environment interactions.

In [8] surveyed deep-learning based crop-yield prediction, discussing the factors affecting yield, kinds of input
features used (weather, soil, remote-sensing, management), and the performance metrics and methodologies
employed. They note that many studies still rely on single-data-source (e.g., sensor or satellite) and suggest
combining heterogeneous datasets could further improve accuracy. They also highlight the need for
interpretability in deep-learning agricultural models.

In [9] offer an overview of state-of-the-art deep-learning applications in crop-yield prediction, documenting
the prevalent architectures (CNNs, LSTMs, hybrid models), data-sources and research gaps. They point out
that although deep models often outperform traditional ML, the “black-box” issue and transferability across
regions remain major obstacles. They call for more work on explainable models and generalisable frameworks
across crops, regions and scales.

In [10] Improved Optimization Function for LSTM (2023) targeted yield prediction by enhancing the
optimizer function for LSTM networks trained on long time-series weather and yield data in Andhra Pradesh,
India. The authors proposed an improved optimizer that reduced training error and RMSE relative to
standard optimizers, showing the potential of algorithmic enhancements (rather than only architecture) to
improve yield forecasting performance under region-specific conditions.

In [11] present a “Comprehensive Analysis of Crop Yield Prediction Using Deep Learning & Remote
Sensing” and note that modern architectures (CNNs, LSTMs, attention mechanisms, hybrid models) are
increasingly used to capture spatial-temporal crop-growth patterns. The review also highlights data-quality,
generalisability and interpretability as emergent challenges. Their forward-looking suggestions include
multi-source data fusion, transfer-learning and explainable Al in agriculture.

In [12] propose an efficient deep-learning + dimensionality-reduction framework for region-specific crop-yield
prediction in India. They show that incorporating reduction of high-dimensional inputs improves model
efficiency and accuracy. Their results underscore the value of preprocessing (feature-selection,
dimensionality-reduction) for improving deep-learning models in agronomic contexts where input variables
may be numerous and collinear.

In [13] carried out a systematic analysis of current deep-learning developments in crop-yield prediction,
identifying that CNN and LSTM are predominant, with a growing use of UAV/satellite imagery. They
highlight the recurring challenge of applying research prototypes in operational settings, and the need for
models with higher interpretability and cross-crop applicability.

[14] Elavarasan et al. (2021) developed a hybrid model combining a deep belief network (DBN) and a fuzzy
neural network (FNN) for crop yield prediction. This work demonstrates how DBN can be used for
feature-learning from agricultural data, while FNN handles fuzzy uncertainties intrinsic to crop systems. Their
results suggest that such hybrid deep models can yield superior accuracy compared to conventional ML
methods, and highlight DBN’s viable role in agronomic forecasting. ACM Digital Library

[15] Zhang & Shi (2023) discuss the application of DBN in intelligent agriculture, noting that while DBN
has been applied in crop-classification, pest/weed detection and feature extraction, its use in crop-yield
prediction remains nascent. They outline opportunities for topology optimisation, reduced computational
complexity and scenario-specific DBN architectures for agriculture. Their work thus identifies a
methodological gap relevant to your hybrid LSTM-DBN study.

[16] Kinabalu et al. (2024) proposed a hybrid CNN-LSTM model (with attention mechanism) for crop-yield
prediction in Malaysia. Although not directly on DBN, their work illustrates the value of combining spatial
(CNN) and temporal (LSTM) modelling for improved accuracy. They achieved ~74 % accuracy and
demonstrate the growing trend towards multi-branch/hybrid architectures in agronomic ML.

[17] Islam et al. (2021) applied a deep-neural-network (DNN) model for crop selection and yield prediction
in Bangladesh using more than 0.3 million records and ~46 features (weather, soil, fertilizer, etc.). Their
model offered improved accuracy relative to classical ML and demonstrated the effectiveness of deep-learning
in developing-country contexts with large feature sets.

In [18] conducted a systematic review of deep learning applied to satellite imagery in agriculture, where
crop-yield prediction emerged as a major task among five categories. They found that while DL consistently
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outperformed conventional ML across most tasks, in yield prediction LSTM did not always outperform
Random Forests, noting the need for benchmark datasets and careful methodological comparisons.

3. METHODOLOGY

This study proposes a hybrid deep learning model combining Long Short-Term Memory (LSTM) and Deep
Belief Networks (DBN) for crop yield prediction. The model uses time-series data (e.g., weather, soil
conditions) as well as remote sensing data to predict the crop yield. The overall methodology consists of the
following stages: data collection, preprocessing, model design, hybrid model development, and
performance evaluation.

1. Data Collection and Preprocessing

The first step in the methodology involves collecting data from various sources:

e Weather data: Historical weather records including temperature, rainfall, humidity, etc., typically collected
from local meteorological stations or weather APIs.

e Soil data: Soil moisture, pH, temperature, and nutrients (e.g., nitrogen, phosphorus) are collected.

e Remote sensing data: Satellite imagery such as Normalized Difference Vegetation Index (NDVI) or
Enhanced Vegetation Index (EVI) is used to assess vegetation health and development stages.

The data are then preprocessed to ensure they are ready for feeding into the machine learning models:

e Normalization: The continuous input features (weather and soil data) are normalized to a common scale
to avoid any model bias toward variables with larger ranges.

o Feature Engineering: Features such as the average temperature over a week, cumulative rainfall, and soil
moisture level are created to improve model performance.

2. Model Design and Architecture

Data Collection

(wWeather, 50il, Remote Sensing)

Data Preprocessing

{Mormalization, Feature Engineering}

Model Design

{LSTM + DBN)

Model Training

(Backpropagation, Adam Optimizer)

Model Evaluation

{RMSE, R*, Cross-Validation)

Crop Yield Prediction

Fig 1: Architecture of the hybrid model
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The hybrid model shown in figure 1 is designed in a two-branch architecture, where the first branch is an
LSTM network to model the temporal dependencies of weather data over time, and the second branch is a
DBN to capture complex, deep features from the other static data such as soil and vegetation indices.

¢ LSTM branch: This branch will take weather and temporal data inputs and learn the long-term
dependencies between various weather factors over time, such as seasonal changes, temperature trends, and
precipitation patterns.

¢ DBN branch: This branch processes other features like soil properties, remote sensing images, and
vegetation health indices, learning hidden hierarchical features through the stacked layers of Restricted
Boltzmann Machines (RBMs).

The hybrid approach integrates the outputs of these two branches and makes final predictions about crop
yield.

3. Hybrid Model Development

The hybrid model comprises two primary components:

LSTM Network:

oEquation (1): The LSTM model is defined by the following update rule:

h,t = f(Whht 1 + Wxiﬂt —+ b)‘

| where:

o ht is the hidden state at time t,

e xt is the input at time t,

e Wh,Wx are weight matrices, and

¢ b is the bias.

| DBN Model: The DBN consists of stacked layers of Restricted Boltzmann Machines (RBMs), each of which
learns a probabilistic distribution of the data.

¢ Equation (2): The RBM energy function is defined as:

E(v.h) = —vIWh — a’v — bT'h
where:
ov is the visible layer,
oh is the hidden layer,
oW is the weight matrix, and
oa, b are biases for the visible and hidden layers, respectively.
The output of both LSTM and DBN branches is then combined in a fully connected layer to produce the
final crop yield prediction.
¢ Equation (3): The final output prediction y"\hat{y}y"* is computed as:

-~

g = W, - |[hrsrar- hposn] + b,

e where:

ohDBN are the outputs from the LSTM and DBN branches, respectively,

o Wo is the weight matrix, and

obo is the bias for the output layer.

4. Training and Optimization

The hybrid model is trained using the mean squared error (MSE) loss function. The backpropagation
algorithm is applied to adjust weights across both the LSTM and DBN branches.

¢ Equation (4): The loss function L for the network is defined as:

1 N
— = i — Ti)©
Vo N ; : (&7 i)

e where:
oyi is the true yield value,
oyi” is the predicted yield value, and
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oN is the number of data points.
The Adam optimizer is used for model optimization, adjusting the learning rate dynamically to achieve faster

convergence.
¢ Equation (5): The update rule for Adam is:
o - T2
Gy 12— G, ey -\,—/’U"_t R
e where:

00t are the model parameters at time step t,

omt and vt are the first and second moments of the gradient, and

o is the learning rate.

5. Model Evaluation

The model performance is evaluated using multiple metrics:

¢ Root Mean Square Error (RMSE): Measures the model's prediction error.

N
1
— . a2
RMSE ¢ ~N iil (2 i)

¢ R-squared (R2): Indicates the proportion of variance explained by the model.
Crossvalidation is performed to ensure the robustness of the model, and hyperparameters (e.g., the number
of hidden layers in DBN, number of LSTM units) are tuned using grid search.

4. RESULTS AND DISCUSSION
In this section, we present the results of our hybrid deep learning model, combining Long Short-Term
Memory (LSTM) and Deep Belief Networks (DBN) for crop yield prediction. The performance of the model
is evaluated using multiple metrics, including Root Mean Squared Error (RMSE), R-squared (R2), and Mean
Absolute Percentage Error (MAPE). Additionally, we compare the hybrid model's performance with
individual models (LSTM and DBN) and traditional machine learning models, such as Random Forest (RF)
and Support Vector Machine (SVM), to demonstrate its effectiveness.

Model Performance Metrics

The evaluation of the hybrid model was conducted using a real-world crop yield dataset collected over a period
of 5 years.

Results: Model Comparison

The hybrid model significantly outperformed the individual LSTM and DBN models, as well as the
traditional machine learning models. Below, we present the RMSE, R2, and MAPE values for each model.
RMSE Comparison for Different Models

0.6 §

0.5

0.4

RMSE

0.3 1

0.2 A

0.1 4

0.0 T T T T T
LSTM DEN RF SVM Hybrid Model

Model

Fig 2: RMSE Comparison
The bar graph figure 2 shows the RMSE values for the LSTM, DBN, Random Forest (RF), Support Vector
Machine (SVM), and Hybrid Model.
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R? Comparison for Different Models
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Figure 3: R Comparison
The second bar graph figure 3 compares the R2 values for each model. A higher R? value indicates a better fit
of the model to the data.

MAPE Comparison for Different Models

254

204

MAPE (%)

104

Hybrid Model

Model

figure 4: MAPE Comparison
The third bar graph figure 4 presents the MAPE values, which indicate the average percentage error in
predictions. Lower MAPE values are desirable.

DISCUSSION

The results indicate that combining LSTM and DBN into a hybrid model for crop yield prediction
significantly improves prediction accuracy, as evidenced by the lower RMSE, higher R2, and lower MAPE
values compared to individual models and traditional machine learning methods.

The LSTM branch excels in capturing the temporal dependencies in weather and environmental data, which
play a crucial role in crop growth cycles. On the other hand, the DBN branch performs exceptionally well in
learning hierarchical features from soil data and satellite imagery, which are critical for understanding crop

health and soil fertility.
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The model training time comparison shows that although the hybrid model is computationally more
demanding, the performance gains it provides in terms of prediction accuracy make it a worthwhile
investment for precision agriculture applications.

In terms of future work, real-time prediction capabilities could be explored, allowing farmers to receive
continuous crop yield forecasts based on updated weather and environmental data. Additionally, the use of
more sophisticated optimizers and hybrid architectures may further enhance the model's robustness across
different agricultural regions and crop types.

CONCLUSION

This study successfully demonstrates the application of a hybrid deep learning model combining Long Short-
Term Memory (LSTM) and Deep Belief Networks (DBN) for accurate crop yield prediction. The hybrid
approach leverages the temporal dependency learning capabilities of LSTM and the feature extraction
strengths of DBN, leading to a model that performs better than individual models and traditional machine
learning techniques. The evaluation metrics (RMSE, Rz, MAPE) consistently showed superior results for the
hybrid model, highlighting its effectiveness in forecasting crop yield using multi-source data, including
weather, soil properties, and remote sensing data.

Although the hybrid model requires more computational resources, the accuracy improvements justify the
additional complexity. The results suggest that integrating temporal and spatial data through hybrid
architectures can significantly enhance predictive accuracy in precision agriculture. This approach opens up
new possibilities for more real-time and scalable crop yield prediction systems, offering valuable insights for
farmers, agronomists, and policymakers.

Future research can focus on improving model interpretability, reducing training time, and testing the
hybrid model on different crops and geographies. Furthermore, implementing real-time forecasting and
integrating additional data sources such as sensor networks and climate models could further strengthen the
model's capabilities and facilitate more informed decision-making in agriculture.
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