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Abstract: 
In this work hybrid molecular docking quantitative structure activity relationship (QSAR) methodology is used to 
modeling and predict the inhibitory activities of some piperazinyl-glutamate-pyridine/primidin derivatives toward 
P2Y12 protein. Data set consist of inhibitory activities (as IC50 in µM-1) of 52 piperazinyl-glutamate-
pyridine/primidin derivatives, which can be used in treatment of thrombocythemia. After docking of these derivative’s 
to P2Y12 protein, the most stable structure of ligands is chosen and frozen, to calculate molecular descriptors. In the 
next step prescreening of descriptors are done and stepwise feature selection methods was used to select the most relevel 
descriptors. Then the selected descriptors are used to developing multiple linear regression (MLR) and support vector 
machine (SVM) models. The statistical parameters of these model are; the outperformed SVM r=0.84, 0.87; 
RMSE=0.42, 0.82 for training and test sets, respectively, compared to r=0.72, 0.82, RMSE=0.72, 0.77 for MLR). 
Comparison between these valves of and other statistics reveals the superiority of SVM over MLR models. In the next 
step virtual screening based on the lead derivatives is outperformed to identify new efficient candidate based on ADME 
properties and docking studies. 
Keywords: QSAR, Pyridine/ Pyrimidine, P2Y12 antagonist, GPCRs, Support vector regression, Molecular docking. 
 
1. INTRODUCTION 
A blood clot is a specific volume of blood that changes from a liquid state to a semi-solid or gel-like state. 
The main components of a blood clot are; dense platelets, red blood cells and a woven network of fibrin 
protein. Blood clot formation is a natural physiological response to wound healing, preventing excessive 
bleeding. Blood clots are harmless when stationary, but they can become dangerous when moving  [1,  2]. 
When a clot breaks free, it may travel through veins to the heart and lungs. They can trapped in the 
cardiopulmonary circulation which disturb blood flow and creating acute medical emergencies when they 
obstruct healthy vasculature [3]. 
The P2Y12 protein plays a crucial role in platelet aggregation, making it an ideal target for antithrombotic 
drugs  [4,  5]. This surface platelet protein serves as a key regulator of coagulation. Within the central 
nervous system (CNS), P2Y12 is predominantly found in microglia, where it mediates essential 
neuroprotective functions and physiological monitoring  [6]. As a G protein-coupled receptor (GPCR) 
specific to platelets, the P2Y12 receptor represents an attractive therapeutic target for the selective 
modulation of adenosine diphosphate (ADP)-induced platelet activation. Irreversible P2Y12 antagonists, 
such as clopidogrel, prasugrel, ticagrelor and changelog, inhibit platelet ADP activation via the P2Y12 
receptor. This class of oral antiplatelet medication treats peripheral artery disease and acute coronary 
syndrome through selective, irreversible inhibition of the P2Y12 receptor  [7]. Following activation, 
clopidogrel binds irreversibly to platelets, resulting in a slow onset and offset of pharmacodynamics. This 
property reduces acute effectiveness and complicates management during bleeding events, trauma, or 
emergency surgeries. Direct-acting or P2Y12 inhibitors may overcome these limitations while 
demonstrating improved efficacy [8]. 
P2Y12 receptor inhibitors constitute a critical class of antithrombotic drugs that prevent platelet 
activation through receptor blockade. Among these, piperazinyl-glutamate-pyridine/pyrimidine 
derivatives show particular promise due to enhanced pharmacological properties stemming from three 
key components: The piperazinyl group improves solubility and bioavailability of drug consolidates [9]. 
The glutamate moiety facilitates hydrogen bonding and ionic interactions with    key residues of targeted 
proteins (e.g., His187, Lys179). The pyridine/pyrimidine ring mediates π-π stacking with proteins and 
improve the hydrophobic interactions [10]. 
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Many researches employs integrated computational approaches that combine molecular docking, 
molecular dynamics (MD) simulations, and quantitative structure-activity relationship (QSAR) modeling 
to elucidate antagonist binding modes to design new and efficient drugs [11]. QSAR methodology offers 
an efficient drug development approach that reduces time and costs, aiming to establish mathematical 
relationships between molecular structural features and biological activity. Numerous reports document 
successful QSAR modeling of drug candidate activity, for example drug –protein complexes  [12]. A strong 
correlation between 3D contour maps and molecular docking results has identified several critical features 
of the binding mechanism. Molecular docking is a computational technique used to predict the preferred 
structure and orientation of one molecule, typically a small ligand or drug, when it binds to a target 
protein or receptor. This process helps in understanding the interactions between molecules for example 
drug-protein complexes and is widely used in drug discovery and design [13].  
In this work some QSAR models are developed by using molecular docking-derived molecular descriptors 
to predict inhibitory activities of piperazinyl-glutamate-pyridine/pyrimidine derivatives as P2Y12 
inhibitors. The developed models are used to design of new efficient drug candidates [14]. 
 
2. MATERIAL AND METHODS 
2.1. Data set 
To date, some piperazinyl-glutamate-pyridine/pyrimidine derivatives have been collected as potent, orally 
bioavailable P2Y12 antagonists for the inhibition of platelet aggregation, the presence study utilizes a 
dataset consisting of 52 piperazinyl-glutamate-pyridine/pyrimidine derivatives, with their effective 
concentrations as P2Y12 antagonists reported by Xu W. in 2006. The chemical structures of the dataset 
are shown in Table 1 and their half-maximal inhibitory concentrations (IC50) are indicated, with values 
ranging from 0.1 to 8.1 µM for compounds 1 and 42, respectively [15]. The IC50 values, or (half-maximal 
inhibitory concentrations), reflect the potency of a substance to inhibiting a specific biological or 
biochemical function. In this study, the biological process being inhibited is antithrombotic activity 
(specifically platelet aggregation). The focus is on the inhibition of the P2Y12 receptor's biological 
function [16]. 
To divide the dataset into training and test sets, all compounds were sorted according to their IC50 values. 
The test set was then selected from this list based on a desired distance from each other. Using this 
procedure, 42 molecules were considered as the training set for model development, and 10 compounds 
were selected as the test set to evaluate the predictability of the developed models (see Table 1). In the 
next step, the chemical structures of all molecules were drawn using the HyperChem package (version 
7.5) and optimized employing molecular mechanics and semi-empirical (AM1) methods. The optimized 
structures were then converted from *.hin format to *.pdb using the Open Babel program and further 
transformed to *.pdbqt format using the PYRX package (https://pyrx.sourceforge.io/; 
https://sourceforge.net/projects/pyrx/) for use as inputs in molecular docking studies[17]. 
2.2. Molecular docking  
Molecular docking is a computational technique used to predict the preferred structure and orientation 
of one molecule, typically a small ligand or drug, when it binds to a target protein or receptor. This process 
helps to understanding the interactions between molecules and is widely used in drug discovery and 
design [18]. In this work the molecular docking computations were performed using Auto Dock 4.2 by 
using flexible  ligand  -  rigid protein docking strategy [19]. Several X-ray crystal structures illustrating the 
binding of P2Y12 with inhibitors are available in the protein data bank (PDB). For molecular docking, 
the X-ray crystal structure of PDK1 (PDB ID: 4NTJ) was retrieved from the Uniporter protein database 
(http://www.uniprot.org) and utilized. The Cartesian coordinates for the molecular docking boxes were 
set at 30 Å for each dimension (X, Y, and Z). Additionally, the coordinates for the box center were 
specified as -4.5, 60, and 109  for X, Y, and Z, respectively. At the end of calculation 10 different modes 
were generated, which their optimal conformation was selected for further analysis [20]. 
2.3. Descriptors calculation 
In cheminformatics, a molecular descriptor is a quantitative measure derived from a systematic and 
standardized process that encodes various molecular structural information into a symbolic 
representation of a molecule. These descriptors are instrumental in conveying a wide array of molecular 
properties and are essential for developing robust QSAR models [21]. In hybrid molecular docking QSAR, 
the molecular descriptors are calculated from the optimal conformational structures of interested 
compounds of interest after docking them to the target protein (see Figure. 1). 

https://pyrx.sourceforge.io/
https://sourceforge.net/projects/pyrx/
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In this work, the frozen structures derived from docking studies were then subjected to descriptor 
calculation [22]. To achieve this, the optimized docking structures of piperazinyl-glutamate-
pyridine/pyrimidine derivatives were converted from *.pdb to *.hin format. The Dragon 7.0 software 
(https://vcclab.org/lab/edragon/) was employed in conjunction with the ChemDes program 
(http://www.scbdd.com/chemdes/) and PaDEL to calculate a pool of descriptors based on the optimal 
three-dimensional structures of organic compounds obtained from docking studies. A comprehensive set 
of descriptors was generated, encompassing 1,440 descriptors by Dragon, 910 descriptors by ChemDes, 
and 510 descriptors from the PaDEL descriptor tool. These descriptors span a broad spectrum of 
molecular characteristics, providing an extensive dataset for subsequent modelling efforts [23]. 
2.4. Descriptors selection 
Prior to variable selection, calculated descriptors were meticulously pre-processed to ensure quality and 
reliability. This step involved the elimination of constant variables, near-constant variables, and 
descriptors with zero values across all samples. Furthermore, to prevent multicollinearity issues, 
descriptors with Pearson correlation coefficients exceeding 0.90 were also removed. The remaining 504 
descriptors were used in the variable selection step [24]. 
The descriptors selection step is very important step in QSAR model development with the purpose of 
introducing a concise, interpretable, and accurate prediction model [25-27]. The dominant paradigm of 
thought estimation of relationships between variables of molecular structures X (x1, x2, …, xn) and desired 
biological activity (Y) and shaped a set of patterns for a distinct data-matrix set [28-29]. Stepwise, forward 
and backward multiple linear regression (MLR) analysis can be applied for selection of relevant variables 
X (x1, x2, …, xm) [30]. The analysis of variance (ANOVA) using F-test and Pearson correlation for checking 
the statistically significant correlation between matrixes of selected molecular descriptors and the value of 
IC50 is confirmed the validity of the model input predictors. It should be mentioned that Figure 2, also, 
the “optimal number of descriptors” was evaluated by the correlation coefficient (r) and standard error 
(SE) relative to descriptor in a breakpoint procedure. 
2.5. Models development 
In order to developing QSAR models selected molecular descriptors and IC50 are considered as 
independent and dependent variables, respectively. Equations for predicting IC50 values were derived 
from the training data using MLR and subsequently validated using the test data. Multiple linear 
regression (MLR) analysis applied for the 3D-QSAR paradigm of thought predict the linear relationships 
between relevant selected descriptors of molecular structures X (x1, x2… xm) and desired biological activity 
(Y). Also, support vector regression (SVR) algorithm employed to nonlinearly map the data into a feature 
(selected descriptor) space. The performance of regression processes presented and compared with 
analysis of correlation and error parametric statistics to show the excellent of modeling process. All 
statistical inferences are then made based on interpretable developed MLR and SVR models [31-32]; 
parametric statistics is a set of statistical methods that use a parametric model for a probabilistic 
phenomenon. The correlation coefficient (r) was subjected to statistical analysis to evaluate the 
performance of the goodness-of-fit for the model. Additionally, the standard error (SE) and mean-square 
error (MSE) were computed for each model [33]. These statically parameters are calculated from the 
following equations 

R2 = 1 − ∑
(yi−ŷi)2

(yi−yi̅)2i                                                                                                      (eq. 1)         

SE = √
1

DF
∑ ((yi − ŷi)

2n
i=1                                                                                        (eq. 2) 

RMSE = √
1

n
∑ ((yi − ŷi)

2n
i=1                                                                                   (eq. 3) 

here yi is the actual value, ŷi is the predicted value, and ŷiis the average value of IC50. The recommended 
values of these statistics to ensure the reliability of predictions from the QSAR model are; a correlation 
coefficient (R) ≥ 0.8, along with a coefficient of determination (R2) ≥ 0.6 for in vivo data. 
Support vector machine can used to investigate the relation between dependent variable (end point) with 
independent variable (molecular descriptor) in QSAR modeling. The performance of SVM in some case 
is better than MLR due to choice of kernel function and their nonlinear capabilities [34-35]. The term 
“kernel” is referred to a set of mathematical functions used in support vector machines that allow 
interaction with the data. The kernel function generally transforms the training data set in such a way 
that a nonlinear decision surface becomes a linear equation in a higher-dimensional space. In simpler 

https://vcclab.org/lab/edragon/
http://www.scbdd.com/chemdes/
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terms, this function returns the result of the inner product between two points in a standard feature space 
[36]. 
 

3. RESULTS AND DISCUSSION 
3.1 Docking results 
To investigate that how piperazinyl-glutamate-pyridine / primidine derivatives bind to the P2Y12 protein's 
active site docking studies are performed (Figure. 3). Obtained results indicate that hydrogen bond 
interactions, both as acceptors and donors, emerged as the most lucrative ligand-protein interactions [37]. 
Following the docking analysis, compounds 12, 22, and 41 were identified as the top-performing 
compounds with binding constant values of -7.7, -7.4, and -7.4 µM-1, respectively that indicate, their 
potential as active compounds. Interestingly, the representative compound 41 exhibits the highest 
potency as anticancer agent against platelet Lys179 cells with the lowest IC50 values, that indicating its 
potential to use for treatment of chemo resistant platelet. This compound can acts as a hydrogen bond 
acceptor from Lys179 and forms two interactions with His187and Lys179 as a hydrogen bond 
donor.  Conversely, compound 9, was categorized as inactive compound; based on both docking results 
and the QSAR models results. 
3.2. QSAR models 
The dataset, consisting of 52 compounds, was divided into a training set of 42 compounds (80%) for 
model construction and a test set of 10 compounds (20%) for model validation, utilizing the Kennard-
Stone algorithm. Initially, stepwise multiple linear regression (SW-MLR) was employed to develop the 
quantitative structure-activity relationships model using a distinct set of descriptors. The resulting MLR 
QSAR model, which exhibits predictive capability for the training set, is as follows: 
IC50 =321.09 - 82.11* bcutm8   + 135.76 * bcutv13 -  1.06 * PEOEVSA1    - 47.06 * bcutp4 + 0.08* 
EstateVSA8  -76.71* ATSe7 + 5.73* Smin6 +33.11 *Smax35 -3.49   *  
PEOEVSA9                                                                                                              (eq. 4) 
ntrain =42; rtrain = 0.84; RMSE train = 0.42; n test=10; rtest =0.87; RMSE test = 0.82 
here, ntrain is the number of compounds in the training set, r train is the correlation coefficient for the 
training set, RMSEtrain is the root mean square error for the training set, ntest is the number of compounds 
in the test set, r test is the correlation coefficient for the test set, RMSEtest is the root mean square error 
for the test set. The details of statistical parameters of equation (4) are indicated in Table 2 In order to 
improve QSAR model, support vector regression method is used to correlate the variation of independent 
variables (selected molecular descriptors) to their respected dependent variable IC50. The details of 
statistical parameters of equation (4) are indicated in Table 3.  
The SVM model was implemented using STATISTICA software (Version 14.5.0.12). The values of SVM 
parameters (including type of kernel function γ, ε, and c) are optimized by continuous changing of them 
and monitoring the error of model for training and test sets to minimize SVM error. The optimized SVMs 
parameters are, kernel functions RBF, C=100, γ=0.700, and ε=0.900. Then the optimized SVM is used 
to estimate the values of IC50 for training and test sets. The experimental and SVM predicted IC50 values 
and their corresponding residuals are shown in Table 3. The outperformed SVM (r=0.84, 0.87; RMSE= 
0.42, 0.82 for training and test sets, respectively, compared to r=, 0.72, 0.82, RMSE =0.72, 0.77 for MLR).  
Important statistical parameters for both SVM and MLR are shown in Table 4, which can be used to 
compare the performance of these models. Compression between these parameters and those indicated 
in Table 4, reveals the superiority of SVM over MLR model. The SVM calculated values of IC50 for both 
training and test sets are plotted against their experimental values in Figure. 4(a), which reveals good 
correlation between them. Also, their residuals are platted in Figure. 4(b), random distribution of 
residuals around the zero line indicate that there is no any biases in developed SVM model. 
3.3. Interpretation of descriptors 
In this study, stepwise multiple linear regression (SW-MLR) method identified ninth descriptors (Table 
5) crucial for predicting IC50 which offering insights into potential drug discovery for platelet aggregation. 
The first descriptor, is bcutm8 which is the 8th highest eigenvalue of a mass-weighted Burden matrix 1. 
This chemo-informatics descriptors can used to capture molecular structural features of molecules, which 
has the positive effects on P2Y12 inhibition actives of studied chemicals [37]. 
The second descriptor, is bcutv13 (mean Burden descriptors based on atomic volumes), which is the 13th 
highest eigenvalue of a modified Burden matrix weighted by atomic van der Waals volumes [38].The next 
descriptors is PEOEVSA1 (mean MOE-type descriptors using Estate indices and surface area 
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contributions) which is a valuable descriptor in computational chemistry and combines the benefits of E-
State indices with surface area considerations, providing a comprehensive view of molecular properties 
[39]. The forth descriptor is bcutp4 (Highest eigenvaluen.4 of Burden matrix/weighted by atomic 
polarizabilities) optimization [40]. The next descriptor is EstateVSA8 (mean  MOE-type descriptors using 
Estate indices and surface area contributions) which is a molecular descriptor used in computational 
chemistry and cheminformatics to characterize molecular properties based on van der Waals surface area 
(VdWSA) contributions from different atom types or pharmacophores features [41]. It is part of the 
VolSurf and Estate (Electro topological State) descriptor families, combining surface area calculations 
with atom-type classifications. EstateVSA8 can be used  to filter molecules based on desirable surface 
properties. 
The sixth descriptor is ATSe7 )Broto-Moreau type descriptor). Which is autocorrelation of a topological 
structure-lag7/weighted by atomic Sanderson electro negativity [42]. The subsequent descriptors, Smin6 
and Smax35, represent the minimum and maximum E-state values for specific atom types, accounting for 
3D structural influences on molecular binding interactions [43]. The final descriptors are PEOEVSA9, 
which can represent the polar surface area of molecules. These descriptors essential for understanding 
how the spatial arrangement of atoms influences the molecular properties and behaviors and is a powerful 
tool for quantifying the effect of different steric and electronic interaction between drugs and proteins  
[44]. 
3.4. Applicability domain analysis 
The applicability domain (AD) of a QSAR model is critical for validating the model's predictions and 
ensuring their reliability. To define the AD, a Williams plot is employed, which displays standardized 
residuals versus leverage values (h). This visualization aids in identifying outliers and influential 
compounds and can providing insights into the robustness of the model. The leverage equation is 
calculated by: hi = xi (XTX) −1 xiT, where xi represents the descriptor vector for interested compound and 
X is the descriptor matrix derived from the training set. The warning leverage value (h*) calculated is as 
follow: 
       h* = 3(d + 1)/n                                                                 (eq. 5)    
In this equation, d is the number of predictor variables, and n is the number of compounds in the training 
set. According to the above explanation Williams plots for both the MLR and SVM models  were 
generated using a warning leverage value of h*= 0.45 that are shown in Figure 5. As can be seen in these 
figures, the majority of compounds fall within the applicability domain. 
3.5. ADMET analysis 
A virtual screening procedure was applied to a large commercial chemical database, resulting in 17 hits. 
These hits were further screened using the QSAR model for P2Y12 inhibitory activity prediction, resulting 
in hits that were subsequently evaluated for their Absorption, Distribution, Metabolism, and Excretion 
(ADME) properties. The pharmacokinetic parameters for the five identified hits were determined to fall 
within the acceptable range intended for human use which are shown in Table 6 and Figure 6. 
Highlighted by bold chemicals in are hits new candidate which have potential to consider as new drugs 
according to their pharmacokinetic and ADME results. 
 
4. CONCLUSION 
In this study some SVM and MLR models are developed based on molecular descriptors that are 
calculated from docking derived structures of interested piperazinyl-glutamate-pyridine/primidin 
derivative’s as P2Y12 protein inhibitors. Analyzing of docking data and selected molecular descriptors 
indicate that steric and electronic interaction together with H-bond donner/acceptor ability of drugs 
candidate play important role on inhibitory activities (as IC50) of studied piperazinyl-glutamate-
pyridine/primidin derivatives. The models' predictive ability and robustness were assessed using various 
statistical parameters, such as RMSE and r. for training the results indicate that the SVM method, when 
coupled with appropriate descriptors, can effectively predict the activity of new derivatives in the 
treatment of platelets. The visualization of the QSAR model and the docking mode into the target protein 
provided insights into the structure-activity relationship, offering explicit indications for designing 
improved piperazinyl-glutamate-pyridine/primidin derivatives. Additionally, the outcomes of this study 
provide valuable insights into the development of novel and potent P2Y12 inhibitors, holding promise 
for the creation of new drugs for type 2 platelets. 
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7  PentOCO N CH CH OH 0.85 
8  EtOCO N CH CH OMe 1.00 
9  BuOCO N CH CH OBu 2.40 
10  EtOCO N CH CH O(CH2)2OH 2.20 
11  EtOCO N CH CH O(CH2)3OH 0.80 
12  EtOCO N CH CH O(CH2)2OMe 0.74 
13  BuOCO N CH CH O(CH2)2OMe 2.70 
14  EtOCO N CH CH O(CH2)3OMe 0.86 
15  PentOCO N CH CH 

 

0.39 

16  BuOCO N CH CH 

 

0.75 

17  BuOCO N CH CH 

 

6.80 

18  BuOCO N CH CH 

 

1.10 

19  PentOCO N CH CH 

 

2.40 

20  PentOCO N CH CH 

 

1.60 

21  BuOCO N CH CH 

 

1.20 

22  BuOCO N CH CH 

 

0.65 

23  PentOCO N CH CH 

 

0.62 

24  PentOCO N CH CH 

 

0.75 

25  

 
PentOCO N CH CH 

 

 

 

0.63 
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26  PentOCO N CH CH 

 

0.60 

 

 

 

 

 

 
27  PentOCO N CH CH 

 

2.00 

 

 

 

 

 

28  PentOCO N CH CH 

 

0.43 

 

 

29  PentOCO N CH CH 

 

 

0.52 

 

 

 
30  PentOCO N CH CH 

 

0.82 

 

31  PentOCO N CH CH 

 

0.41 

32  PentOCO  
N 

 
CH 

 
CH 

 

0.36 

 

 

 

 
33  BuOCO N CH CH 

 

0.40 

 

 

 

 

 
34  PentOCO N CH CH 

 

2.00 

35  PentOCO N CH CH 

 

2.40 

36  BuOCO N CH CH 

 

4.40 
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37  PentOCO N CH CH 

 

5.20 

38  BuOCO N CH CH 

 

11.00 

39  PentOCO N CH CH 

 
 

1.90 

40  EtOCO N CH CH NHMe 2.30 
41  EtOCO N CH CH NHPr 5.00 
42  PentOCO N CH CH NH(CH2)2OH 1.80 
43  EtOCO N CH CH 

 

1.10 

44  EtOCO N CH CH 

 

7.10 

45  PentOCO N CH CH 

 

0.66 

46  PentOCO N CH CH 

 

0.33 

47  EtOCO N CH CH 

 

29.00 
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48  BuOCO N CH CH 

 

8.60 

49  EtOCO N CH CH 

 

9.90 

50  EtOCO N CH CH 

 

2.70 

51  EtOCO  N   CH  CH 

 

1.40 

52  BuOCO  N   CH  CH 

 

1.30 

           Table 2. Statistical parameters of developed MLR model. 
Variable 
 

Unstandardized Coefficients t Sig. 

B Std. Error 
(Constant) 321.09 117.84 2.72 0.01 
bcutm8 82.11 28.18 2.91 0.00 
bcutv13 -135.76 60.37 -2.24 0.03 
PEOEVSA1 1.06 0.44 2.36 0.02 
bcutp4 -47.06 44.50 -1.05 0.00 
EstateVSA8 0.08 0.02 2.92 0.00 
ATSe7 -76.71 40.64 -1.88 0.07 
Smin6 5.73 4.24 1.35 0.01 
Smax35 33.11 11.76 2.81 0.01 
PEOEVSA9 -3.49 0.73 -4.75 0.00 
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         Table 3. The experimental and SVM predicted IC50 values and their residuals. 

No. IC50exp IC50pre residual 

1 3.90 5.80 -1.90 
2 0.78 0.60 0.18 
3 0.91 0.63 0.28 
4 0.71 1.11 -0.40 
5 1.30 1.56 -0.26 
6 0.95 1.56 -0.61 
7 0.85 0.76 0.09 
8 1.00 1.63 -0.63 
9 2.40 2.22 0.18 
10 2.20 1.44 0.76 
11 0.80 3.53 -2.73 
12 0.74 -0.28 1.02 
13 2.70 2.23 0.47 
14 0.86 1.98 -1.12 
15 0.39 1.35 -0.96 
16 0.75 -0.17 0.92 
17 6.80 2.96 3.84 
18 1.10 4.84 -3.74 
19 2.40 2.33 0.07 
20 1.60 2.23 -0.63 
21 1.20 1.78 -0.58 
22 0.65 2.07 -1.42 
23 0.62 1.19 -0.57 
24 0.75 1.24 -0.49 
25 0.63 1.69 -1.06 
26 0.60 2.28 -1.68 
27 2.00 2.37 -0.37 
28 0.43 0.70 -0.27 
29 0.52 1.20 -0.68 
30 0.82 4.28 -3.46 
31 0.41 7.54 -7.13 
32 0.36 3.50 -3.14 
33 0.40 0.52 -0.12 
34 2.00 1.49 0.51 
35 2.40 -0.61 3.01 
36 4.40 -0.01 4.41 
37 5.20 1.31 3.89 
38 11.00 1.01 9.99 
39 1.90 0.92 0.98 
40 2.30 1.34 0.96 
41 5.00 13.00 -8.00 
42 1.80 2.28 -0.48 
43 1.10 2.22 -1.12 
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44 7.10 1.42 5.68 
45 0.66 0.94 -0.28 
46 0.33 0.93 -0.60 
47 29.00 5.84 23.16 
48 8.60 0.66 7.94 
49 9.90 0.63 9.27 
50 2.70 1.11 1.59 
51 1.40 1.56 -0.16 
52 1.30 1.56 -0.26 

 
                    Table 4. The Statistical parameters of SVM and MLR models. 
 
 
 
 
 
 
 
 
 
 

Table 5: A summary of the molecular descriptors utilized in model construction. 
No Symbol Class Meaning Role in Model 

1 bcutm8 Burden 
descriptors 

Lowest eigenvaluen.8 of Burden 
matrix/weighted by atomic masses 

Negative coefficient → Higher 
values reduce IC50 (improve 
potency). 

 
2 

bcutv13 Burden 
descriptors 

Lowest eigenvaluen.13 of Burden 
matrix/weighted by atomic vender 
Waals volumes 

Positive coefficient → May relate 
to bulky groups favoring activity. 

3 PEOEVSA1 
Partial charge 
descriptor 

MOE-type descriptors using partial 
charges and surface area 
contributions 

Negative impact → Polar 
interactions may hinder binding. 

4 bcutp4 Burden 
descriptors 

Highest eigenvaluen.4 of Burden 
matrix/weighted by atomic 
polarizabilities 

Negative coefficient → Suggests 
specific steric/electronic features 
boost potency. 

5 EstateVSA8 Electro 
topological 

. MOE-type descriptors using Estate 
indices and surface area 
contributions 

Minimal positive effect. 

6 ATSe7 Atom-type E-
state 

Broto-Moreau autocorrelation of a 
topological structure-lag7/weighted 
by atomic Sanderson electro 
negativities 

Strong negative coefficient → 
Critical for activity (e.g., H-bond 
acceptors). 

7 Smin6 Spatial 
minima/maxi
ma 

Minimum of E-State value of 
specified atom type 

Adjusts 3D shape effects on 
binding. 

8 Smax35 Spatial 
minima/maxi
ma 

Maximum of E-State value of 
specified atom type 

Adjusts 3D shape effects on 
binding. 

Parameter Set MLR SVM 
r Training 0.72 0.84 
r Test 0.82 0.87 
RMES Training 0.42 0.82 
RMES Test 0.72 0.77 
SE Training 1.44 0.44 
SE Test 1.33 0.79 
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9 PEOEVSA9 Partial charge 
descriptor 

MOE-type descriptors using partial 
charges and surface area 
contributions 

Polar surface area may reduce 
potency. 

pharmacokinetic parameters of identified hits (Heavy atoms, Aromatic heavy atoms, Fraction 

Csp3, Rotatable bonds, H-bond acceptors, H-bond donors, MR, TPSA and XLOGP3*. 
 
 

Code MW #Heav

y 

atoms 

#Aro

matic 

heavy 

atoms 

Fract

ion 

Csp3 

#Rotat

able 

bonds 

#H-

bond 

accept

ors 

#H-

bond 

donors 

MR TPS

A 

XL 

OG

P3 

 

 

          

a 636.

78 46 12 0.56 17 8 2 

187.0

8 

135.

62 

1.4

4 

b 636.

78 46 12 0.56 17 8 2 

187.0

8 

135.

62 

1.4

4 

c 637.

77 46 12 0.56 18 9 2 

185.1

5 

141.

61 

1.4

8 

d 569.

65 41 12 0.48 18 8 4 160.4 

161.

4 

2.3

1 

e 667.

75 48 12 0.53 19 10 2 

186.8

3 

167.

91 

3.4

4 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date set  

Molecular Docking 

Frizzing of docked ligands 

Descriptor calculation  

Feature selection 

Descriptor pre-screening 

 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 25s,2025 
https://theaspd.com/index.php 
 

908 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 Figure.1. QSAR workflow for modeling P2Y12 inhibitors. 
 

 
Figure.2 . Variations in the correlation coefficient (R) and standard error (SE) relative to descriptor count. 
 

   

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
S

Q
U

A
R

E
  
, 
 S

E

Std. Error of the Estimate

Numer of desciptor

Data set splitting (Cluster) 

Training set Test set 

Optimization Algorithms 

Regression (SVM) 

 

 

Model 

validation 

2 11 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 25s,2025 
https://theaspd.com/index.php 
 

909 
 

 

 
 Figure. 3. Docking result between P2Y12 and some piperazinyl-glutamate-pyridine / primidine 

derivatives .  (No. of chemicals are identical with Table 1) 
 

 
 

 
Figure. 4. The plot of SVM predicted (a) and residuals (b) against the experimental values of IC50. 
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Figure. 5. The results of applicability domain analysis (Williams plot). 
 

a 
 

b 
                                                                                                             

 c                                     

 d  
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   e                        

Figure. 6. Results of ADME analysis for hit drug candidates. 


