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Abstract:

In this work hybrid molecular docking quantitative structure activity relationship (QSAR) methodology is used to
modeling and predict the inhibitory activities of some piperazinyl-glutamate-pyridine/primidin derivatives toward
P2Y12 protein. Data set consist of inhibitory activities (as ICso in uM") of 52 piperazinylglutamate-
pyridine/primidin derivatives, which can be used in treatment of thrombocythemia. After docking of these derivative’s
to P2Y12 protein, the most stable structure of ligands is chosen and frozen, to calculate molecular descriptors. In the
next step prescreening of descriptors are done and stepwise feature selection methods was used to select the most relevel
descriptors. Then the selected descriptors are used to developing multiple linear regression (MLR) and support vector
machine (SVM) models. The statistical parameters of these model are; the outperformed SVM r=0.84, 0.87;
RMSE=0.42, 0.82 for training and test sets, respectively, compared to v=0.72, 0.82, RMSE=0.72, 0.77 for MLR).
Comparison between these valves of and other statistics reveals the superiority of SVM over MLR models. In the next
step virtual screening based on the lead derivatives is outperformed to identify new efficient candidate based on ADME
properties and docking studies.
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1. INTRODUCTION

A blood clot is a specific volume of blood that changes from a liquid state to a semi-solid or gel-like state.
The main components of a blood clot are; dense platelets, red blood cells and a woven network of fibrin
protein. Blood clot formation is a natural physiological response to wound healing, preventing excessive
bleeding. Blood clots are harmless when stationary, but they can become dangerous when moving [1, 2].
When a clot breaks free, it may travel through veins to the heart and lungs. They can trapped in the
cardiopulmonary circulation which disturb blood flow and creating acute medical emergencies when they
obstruct healthy vasculature [3].

The P2Y12 protein plays a crucial role in platelet aggregation, making it an ideal target for antithrombotic
drugs [4, 5]. This surface platelet protein serves as a key regulator of coagulation. Within the central
nervous system (CNS), P2Y12 is predominantly found in microglia, where it mediates essential
neuroprotective functions and physiological monitoring [6]. As a G protein-coupled receptor (GPCR)
specific to platelets, the P2Y12 receptor represents an attractive therapeutic target for the selective
modulation of adenosine diphosphate (ADP)-induced platelet activation. Irreversible P2Y12 antagonists,
such as clopidogrel, prasugrel, ticagrelor and changelog, inhibit platelet ADP activation via the P2Y12
receptor. This class of oral antiplatelet medication treats peripheral artery disease and acute coronary
syndrome through selective, irreversible inhibition of the P2Y12 receptor [7]. Following activation,
clopidogrel binds irreversibly to platelets, resulting in a slow onset and offset of pharmacodynamics. This
property reduces acute effectiveness and complicates management during bleeding events, trauma, or
emergency surgeries. Directacting or P2Y12 inhibitors may overcome these limitations while
demonstrating improved efficacy [8].

P2Y12 receptor inhibitors constitute a critical class of antithrombotic drugs that prevent platelet
activation through receptor blockade. Among these, piperazinyl-glutamate-pyridine/pyrimidine
derivatives show particular promise due to enhanced pharmacological properties stemming from three
key components: The piperazinyl group improves solubility and bioavailability of drug consolidates [9].
The glutamate moiety facilitates hydrogen bonding and ionic interactions with key residues of targeted
proteins (e.g., His187, Lys179). The pyridine/pyrimidine ring mediates T stacking with proteins and
improve the hydrophobic interactions [10].

894



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s,2025
https://theaspd.com/index.php

Many researches employs integrated computational approaches that combine molecular docking,
molecular dynamics (MD) simulations, and quantitative structure-activity relationship (QSAR) modeling
to elucidate antagonist binding modes to design new and efficient drugs [11]. QSAR methodology offers
an efficient drug development approach that reduces time and costs, aiming to establish mathematical
relationships between molecular structural features and biological activity. Numerous reports document
successful QSAR modeling of drug candidate activity, for example drug -protein complexes [12]. A strong
correlation between 3D contour maps and molecular docking results has identified several critical features
of the binding mechanism. Molecular docking is a computational technique used to predict the preferred
structure and orientation of one molecule, typically a small ligand or drug, when it binds to a target
protein or receptor. This process helps in understanding the interactions between molecules for example
drug-protein complexes and is widely used in drug discovery and design [13].

In this work some QSAR models are developed by using molecular docking-derived molecular descriptors
to predict inhibitory activities of piperazinyl-glutamate-pyridine/pyrimidine derivatives as P2Y12
inhibitors. The developed models are used to design of new efficient drug candidates [14].

2. MATERIAL AND METHODS

2.1. Data set

To date, some piperazinyl-glutamate-pyridine/pyrimidine derivatives have been collected as potent, orally
bioavailable P2Y12 antagonists for the inhibition of platelet aggregation, the presence study utilizes a
dataset consisting of 52 piperazinyl-glutamate-pyridine/pyrimidine derivatives, with their effective
concentrations as P2Y12 antagonists reported by Xu W. in 2006. The chemical structures of the dataset
are shown in Table 1 and their half-maximal inhibitory concentrations (IC50) are indicated, with values
ranging from 0.1 to 8.1 pM for compounds 1 and 42, respectively [15]. The IC50 values, or (half-maximal
inhibitory concentrations), reflect the potency of a substance to inhibiting a specific biological or
biochemical function. In this study, the biological process being inhibited is antithrombotic activity
(specifically platelet aggregation). The focus is on the inhibition of the P2Y12 receptor's biological
function [16].

To divide the dataset into training and test sets, all compounds were sorted according to their IC50 values.
The test set was then selected from this list based on a desired distance from each other. Using this
procedure, 42 molecules were considered as the training set for model development, and 10 compounds
were selected as the test set to evaluate the predictability of the developed models (see Table 1). In the
next step, the chemical structures of all molecules were drawn using the HyperChem package (version
7.5) and optimized employing molecular mechanics and semi-empirical (AM1) methods. The optimized
structures were then converted from *.hin format to *.pdb using the Open Babel program and further
transformed to *.pdbqt format wusing the PYRX package (https://pyrx.sourceforge.io/;

https://sourceforge.net/projects/pyrx/) for use as inputs in molecular docking studies[17].

2.2. Molecular docking

Molecular docking is a computational technique used to predict the preferred structure and orientation
of one molecule, typically a small ligand or drug, when it binds to a target protein or receptor. This process
helps to understanding the interactions between molecules and is widely used in drug discovery and
design [18]. In this work the molecular docking computations were performed using Auto Dock 4.2 by
using flexible ligand - rigid protein docking strategy [19]. Several X-ray crystal structures illustrating the
binding of P2Y12 with inhibitors are available in the protein data bank (PDB). For molecular docking,
the Xeray crystal structure of PDK1 (PDB ID: 4NT]J) was retrieved from the Uniporter protein database
(http://www.uniprot.org) and utilized. The Cartesian coordinates for the molecular docking boxes were
set at 30 A for each dimension (X, Y, and 2). Additionally, the coordinates for the box center were
specified as 4.5, 60, and 109 for X, Y, and Z, respectively. At the end of calculation 10 different modes
were generated, which their optimal conformation was selected for further analysis [20].

2.3. Descriptors calculation

In cheminformatics, a molecular descriptor is a quantitative measure derived from a systematic and
standardized process that encodes various molecular structural information into a symbolic
representation of a molecule. These descriptors are instrumental in conveying a wide array of molecular
properties and are essential for developing robust QSAR models [21]. In hybrid molecular docking QSAR,
the molecular descriptors are calculated from the optimal conformational structures of interested
compounds of interest after docking them to the target protein (see Figure. 1).
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In this work, the frozen structures derived from docking studies were then subjected to descriptor
calculation [22]. To achieve this, the optimized docking structures of piperazinyl-glutamate-
pyridine/pyrimidine derivatives were converted from *.pdb to *.hin format. The Dragon 7.0 software
(https://vcclab.org/lab/edragon/) was employed in conjunction with the ChemDes program
(http://www.scbdd.com/chemdes/) and PaDEL to calculate a pool of descriptors based on the optimal

three-dimensional structures of organic compounds obtained from docking studies. A comprehensive set
of descriptors was generated, encompassing 1,440 descriptors by Dragon, 910 descriptors by ChemDes,
and 510 descriptors from the PaDEL descriptor tool. These descriptors span a broad spectrum of
molecular characteristics, providing an extensive dataset for subsequent modelling efforts [23].

2.4. Descriptors selection

Prior to variable selection, calculated descriptors were meticulously pre-processed to ensure quality and
reliability. This step involved the elimination of constant variables, near-constant variables, and
descriptors with zero values across all samples. Furthermore, to prevent multicollinearity issues,
descriptors with Pearson correlation coefficients exceeding 0.90 were also removed. The remaining 504
descriptors were used in the variable selection step [24].

The descriptors selection step is very important step in QSAR model development with the purpose of
introducing a concise, interpretable, and accurate prediction model [25-27]. The dominant paradigm of
thought estimation of relationships between variables of molecular structures X (x;, x,, .., X,) and desired
biological activity (Y) and shaped a set of patterns for a distinct data-matrix set [28-29]. Stepwise, forward
and backward multiple linear regression (MLR) analysis can be applied for selection of relevant variables
X (x1, X3, +.y Xp) [30]. The analysis of variance (ANOVA) using F-test and Pearson correlation for checking
the statistically significant correlation between matrixes of selected molecular descriptors and the value of
ICyp is confirmed the validity of the model input predictors. It should be mentioned that Figure 2, also,
the “optimal number of descriptors” was evaluated by the correlation coefficient (r) and standard error
(SE) relative to descriptor in a breakpoint procedure.

2.5. Models development

In order to developing QSAR models selected molecular descriptors and ICs, are considered as
independent and dependent variables, respectively. Equations for predicting ICs, values were derived
from the training data using MLR and subsequently validated using the test data. Multiple linear
regression (MLR) analysis applied for the 3D-QSAR paradigm of thought predict the linear relationships
between relevant selected descriptors of molecular structures X (x;, X,... X,,) and desired biological activity
(Y). Also, support vector regression (SVR) algorithm employed to nonlinearly map the data into a feature
(selected descriptor) space. The performance of regression processes presented and compared with
analysis of correlation and error parametric statistics to show the excellent of modeling process. All
statistical inferences are then made based on interpretable developed MLR and SVR models [31-32];
parametric statistics is a set of statistical methods that use a parametric model for a probabilistic
phenomenon. The correlation coefficient (r) was subjected to statistical analysis to evaluate the
performance of the goodness-of-Afit for the model. Additionally, the standard error (SE) and mean-square
error (MSE) were computed for each model [33]. These statically parameters are calculated from the
following equations

L —9:)2
RE=1-Ti e
1 A~
SE = |57 20101 — 912 (eq- 2)
1 A
RMSE = J;Z?zl((yi —9)? (eq. 3)

here y; is the actual value, ¥; is the predicted value, and ¥;is the average value of ICs,. The recommended
values of these statistics to ensure the reliability of predictions from the QSAR model are; a correlation
coefficient (R) > 0.8, along with a coefficient of determination (R?) > 0.6 for in vivo data.

Support vector machine can used to investigate the relation between dependent variable (end point) with
independent variable (molecular descriptor) in QSAR modeling. The performance of SVM in some case
is better than MLR due to choice of kernel function and their nonlinear capabilities [34-35]. The term
“kernel” is referred to a set of mathematical functions used in support vector machines that allow
interaction with the data. The kernel function generally transforms the training data set in such a way
that a nonlinear decision surface becomes a linear equation in a higher-dimensional space. In simpler
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terms, this function returns the result of the inner product between two points in a standard feature space

(36].

3. RESULTS AND DISCUSSION

3.1 Docking results

To investigate that how piperazinyl-glutamate-pyridine / primidine derivatives bind to the P2Y12 protein's
active site docking studies are performed (Figure. 3). Obtained results indicate that hydrogen bond
interactions, both as acceptors and donors, emerged as the most lucrative ligand-protein interactions [37].
Following the docking analysis, compounds 12, 22, and 41 were identified as the top-performing
compounds with binding constant values of -7.7, -7.4, and -7.4 uM", respectively that indicate, their
potential as active compounds. Interestingly, the representative compound 41 exhibits the highest
potency as anticancer agent against platelet Lys179 cells with the lowest 1Cso values, that indicating its
potential to use for treatment of chemo resistant platelet. This compound can acts as a hydrogen bond
acceptor from Lys179 and forms two interactions with His187and Lys179 as a hydrogen bond
donor. Conversely, compound 9, was categorized as inactive compound; based on both docking results
and the QSAR models results.

3.2. QSAR models

The dataset, consisting of 52 compounds, was divided into a training set of 42 compounds (80%) for
model construction and a test set of 10 compounds (20%) for model validation, utilizing the Kennard-
Stone algorithm. Initially, stepwise multiple linear regression (SW-MLR) was employed to develop the
quantitative structure-activity relationships model using a distinct set of descriptors. The resulting MLR
QSAR model, which exhibits predictive capability for the training set, is as follows:

IC50 =321.09 - 82.11* becutm8 + 135.76 * beutvl3 - 1.06 * PEOEVSA1- 47.06 * bcutp4 + 0.08*
EstateVSA8 -76.71* ATSe7 + 5.73* Smin6 +33.11 *Smax35 -3.49*

PEOEVSA9 (eq. 4)

Neain =42; Teain = 0.84; RMSE i = 0.42; n = 10; 1, =0.87; RMSE ., = 0.82

here, Ny, is the number of compounds in the training set, r train is the correlation coefficient for the
training set, RMSE,..., is the root mean square error for the training set, n., is the number of compounds
in the test set, r test is the correlation coefficient for the test set, RMSE,, is the root mean square error
for the test set. The details of statistical parameters of equation (4) are indicated in Table 2 In order to
improve QSAR model, support vector regression method is used to correlate the variation of independent
variables (selected molecular descriptors) to their respected dependent variable ICs,. The details of
statistical parameters of equation (4) are indicated in Table 3.

The SVM model was implemented using STATISTICA software (Version 14.5.0.12). The values of SVM
parameters (including type of kernel function v, €, and c) are optimized by continuous changing of them
and monitoring the error of model for training and test sets to minimize SVM error. The optimized SVMs
parameters are, kernel functions RBF, C=100, y=0.700, and €=0.900. Then the optimized SVM is used
to estimate the values of ICs, for training and test sets. The experimental and SVM predicted ICs, values
and their corresponding residuals are shown in Table 3. The outperformed SVM (r=0.84, 0.87; RMSE=
0.42, 0.82 for training and test sets, respectively, compared to r=, 0.72, 0.82, RMSE =0.72, 0.77 for MLR).
Important statistical parameters for both SVM and MLR are shown in Table 4, which can be used to
compare the performance of these models. Compression between these parameters and those indicated
in Table 4, reveals the superiority of SVM over MLR model. The SVM calculated values of 1Cs, for both
training and test sets are plotted against their experimental values in Figure. 4(a), which reveals good
correlation between them. Also, their residuals are platted in Figure. 4(b), random distribution of
residuals around the zero line indicate that there is no any biases in developed SVM model.

3.3. Interpretation of descriptors

In this study, stepwise multiple linear regression (SW-MLR) method identified ninth descriptors (Table
5) crucial for predicting IC50 which offering insights into potential drug discovery for platelet aggregation.
The first descriptor, is bcutm8 which is the 8™ highest eigenvalue of a mass-weighted Burden matrix 1.
This chemo-informatics descriptors can used to capture molecular structural features of molecules, which
has the positive effects on P2Y, inhibition actives of studied chemicals [37].

The second descriptor, is becutvl3 (mean Burden descriptors based on atomic volumes), which is the 13th
highest eigenvalue of a modified Burden matrix weighted by atomic van der Waals volumes [38]. The next
descriptors is PEOEVSAl (mean MOE-type descriptors using Estate indices and surface area
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contributions) which is a valuable descriptor in computational chemistry and combines the benefits of E-
State indices with surface area considerations, providing a comprehensive view of molecular properties
[39]. The forth descriptor is bcutp4 (Highest eigenvaluen.4 of Burden matrix/weighted by atomic
polarizabilities) optimization [40]. The next descriptor is EstateVSA8 (mean MOE-type descriptors using
Estate indices and surface area contributions) which is a molecular descriptor used in computational
chemistry and cheminformatics to characterize molecular properties based on van der Waals surface area
(VdWSA) contributions from different atom types or pharmacophores features [41]. It is part of the
VolSurf and Estate (Electro topological State) descriptor families, combining surface area calculations
with atom-type classifications. EstateVSAS8 can be used to filter molecules based on desirable surface
properties.
The sixth descriptor is ATSe7 (Broto-Moreau type descriptor). Which is autocorrelation of a topological
structure-lag?/weighted by atomic Sanderson electro negativity [42]. The subsequent descriptors, Smin6
and Smax35, represent the minimum and maximum E-state values for specific atom types, accounting for
3D structural influences on molecular binding interactions [43]. The final descriptors are PEOEVSAY,
which can represent the polar surface area of molecules. These descriptors essential for understanding
how the spatial arrangement of atoms influences the molecular properties and behaviors and is a powerful
tool for quantifying the effect of different steric and electronic interaction between drugs and proteins
(44].
3.4. Applicability domain analysis
The applicability domain (AD) of a QSAR model is critical for validating the model's predictions and
ensuring their reliability. To define the AD, a Williams plot is employed, which displays standardized
residuals versus leverage values (h). This visualization aids in identifying outliers and influential
compounds and can providing insights into the robustness of the model. The leverage equation is
calculated by: h; = x, (XTX) = x T, where xi represents the descriptor vector for interested compound and
X is the descriptor matrix derived from the training set. The warning leverage value (h*) calculated is as
follow:

h*=3(d + 1)/n (eq. 5)
In this equation, d is the number of predictor variables, and n is the number of compounds in the training
set. According to the above explanation Williams plots for both the MLR and SVM models were
generated using a warning leverage value of h*= 0.45 that are shown in Figure 5. As can be seen in these
figures, the majority of compounds fall within the applicability domain.
3.5. ADMET analysis
A virtual screening procedure was applied to a large commercial chemical database, resulting in 17 hits.
These hits were further screened using the QSAR model for P2Y12 inhibitory activity prediction, resulting
in hits that were subsequently evaluated for their Absorption, Distribution, Metabolism, and Excretion
(ADME) properties. The pharmacokinetic parameters for the five identified hits were determined to fall
within the acceptable range intended for human use which are shown in Table 6 and Figure 6.
Highlighted by bold chemicals in are hits new candidate which have potential to consider as new drugs
according to their pharmacokinetic and ADME results.

4. CONCLUSION

In this study some SVM and MLR models are developed based on molecular descriptors that are
calculated from docking derived structures of interested piperazinyl-glutamate-pyridine/primidin
derivative’s as P2Y12 protein inhibitors. Analyzing of docking data and selected molecular descriptors
indicate that steric and electronic interaction together with H-bond donner/acceptor ability of drugs
candidate play important role on inhibitory activities (as IC50) of studied piperazinyl-glutamate-
pyridine/primidin derivatives. The models' predictive ability and robustness were assessed using various
statistical parameters, such as RMSE and r. for training the results indicate that the SVM method, when
coupled with appropriate descriptors, can effectively predict the activity of new derivatives in the
treatment of platelets. The visualization of the QSAR model and the docking mode into the target protein
provided insights into the structure-activity relationship, offering explicit indications for designing
improved piperazinyl-glutamate-pyridine/primidin derivatives. Additionally, the outcomes of this study
provide valuable insights into the development of novel and potent P2Y12 inhibitors, holding promise
for the creation of new drugs for type 2 platelets.
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Table 2. Statistical parameters of developed MLR model.
Variable Unstandardized Coefficients t Sig.
B Std. Error
(Constant) 321.09 117.84 2.72 0.01
becutm8 82.11 28.18 291 0.00
beutv13 -135.76 60.37 -2.24 0.03
PEOEVSAL1 1.06 0.44 2.36 0.02
beutp4 -47.06 44.50 -1.05 0.00
Estate VSA8 0.08 0.02 2.92 0.00
ATSe7 -76.71 40.64 -1.88 0.07
Smin6 5.73 4.24 1.35 0.01
Smax35 33.11 11.76 2.81 0.01
PEOEVSA9 -3.49 0.73 -4.75 0.00
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Table 3. The experimental and SVM predicted ICsyvalues and their residuals.

No. 1Cs0exp 1C5opre residual
1 3.90 5.80 -1.90
2 0.78 0.60 0.18
3 0.91 0.63 0.28
4 0.71 1.11 -0.40
5 1.30 1.56 -0.26
6 0.95 1.56 .61
7 0.85 0.76 0.09
8 1.00 1.63 -0.63
9 2.40 2.22 0.18
10 2.20 1.44 0.76
11 0.80 3.53 -2.13
12 0.74 0.28 1.02
13 2.70 2.23 0.47
14 0.86 1.98 -1.12
15 0.39 1.35 -0.96
16 0.75 0.17 0.92
17 6.80 2.96 3.84
18 1.10 4.84 3.74
19 2.40 2.33 0.07
20 1.60 2.23 -0.63
21 1.20 1.78 -0.58
22 0.65 2.07 -1.42
23 0.62 1.19 0.57
24 0.75 1.24 -0.49
25 0.63 1.69 -1.06
26 0.60 2.28 -1.68
27 2.00 2.37 -0.37
28 0.43 0.70 0.27
29 0.52 1.20 -0.68
30 0.82 4.28 -3.46
31 0.41 7.54 -7.13
32 0.36 3.50 -3.14
33 0.40 0.52 0.12
34 2.00 1.49 0.51
35 2.40 0.61 3.01
36 4.40 0.01 441
37 5.20 1.31 3.89
38 11.00 1.01 9.99
39 1.90 0.92 0.98
40 2.30 1.34 0.96
41 5.00 13.00 -8.00
42 1.80 2.28 0.48
43 1.10 2.22 -1.12
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Table 4.

44 7.10 1.42 5.68

45 0.66 0.94 -0.28

46 0.33 0.93 -0.60

47 29.00 5.84 23.16
48 8.60 0.66 7.94

49 9.90 0.63 9.27

50 2.70 1.11 1.59

51 1.40 1.56 0.16
52 1.30 1.56 -0.26
The Statistical parameters of SVM and MLR models.
Parameter Set MLR SVM
r Training 0.72 0.84
r Test 0.82 0.87
RMES Training 0.42 0.82
RMES Test 0.72 0.77
SE Training 1.44 0.44
SE Test 1.33 0.79

Table 5: A summary of the molecular descriptors utilized in model construction.

No Symbol Class Meaning Role in Model
1 bcutm8 Burden Lowest eigenvaluen.8 of Burden Negative coefficient — Higher
descriptors matrix/weighted by atomic masses values reduce IC50 (improve
potency).
bcutvl3 Burden Lowest eigenvaluen.13 of Burden Positive coefficient — May relate
2 descriptors matrix/weighted by atomic vender to bulky groups favoring activity.
Waals volumes
3 PEOEVSAL MOE-type descriptors using partial Negative impact — Polar
Partia?l charge charges and surface area interactions may hinder binding.
descriptor contributions
4 beutp4 Burden Highest eigenvaluen.4 of Burden Negative coefficient — Suggests
descriptors matrix/weighted by atomic specific steric/electronic features
polarizabilities boost potency.
5 Estate VSAS Electro . MOE-type descriptors using Estate | Minimal positive effect.
topological indices and surface area
contributions
6 ATSe7 Atom-type E- Broto-Moreau autocorrelation of a Strong negative coefficient —
state topological structure-lag7/weighted Critical for activity (e.g., H-bond
by atomic Sanderson electro acceptors).
negativities
7 Smin6 Spatial Minimum of E-State value of Adjusts 3D shape effects on
minima/maxi | specified atom type binding.
ma
8 Smax35 Spatial Maximum of E-State value of Adjusts 3D shape effects on
minima/maxi | specified atom type binding.
ma
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PEOEVSA9

Partial charge
descriptor

MOE-type descriptors using partial
charges and surface area
contributions

Polar surface area may reduce
potency.

pharmacokinetic parameters of identified hits (Heavy atoms, Aromatic heavy atoms, Fraction
Csp3, Rotatable bonds, H-bond acceptors, H-bond donors, MR, TPSA and XLOGP3*.

Code | MW | #Heav | #Aro | Fract | #Rotat #H- #H- MR TPS | XL
y matic ion able bond bond A oG
atoms | heavy | Csp3 | bonds | accept | donors P3
atoms ors
a 636. 187.0 | 135. | 1.4
78 46 12 ] 0.56 17 8 2 8 62 | 4
b 636. 187.0 | 135. | 1.4
78 46 12 ] 0.56 17 8 2 8 62 | 4
c 637. 185.1 | 141. | 1.4
77 46 12 ] 0.56 18 9 2 5 61 8
d | 569. 161. ] 2.3
65 41 12 0.48 18 8 4 1604 | 4 1
e 667. 186.8 | 167. | 3.4
75 48 12 0.53 19 10 2 3 91 4
Date set
¥
Molecular Docking
a4

Frizzing of docked ligands

2

[ Descriptor calculation ]

4

[ Descriptor pre-screening }

b 3

[ Feature selection ]

A g
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¥
Optimization Algorithms

Regression (SVM)

Figure.1. QSAR workflow for modeling P2Y, inhibitors.
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Figure.2. Variations in the correlation coefficient (R) and standard error (SE) relative to descriptor count.
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24

Figure. 3. Docking result between P2Y;, and some piperazinyl-glutamate-pyridine / primidine
derivatives. (No. of chemicals are identical with Table 1)
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Figure. 4. The plot of SVM predicted (a) and residuals (b) against the experimental values of 1Csy,.
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Figure. 5. The results of applicability domain analysis (Williams plot).
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Figure. 6. Results of ADME analysis for hit drug candidates.
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