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Abstract:

Diagnosis of various diseases including infections, immune disorders, and leukemia requires white blood cell (WBC)
classification. The traditional methods take long hours for WBC classification through manual examination by the
hematologists, which may lead to errors by human judgment, as it is difficult and requires much expertise. But with
recent developments in deep learning, automated WBC classification is gaining interest due to its accuracy and speed.
This study investigates a deep learning approach to WBC classification using the VGG16 convolutional neural
network (CNN) architecture.

Transfer learning is used in our model in which a pre-trained VGG 16 network has been finetuned using a dataset
containing labeled WBC images. The dataset contains images of neutrophils, lymphocytes, monocytes, and eosinophils
for a truly comprehensive classification task. The model's WBC type differentiation ability is evaluated based on the
accuracy, precision, re-call, and Fl-score for the different classes. The model generalization is further enhanced using
data augmentation, thus preventing overfitting.

The experimental results have shown that the VGG 16-based model achieves a very high classification accuracy when
compared with other traditional machine learning-based approaches and even some custom deep learning architectures.
It demonstrates that deep learning, and especially VGG16, could serve as an important tool to automate WBC
classification and thereby cut down on the time for diagnostic purposes while assisting hematological analyses by
medical professionals. Future work may involve the integration of the model into real-time diagnostic systems for rare
WBC abnormalities in the dataset and the evaluation of more sophisticated architectures for maximized performance.
The study showcases how deep learning can change the paradigm of medical image analysis and take diagnostics to
another level of accuracy.

Keywords: Deep Learning, White Blood Cell Classification, VGG16, Convolutional Neural Networks (CNNS),
Medical Image Analysis..

INTRODUCTION:

White blood cells (WBCs), or leukocytes, play a crucial role in the immune system by defending the body
against infections and foreign invaders. Abnormalities in WBC count and morphology are indicative of
various medical conditions, such as bacterial and viral infections, autoimmune diseases, and
hematological malignancies like leukemia. Accurate and timely classification of WBCs is vital for early
diagnosis and effective treatment planning. Traditionally, WBC classification is performed manually by
hematologists through microscopic examination of stained blood smear slides. While effective, this
method is time-consuming, prone to human error, and requires significant expertise [1].

With advancements in artificial intelligence (Al) and deep learning, automated WBC classification has
gained increasing attention. Deep learning, particularly convolutional neural networks (CNNs), has
demonstrated exceptional performance in medical image analysis, offering higher accuracy and efficiency
com-pared to traditional machine learning approaches [2]. Among the various CNN architectures,
VGG16 has been widely adopted for image classification tasks due to its deep feature extraction
capabilities and simple yet effective architecture [1,2]. VGGI16 consists of 16 layers with small
convolutional filters, allowing it to capture intricate patterns in images while maintaining computational
efficiency.
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Several studies have explored deep learning approaches for WBC classification. For instance, [3]
implemented a CNN-based model for leukocyte classification and reported high accuracy compared to
conventional machine learning techniques. Similarly, [3] investigated transfer learning with pre-trained
models like VGG16 and ResNet, demonstrating their effectiveness in medical image analysis. These
studies highlight the potential of deep learning in automating WBC classification and improving
diagnostic efficiency.

According to [3,4] developed a CNN-based model for leukocyte classification, achieving superior accuracy
compared to traditional machine learning methods. This study emphasized the ability of CNNs to learn
complex features from microscopic blood smear images. A deep CNN model specifically designed for
WBC classification. The model was trained on a large dataset of stained peripheral blood smear images,
containing different types of leukocytes, including neutrophils, lymphocytes, monocytes, and eosinophils.
The study implemented data preprocessing techniques, such as contrast enhancement and image
augmentation, to improve model robustness and generalization.

One of the key aspects of their approach was feature extraction using CNNs, which eliminated the need
for manual feature engineering. Traditional machine learning techniques, such as support vector
machines (SVMs) and k-nearest neighbors (KNN), require handcrafted feature extraction, which can be
time-consuming and less effective in capturing intricate cellular structures. In contrast, CNNs
automatically learn relevant spatial features, making them highly effective for WBC classification.
Investigated transfer learning using pre-trained models like VGG16 and ResNet for WBC classification,
demonstrating their effectiveness in medical image analysis. Transfer learning, which leverages pre-trained
models on large datasets, can significantly improve performance, particularly when dealing with limited
medical image data. [5,6]

ResNet (Residual Network) introduces skip connections that help mitigate the vanishing gradient
problem in deep networks [7]. This allows for more efficient training and better feature extraction,
particularly in complex datasets like medical images.

Developed an advanced system for white blood cell (WBC) classification, integrating image processing,
segmentation, and transfer learning to create a highly efficient and accurate classification pipeline. Their
work addressed key challenges in automated hematological analysis, such as dealing with noise in
microscopic images, accurately segmenting WBCs from surrounding components (e.g., red blood cells
and platelets), and leveraging deep learning models for high-precision classification. By combining
traditional image processing techniques with state-of-the-art deep learning approaches, [7] provided a
robust framework for automated WBC analysis. [8]

Microscopic blood smear images often contain artifacts, uneven illumination, and variations in staining
intensity, which can hinder accurate classification. [10] implemented several image preprocessing
techniques to enhance image quality before classification, including: Contrast enhancement: To improve
visibility of WBC features. Noise reduction: Applying median filtering to remove unwanted noise. Color
normalization: Standardizing stain variations across different samples.

This study aims to leverage the VGG16 architecture for automated WBC classification by fine-tuning the
pre-trained model on a dataset of labeled WBC im-ages. The key objectives of this research include
developing a deep learning-based model for accurate classification of different WBC types, including
neutrophils, lymphocytes, monocytes, and eosinophils. Evaluating the model's performance using key
metrics such as accuracy, precision, recall, and Fl-score. Comparing the effectiveness of VGG16-based
classification with traditional machine learning approaches and other deep learning architectures.
Exploring the impact of data augmentation techniques on improving model generalization and
robustness.

The impact of this study is addressing the challenges in manual white blood cell classification. Time-
consuming in reviewing and classifying WBCs in blood smears requires significant expertise and effort.
Prone to Human Error due to factors like fatigue and inter-observer variability can lead to inconsistencies
in diagnosis. Labor-Intensive in resource-limited settings, the availability of trained hematologists is often
insufficient.

This study addresses these challenges by automating the WBC classification process using deep learning,
image processing, and segmentation techniques, significantly improving diagnostic accuracy and
efficiency.
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2) METHODS AND METHODOLOGY:

This study adopted Mixed Method of design, which quantitative and applied approach, focusing on the
development and evaluation of deep learning models for automated WBC classification. The
methodology will be structured into the following phases: Dataset Acquisition and Preparation using the
Image Collection using the microscopic blood smear images will be collected with the help of College of
Medical Laboratory Science of Lorma Colleges.

The dataset will encompass images of various WBC types (neutrophils, lymphocytes, monocytes,
eosinophils, basophils) and potentially include images with pathological abnormalities with the help of
the College of Medical Laboratory Science. Image acquisition parameters (e.g., magnification, staining
protocol) will be documented to ensure consistency. Image Preprocessing using the images will be
preprocessed to enhance quality and reduce noise.

Preprocessing steps may include the color normalization to standardize staining variations. Contrast
enhancement to improve cell visibility that will be annotated by the Expert Medical Laboratory
Professionals. Noise reduction using filtering techniques. Image resizing and cropping to standardize
image dimensions. Image Annotation where in the Expert Medical Laboratory Professionals will annotate
the WBC images, labeling each cell with its corresponding type. Annotations will be validated by Medical
Laboratory Experts to ensure accuracy and minimize inter-observer variability. Annotations will be saved
in a format compatible with the deep learning framework.

During the Data augmentation techniques will be employed to increase the size and diversity of the
training dataset, improving model robustness and generalization.

Augmentation techniques may include different phases such as Rotation, flipping, and scaling. Brightness
and contrast adjustments. Elastic deformations. Adding small amounts of noise.

The dataset will be partitioned into three subsets: Training set will be used to train the deep learning
models. Validation set will be used to tune hyperparameters and monitor model performance during
training. Test set will be used to evaluate the final performance of the trained models on unseen data.
The researchers adopted the CNN architecture which has 6 layers. The architecture is designed to learn
spatial hierarchies of features automatically and adaptively, from low to high-level patterns.
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Figure 1 Schematic diagram of a basic convolutional neural network (CNN) architecture

3] RESULTS

This study employs a deep learning approach using transfer learning with the VGG16 model to classify
images into three distinct categories. The dataset is preprocessed using data augmentation techniques to
enhance model generalization and mitigate overfitting. The augmentation strategies include rotation,
width and height shifting, shearing, zooming, and horizontal flipping, applied through the
ImageDataGenerator class. Additionally, rescaling is performed to normalize pixel values within the [0,1]
range, which aids in faster convergence during training.

The VGG16 model, pre-trained on ImageNet, is utilized as the feature extractor, with its convolutional
base frozen to retain pre-learned weights. This strategy reduces the number of trainable parameters and
ensures that lower-level image features remain intact. A fully connected layer with 512 neurons, followed
by a softmax activation layer, is added to classify images into three categories. The categorical cross-entropy
loss function is employed, making it suitable for multi-class classification problems, and Adam optimizer
is chosen for efficient parameter updates.
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The use of transfer learning significantly improves training efficiency by leveraging pre-trained features,
reducing computational cost and training time. Freezing the convolutional base prevents catastrophic
forgetting while enabling the classifier layers to learn dataset-specific features. This approach is particularly
beneficial when the dataset size is relatively small, as it mitigates the risk of overfitting.

As shown in Figure 2, The classification report from the 50-epoch experiment using the VGG16 model
reveals varying levels of performance across the five white blood cell classes. The model shows strong
performance in classifying Basophils and Lymphocytes, with Fl-scores of 0.96 and 0.88 respectively. Both
classes exhibit high recall values—0.99 for Basophils and 0.94 for Lymphocytes—indicating the model
rarely misses these cell types during prediction. Precision for these classes is also relatively high, suggesting
reliable predictions when the model does identify them.

On the other hand, performance for Eosinophils, Monocytes, and Neutrophils is notably weaker.
Eosinophils have a moderate precision (0.72) but a low recall (0.55), which means the model often fails
to detect them. Monocytes show a significant issue with recall as well, scoring only 0.35, despite a high
precision of 0.85—implying the model classifies Monocytes correctly when it predicts them but often fails
to identify them at all. The most unusual result is with Neutrophils, where the model achieves perfect
recall (1.00) but very poor precision (0.42), indicating it frequently misclassifies other cell types as
Neutrophils, leading to a high number of false positives.

Overall, the model achieves an accuracy of 68%, with a macro average Fl-score of 0.71 and a weighted
average Fl-score of 0.67. These results suggest that while the model is effective in identifying certain
classes, it struggles with others, especially those with overlapping features or imbalanced representation
in the dataset. The observed performance patterns also align with signs of overfitting, as validation
accuracy remains lower and more erratic than training accuracy. Addressing this issue may require
techniques such as class rebalancing, additional regularization, fine-tuning the pre-trained layers, or
experimenting with more advanced architectures like ResNet or EfficientNet.

Classification Report:

precision recall fl-score support

Basophil 0.93 0.99 0.96 212
Eosinophil 0.72 0.55 0.62 T44
Lymphocyte 0.83 0.94 0.88 443
Monocyte 0.85 0.35 0.48 Sel
Heutrophil 0.42 1.00 .59 311
accuracy 0.68 2271
macro avg 0.75 0.76 0.71 2271
weighted avg 0.75 0.68 0.67 2271

Figure 1 Classification Report Analysis using VGG16

The confusion matrix as shown in Figure 3 reveals the performance of the VGG16-based white blood cell
classification model across five categories: Basophil, Eosinophil, Lymphocyte, Monocyte, and Neutrophil.
The model performs exceptionally well in classifying Basophils and Lymphocytes, with 210 out of 212
and 417 out of 443 correct predictions, respectively. Neutrophils also show nearly perfect recall, with 310
out of 311 correctly identified. However, this high recall is misleading due to a significant overprediction
problem. The model frequently misclassifies Eosinophils and Monocytes as Neutrophils—251 and 171
times respectively—leading to a very low precision (0.42) for the Neutrophil class.

Eosinophil classification suffers from considerable confusion, as evidenced by only 409 correct
predictions out of 744 actual instances. Many Eosinophils are misidentified as Neutrophils and
Lymphocytes, suggesting the model struggles to distinguish Eosinophil features reliably. Monocytes are
the most poorly classified group, with only 194 out of 561 instances correctly predicted. A majority are
misclassified as Eosinophils and Neutrophils, highlighting potential feature overlap or insufficient
training representation for Monocytes.

These misclassifications indicate that while the model is confident in certain predictions, particularly for
Neutrophils and Basophils, it lacks balanced generalization across all classes. The results suggest a need
for improved class discrimination, possibly through more diverse training data, class-specific
augmentation, or rebalancing techniques such as weighted loss functions. Overall, the matrix highlights
the model’s bias toward overpredicting dominant or visually similar classes, which compromises its
effectiveness in distinguishing more nuanced cell types like Monocytes and Eosinophils.
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Figure 2 Confusion Matrix

The ROC (Receiver Operating Characteristic) curve as shown in Figure 3 provides a visual assessment of
the classifier's performance across different thresholds for each white blood cell class. The Area Under
the Curve (AUC) metric quantitatively summarizes how well the model distinguishes each class from the
others. AUC values closer to 1.0 indicate better discrimination. In this case, the model achieves perfect
or near-perfect performance for Basophils and Neutrophils, both with an AUC of 1.00, and Lymphocytes
with an AUC of 0.99. This means the classifier is extremely effective in identifying these three cell types
with minimal false positives or false negatives.

However, performance drops for Monocytes and Eosinophils, with AUC scores of 0.90 and 0.88,
respectively. While still considered good, these scores suggest that the model has more difficulty separating
Monocytes and Eosinophils from the other classes, which aligns with the misclassification trends seen in
the confusion matrix and classification report. The shape of their ROC curves, which are further from
the top-left corner compared to others, reflects this reduced sensitivity and specificity. Overall, the ROC
curve indicates that while the model performs excellently for certain classes, it requires improvement in
distinguishing the more ambiguous or underrepresented classes like Eosinophils and Monocytes.
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Figure 3 Receiver Operating Characteristics (ROC) Curve

The training and validation accuracy and loss plots as shown in Figure 4 provide valuable insights into
the model's learning behavior over time. In the left plot, the training accuracy (blue curve) increases
steadily across epochs, eventually reaching approximately 80% by the 14th epoch. This suggests that the
model is effectively learning patterns from the training data. However, the validation accuracy (orange
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curve) initially rises but begins to fluctuate after a few epochs and peaks around 70%. The noticeable gap
between training and validation accuracy signals potential overfitting, where the model becomes too
tailored to the training data and fails to generalize well to unseen data.

In the right plot, the training loss (blue curve) consistently decreases and stabilizes at a low value, reflecting
successful optimization on the training set. In contrast, the validation loss (orange curve) is more erratic
and remains higher than the training loss throughout, reinforcing the presence of overfitting. This
discrepancy suggests the model may be too complex or inadequately regularized, or that the dataset may
lack sufficient diversity or quantity. Together, these patterns highlight the need for potential adjustments
such as data augmentation, dropout, early stopping, or additional regularization to enhance generalization

and model robustness.
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Figure 4 Training Loss and Validation Loss (1™ Training)

In the second training session, as shown in Figure 5, the plots for training and validation accuracy and
loss reveal a more pronounced case of overfitting. The training accuracy, represented by the blue curve
on the left plot, shows a steady increase, eventually reaching approximately 90%. This indicates that the
model is effectively learning and fitting the training data. However, the validation accuracy, represented
by the orange curve, remains relatively low—hovering around 50-55%—and displays irregular fluctuations
across epochs. This considerable gap between training and validation accuracy suggests that while the
model performs well on data it has seen before, it struggles significantly to generalize to new, unseen data.
The right plot, showing training and validation loss, reinforces this interpretation. The training loss (blue
curve) consistently decreases and eventually stabilizes at a low value, which reflects effective learning from
the training set. In contrast, the validation loss (orange curve) stays high and fluctuates noticeably, even
increasing at times during training. This behavior implies that the model is not generalizing well and may
be overfitting—memorizing the training data rather than learning patterns that apply broadly. Such results
highlight the need for intervention strategies like regularization techniques, data augmentation, or
architectural adjustments to reduce overfitting and improve the model’s generalization capability.
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Figure 4 Training Loss and Validation Loss (2nd Training)

The confidence score distribution plots as shown in Figure 5 provide insights into the model’s certainty

in classifying images across the five white blood cell types: Basophil, Eosinophil, Lymphocyte, Monocyte,

and Neutrophil. For Basophil, the model shows extremely high confidence, with scores consistently near
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1.0, except for two instances where the confidence briefly dips—suggesting strong reliability in identifying
this class. The Eosinophil confidence scores, however, show noticeable variability, ranging from around
0.5 to nearly 1.0. This fluctuation indicates that the model is less certain when predicting this class, which
aligns with its lower precision and recall in previous evaluation metrics.

Lymphocyte predictions also reflect high confidence, with most scores above 0.85 and only a few
significant drops, indicating relatively stable and accurate predictions. The Monocyte class demonstrates
more variability in confidence scores, ranging between 0.55 and 1.0, showing that while the model can
make strong predictions, it is occasionally uncertain, likely contributing to the observed drop in recall for
this class. Lastly, Neutrophil predictions display moderate fluctuations in confidence, suggesting
inconsistent certainty despite its perfect recall. This could imply that although the model correctly
identifies all Neutrophils, it does so with varying degrees of confidence.

Overall, the visualized confidence scores confirm the quantitative performance seen in earlier metrics—
classes like Basophil and Lymphocyte are predicted with high confidence and consistency, while
Eosinophil and Monocyte show instability in prediction confidence, reflecting areas where the model may
need improvement.
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Figure 5 Confidence Analysis

As shown in Figure 6, the plot illustrates the predicted confidence scores for the Basophil class in an
image classification task, with each point representing a sample. Most of the blue dots (predictions) align
very closely with the red dashed line, which represents the ideal confidence score of 1.0. This indicates
that the model consistently predicts Basophil images with very high certainty, demonstrating strong
reliability in classifying this cell type. Only a few outliers are present, where the confidence drops slightly
below 1.0—most notably one instance around 0.69. These few deviations suggest that while the model
occasionally exhibits reduced confidence, it generally remains highly certain and consistent when
identifying Basophil cells. This further supports the results from previous evaluations, such as the
confusion matrix and ROC curve, where Basophil achieved perfect or near-perfect scores, affirming its
status as the most confidently and accurately predicted class in the dataset.
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Figure 6 Regression in Image Classification (Basophil)
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Presented in Figure 7 the plot displays the predicted confidence scores for the Eosinophil class in an
image classification task. Unlike the Basophil plot, the blue dots here show a much wider spread below
the red dashed line, which represents the ideal confidence score of 1.0. While a portion of predictions
cluster near the top, indicating high confidence, a significant number of predictions fall well below 0.9,
with some even dropping below 0.5 and as low as 0.4. This scattered distribution highlights a lack of
consistency in the model’s confidence when identifying Eosinophil cells. The substantial variation
suggests that the model is less certain and potentially less accurate in classifying this particular class, which
aligns with earlier evaluation metrics like the ROC curve, where Eosinophil had a lower AUC of 0.88
compared to other classes. Overall, the plot indicates that Eosinophil classification is a challenging task
for the model, with room for improvement in prediction reliability and class-specific learning.

Regression in Image Classification (Eosinophil)
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Figure 7 Regression in Image Classification (Eosinophil)

As shown in Figure 8 the plot shows a significant clustering of predicted confidence scores at or very near
the ideal confidence level of 1.0, indicating that many samples were classified with high confidence.
However, there is also a considerable spread of predictions below 1.0, with some scores as low as
approximately 0.35. This suggests that while the model performs well for many samples, it also exhibits
varying degrees of lower confidence for other samples, indicating areas where its predictions are less
certain. The distribution of these lower confidence predictions appears somewhat scattered across the
range of sample indices, without a clear pattern or trend, which could be indicative of the model's varying
performance across different input samples or challenging classification cases.

Regression in Image Classification (Monocyte)
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Figure 8 Regression in Image Classification (Monocyte)
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Similar to the previous plot, shown in Figure 9 a substantial number of predictions are clustered at or
very close to the ideal confidence level of 1.0, indicating high certainty in classification for a large portion
of the samples. However, there's also a noticeable dispersion of predictions below 1.0, with some scores
dipping to around 0.4. This suggests that while the model generally performs well with high confidence,
it also encounters instances where its confidence in the classification is significantly lower. The
distribution of these lower confidence predictions appears somewhat scattered across the different sample
indices, without a clear pattern or trend, suggesting that the model's confidence varies for different
samples. The overall pattern is consistent with a model that performs well for a majority of cases but faces
challenges or exhibits uncertainty in a subset of predictions.
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Figure 8 Regression in Image Classification (Neutrophil)

4] CONCLUSION

The research study aimed to evaluate the performance of a deep learning model in the classification of
five types of white blood cells—Basophil, Eosinophil, Lymphocyte, Monocyte, and Neutrophil—based on
image data. Through an analysis of training and validation metrics, ROC curves, confidence score
distributions, and regression plots, the study revealed key insights into the model's strengths and
limitations. The model demonstrated outstanding classification performance for Basophil, Lymphocyte,
and Neutrophil, with AUC scores close to or equal to 1.00, indicating high discriminative power and
confidence consistency. However, the model showed relatively lower performance and higher uncertainty
in classifying Eosinophils and, to a lesser extent, Monocytes, as evidenced by lower AUC values,
fluctuating confidence scores, and wider regression spreads.

Training and validation trends further highlighted issues of overfitting, where the model learned well on
training data but struggled to generalize to unseen validation data. This was particularly evident in the
second training phase, where validation accuracy plateaued despite increasing training performance.
These findings suggest that while the model can achieve high accuracy under certain conditions, further
improvements are needed—especially in data augmentation, model regularization, and class balance—to
enhance its generalizability and robustness across all white blood cell classes.

The model performed exceptionally well in classifying Basophils, Neutrophils, and Lymphocytes,
achieving near-perfect AUC values (1.00 and 0.99) and very high confidence scores. This indicates that
VGG16 is capable of extracting effective features for these cell types. The model consistently learned well
on the training dataset, achieving high training accuracy and low training loss, indicating good capacity
for feature learning.

In conclusion, the study demonstrates the potential of deep learning in medical image classification but
also underscores the importance of addressing class-specific challenges and mitigating overfitting to ensure
reliable and clinically applicable results.
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