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Abstract 
Landslides are increasingly recognized as significant natural disasters. Over the years, extensive research has led to the 
development of predictive models and public awareness strategies aimed at reducing their impact. Landslides typically 
occur due to slope failure, often exacerbated by heavy rainfall. Efforts to mitigate the damage involve both improving 
forecasting techniques and enhancing community preparedness. In tropical areas, landslides triggered by rainfall are 
the most common form of mass movement, primarily due to frequent monsoons. Establishing rainfall thresholds (RT) 
and conducting a comprehensive examination of patterns of rainfall distribution in spatial and temporal are necessary 
for predicting these landslides. However, creating a regional rainfall threshold is a complex task. Clustering analysis 
emerges as a valuable approach to effectively manage and interpret this scattered data. In this study, Rainfall 
Threshold (RT) equation was developed for northeastern region of Arunachal Pradesh by incorporating daily rainfall 
data along with 2-day, 3-day and 5-day antecedent rainfall. The study determined that the trend line derived from the 
3-day antecedent rainfall and daily rainfall is the most suitable rainfall threshold equation for the area. Consequently, 
the correlation between rainfall thresholds and landslides emerges as an innovative approach for developing early 
warning systems in regions prone to landslides. 
Keywords: Cluster analysis, Landslides, Rainfall, threshold analysis and Tropical climate.  
 
 
INTRODUCTION 
Landslides have a growing influence now a days, particularly as climate change intensifies weather patterns 
and human activities alter natural landscapes. The increased frequency and severity of heavy rainfall 
events, coupled with deforestation, unplanned urbanization, and infrastructure development in 
vulnerable areas, have made landslides more common and destructive. Landslides have become a 
significant and more frequent natural hazard in India, fuelled by both natural and human-induced factors. 
Their effects are extensive, impacting human lives, infrastructure and the economy, leading to substantial 
socio-economic challenges. In mountainous areas, landslides pose a significant natural threat, often 
causing substantial loss of life and extensive damage to property. Therefore, predicting landslides is crucial 
to mitigate their devastating impact by offering early warnings to nearby residents about the imminent 
danger [1].  
Various factors like slope, soil, land use, geomorphology, geology, aspect, drainage density causes 
landslides, but rainfall is a triggering factor for landslides, particularly in areas with steep terrain and 
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unstable soils. Soil saturation due to heavy or continuous rainfall increases its weight and decreases 
particle cohesion, contributing to these events. This condition combined with gravitational force often 
leads to slope instability and landslides. During India's monsoon season, the risk of landslides escalates, 
especially in regions where the land has been deforested or disturbed. Heavy or prolonged rainfall triggers 
severe landslides in areas with steep slopes, especially where highways and state roads have been 
constructed. 
In regions like the Himalayas, the Western Ghats and the Northeastern states of India, experience 
considerable infrastructure damage, community displacement and fatalities due to landslides. 
Additionally, landslides disrupt transportation networks, hinder economic activities and exacerbate 
environmental degradation, making them a critical issue that requires urgent attention and mitigation 
efforts. 
The Himalayan states, including Uttarakhand, Himachal Pradesh, Jammu & Kashmir, and Northeastern 
states like Sikkim and Arunachal Pradesh, are particularly susceptible to landslides because of their 
unstable geological conditions and heavy monsoon rains. Similarly, the Western Ghats in Kerala, 
Karnataka and Maharashtra face landslides during the monsoon, exacerbated by environmental 
degradation. North-East India, with its hilly terrain and heavy rainfall, also experiences frequent landslides 
during the monsoon season. India's Northeast, comprising eight states (Arunachal Pradesh, Assam, 
Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura is eminent for its abundant natural 
resources, rich biodiversity and vibrant cultural heritage.  
In northeastern India, particularly in the mountainous areas of Arunachal Pradesh, this issue is especially 
critical. Landslides frequently occur along the entire Himalayan Mountain range in northern India. 
Foothill states such as Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Meghalaya and Arunachal 
Pradesh experience severe landslides annually, particularly during monsoon season. The increasing 
frequency and severity of these landslides negatively impact the region's tourism industry, a crucial 
economic sector. 
According to [2], hills with debris and rainfall from the monsoons frequently cause landslides in tropical 
climates. Such incidents have a devastating effect on day-to-day living, resulting in large casualties, 
devastation, property damage and other financial losses. To mitigate these risks, researchers have focused 
on developing predictability and early warning systems [3,4].  
Rainfall-induced landslides are well-known for their extensive spatial and temporal distribution, as well as 
their high frequency of occurrence [5,6]. Earlier research primarily examined the relationship between 
landslides and total daily rainfall, often neglecting the importance of antecedent conditions [7]. 
Monitoring diverse rainfall patterns and creating models are essential for predicting precipitation, which 
has led to the development of the Rainfall Threshold (RT) concept. RT is a model that identifies a specific 
threshold value for rainfall, beyond which the likelihood of a landslide increases significantly. It defines 
critical weather conditions that, when met or surpassed, are likely to trigger landslides [8,9].  
Both physical (process-oriented, conceptual) or empirical (historical, analytical) methods can be used to 
establish RT [5,10]. These approaches correlate the chance of landslides to a number of rainfall 
characteristics, such as duration, magnitude, cumulative rainfall and antecedent rainfall [2,11]. 
Antecedent precipitation is crucial in landslides triggered by landslides as it decreases soil suction and 
raises pore-water pressure within the soil [12]. Recent studies have further investigated the thresholds for 
rainfall-triggered landslides by analyzing intensity–duration relationships and antecedent precipitation, 
defined as rainfall accumulated over days preceding the landslide event [12-14].  
The research area is situated in a landslide-prone region that yearly landslide impacts, affecting the tourism 
industry. This study aims to predict the area's future vulnerability to landslides and contribute to strategic 
management planning for sustainable tourism. This present study aims to develop a Rainfall Threshold 
(RT) by incorporating daily rainfall data along with 2-day, 3-day and 5-day antecedent rainfall. The study 
utilized an empirical approach to derive Rainfall Thresholds (RT) through cluster analysis. Previous 
research by [15], highlighted the efficacy of cluster analysis for determining RT at local scales, although its 
application at regional scales remains unvalidated. The northeastern state of Arunachal Pradesh was 
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selected for the present study (Fig.1). Five landslide-prone locations were identified for deriving Rainfall 
Thresholds (RT) (Fig. 1 and Table 1). These locations were chosen based on the availability of rainfall 
data, along with their distinct geological, geomorphological and geotechnical characteristics, as well as 
variations in spatial rainfall distribution. 
 
STUDY AREA DESCRIPTION 
Arunachal Pradesh, a state in northeastern India known as "The Land of the Rising Sun," is located 
between 26°28' and 29°30' N latitude and 91°30' and 97°30' E longitude, encompassing 83,743 square 
kilometres. The region is primarily covered by tropical semi-evergreen forests with limited agriculture, 
mostly in the form of shifting cultivation. Consequently, the majority of the population resides in valley 
areas. With forests covering around 80% of the state's area, the Forest Survey of India [16] reports that 
the state is rich in forest resources. Arunachal Pradesh can be geologically divided into four distinct 
physiographic regions: the Himalayan range, the Trans-Himalayan range, the Naga-Patkai range and the 
Brahmaputra plains. The region is characterized by a diverse array of rock types, including shales, 
sandstones, quartzites, phyllites, schists, gneisses, leucogranites, metavolcanics and carbonates. The major 
soil types found in the area are medium sand, silty sand, clayey sand, silty clay and low-compressibility 
clay. The region is divided into various tecnomorphic zones, including the Trans Himalaya, Shiwalik 
Himalaya, Greater Himalaya and Lesser Himalaya, which significantly increase the region's susceptibility 
to landslides. The area's physiography is characterized by high elevations, steep inclines, deep ravines, 
fragmented valleys and mountain-topped ridges. Annual precipitation ranges from 150 to 200 cm, with 
temperatures varying between 15 and 30 °C. The geography of the state significantly influences its climate 
due to its location and tectonic activity, it is classified as a Zone V area, indicating very high seismic risk. 
Five specific landslide locations were selected for this study based on the availability of relevant rainfall 
data and geographic information. East Siang - Sangam Bridge Collapse Near Pangin, East Siang - Near 
Sirki Waterfall, East Siang - Rotlung Village Kebang, Papum Pare - Near IG Park and Papum Pare - 
Leporiang are the locations where these incidents took place in and around Arunachal Pradesh. 

 
Fig:1  Location map of the study area 
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Fig:2 Methodology adopted in present study 
 
METHODS 
This study research examines rainfall thresholds in Arunachal Pradesh to explore the potential for 
implementing an early warning system to mitigate potential landslide impacts. In Previous studies [5,17-
20] have demonstrated the effectiveness of rainfall threshold analysis in developing early warning systems. 
Cluster analysis was performed using the open-source software Waikato Environment for Knowledge 
Analysis (Weka) to identify the rainfall thresholds. This analytical method groups data based on similar 
characteristics. Typically, rainfall thresholds are determined using scatter plots comparing variables such 
as rainfall duration and intensity or a combination of antecedent and daily rainfall, as noted in earlier 
studies [21-23]. The data was analysed using k-means clustering, a widely recognized and efficient 
technique. This approach represents clusters with centroids and the squared error function is minimized 
by optimizing the grouping [24]. 
  A collection of n observations is depicted in our study as rainfall data, is given as (x1, x2, … xn).  
Using the K-means clustering algorithm, these "n" observations are divided into K means cluster K (≤ n) 
sets (S = {S1, S2,…Sk}) and their within-cluster variation. 
The K-means clustering algorithm is expressed as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑠 ∑ ∑ ‖𝑋 −  𝜇𝑖‖² = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠 ∑ ⃒𝑆𝑖⃒ 𝑉𝑎𝑟 𝑆𝑖𝑘
𝑖=1  𝑋∈𝑆𝑖

𝑘
𝑖=1      (1)                                                                                    

       where 𝜇𝑖  is the mean rainfall of the observations in the cluster Set 𝑆𝑖. 
This clustering approach is classified as variance-based and employs Euclidean distance to 

minimize the sum of distances to the nearest point [25]. The Elbow method, a simple technique for 
determining the ideal number of clusters, is used to identify the optimal K value. Once critical clusters 
are established, scatter plot analyses are conducted for 2-day, 3-day and 5-day antecedent rainfall versus 
daily rainfall. This analysis aids in developing rainfall threshold equations for each antecedent rainfall 
condition, derived from known landslide occurrence data and expressed as linear equations. 

Y = mx + c       (2) 
In the equation, m and c represent the slope and y-intercept, while y and x denote daily and 

antecedent rainfall, respectively. A rainfall threshold exceedance curve is then graphically produced using 
this equation. The graph shows the threshold value exceedance over a given time period for each 
antecedent rainfall condition. Potential landslide triggering is indicated by positive values on this curve. 
According to [26], a rainfall threshold exceedance curve that is visually produced might therefore indicate 
the probability of a landslide based on recorded rainfall data during a specific timeframe. 
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RESULTS AND DISCUSSION 
Rainfall threshold using K-means Clustering 
Rainfall threshold analysis was carried out for landslide events at five locations: Sangam Bridge near 
Pangin, Sirki Waterfall and Rotlung Village Kebang in East Siang; and near IG Park and Leporiang in 
Papum Pare. The analysis covered 63 days of rainfall data per event -10 days before, the event day and 10 
days after (Table 1). Antecedent rainfall for 2, 3 and 5 days was calculated, with a maximum antecedent 
period of five days, consistent with prior studies by [15, 27-29]. 

Scatter plots were created to visualize the relationship between daily rainfall and antecedent 
rainfall over 2, 3 and 5 days. Due to the variability of monsoon patterns, these plots exhibited significant 
dispersion. To address this, cluster analysis was employed to identify critical landslide-inducing events 
(Fig.3). The study utilized K-means clustering, with details provided in Table 2. The optimal number of 
clusters was determined using the elbow method [30]. The cluster most strongly associated with landslide 
events was isolated and a linear trend line was fitted to the data, as represented by Eq. (2) (Fig. 4). 
Table 1: Daily and Antecedent rainfall for five locations in Arunachal Pradesh. 

Date Place Daily 
Rainfall 
(mm) 

Antecedent 
Rainfall:2-
day (mm) 

Antecedent 
Rainfall:3-
day (mm) 

Antecedent 
Rainfall:5-
day (mm) 

03.08.2021 East Siang- 
Sangam 
Bridge 
Collapse 
Near 
Pangin  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

1.03 1.9 1.9 1.9 
04.08.2021 0.23 1.24 2.93 2.93 
05.08.2021 0.82 1.26 1.47 3.16 
06.08.2021 1.65 1.05 2.08 3.98 
07.08.2021 16.53 2.47 2.7 3.94 
08.08.2021 7.19 18.18 19 20.26 
09.08.2021 14.73 23.72 25.37 26.42 
10.08.2021 12 21.92 38.45 40.92 
11.08.2021 20.1 26.73 33.92 52.1 
12.08.2021 36.03 32.1 46.83 70.55 
13.08.2021 40.56 56.13 68.13 90.05 
14.08.2021 24.02 76.59 96.69 123.42 
15.08.2021 6.8 64.58 100.61 132.71 
16.08.2021 1.17 30.82 71.38 127.51 
17.08.2021 20.09 7.97 31.99 108.58 
18.08.2021 25.76 21.26 28.06 92.64 
19.08.2021 15.77 45.85 47.02 77.84 
20.08.2021 17.19 41.53 61.62 69.59 
21.08.2021 11.03 32.96 58.72 79.98 
22.08.2021 11.87 28.22 43.99 89.84 
23.08.2021  5.25 22.9 40.09 81.62 

03.08.2021 East Siang-
Near Sirki 
Waterfall 
  
  
  
  
  
  
  

2.74 11.84 11.59 11.59 
04.08.2021 0.97 2.99 14.58 14.58 
05.08.2021 4.72 3.71 3.96 15.55 
06.08.2021 7.46 5.69 8.43 20.27 
07.08.2021 33.74 12.18 13.15 16.14 
08.08.2021 29.7 41.2 45.92 49.63 
09.08.2021 32.55 63.44 70.9 76.59 
10.08.2021 28.69 62.25 95.99 108.17 
11.08.2021 36.52 61.24 90.94 132.14 
12.08.2021 72.04 65.21 97.76 161.2 
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13.08.2021   
  
  
  
  
  
  
  
  
  
  
  

54.55 108.56 137.25 199.5 
14.08.2021 59.65 126.59 163.11 224.35 
15.08.2021 15.69 114.2 186.24 251.45 
16.08.2021 4.82 75.34 129.89 238.45 
17.08.2021 40.32 20.51 80.16 206.75 
18.08.2021 57.66 45.14 60.83 175.03 
19.08.2021 54.54 97.98 102.8 178.14 
20.08.2021 32.79 112.2 152.52 173.03 
21.08.2021 24.1 87.33 144.99 190.13 
22.08.2021 35.99 56.89 111.43 209.41 
23.08.2021 16.52 60.09 92.88 205.08 

17.06.2021 East Siang- 
Rotlung 
Village 
Kebang 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

6.84 0 0 0 
18.06.2021 43.27 6.84 6.84 6.84 
19.06.2021 36.67 50.11 6.84 6.84 
20.06.2021 32.86 79.94 86.78 86.78 
21.06.2021 9.3 69.53 112.8 119.64 
22.06.2021 11.57 42.16 78.83 128.94 
23.06.2021 23.91 20.87 53.73 133.67 
24.06.2021 35.46 35.48 44.78 114.31 
25.06.2021 16.8 59.37 70.94 113.1 
26.06.2021 28.96 52.26 76.17 97.04 
27.06.2021 66.8 45.76 81.22 116.7 
28.06.2021 49.83 95.76 112.56 171.93 
29.06.2021 24.59 116.63 145.59 197.85 
30.6.2021 23.54 74.42 141.22 186.98 
1.07.2021 24.95 48.13 97.96 193.72 
02.07.2021 18.65 48.49 73.08 189.71 
03.07.2021 18.48 43.6 67.14 141.56 
04.07.2021 12.52 37.13 62.08 110.21 
05.07.2021 7.71 31 49.65 98.14 
06.07.2021 14.92 20.23 38.71 82.31 
07.07.2021 3.39 22.63 35.15 72.28 

21.05.2021 Papum 
Pare - Near 
IG park 
  
  
  
  
  
  
  
  
  
  
  
  

11.99 0 0 0 
22.05.2021 6.06 11.99 11.99 11.99 
23.05.2021 0.97 18.05 18.05 18.05 
24.05.2021 1.55 7.03 19.02 19.02 
25.05.2021 8.47 2.52 8.58 20.57 
26.05.2021 3.5 10.02 10.99 29.04 
27.05.2021 6.82 11.97 13.52 20.55 
28.05.2021 0.38 10.32 18.79 21.31 
29.05.2021 2.78 7.2 10.7 20.72 
30.05.2021 19.83 3.16 9.98 21.95 
31.5.2021 42.2 22.61 22.99 33.31 
1.06.2021 16.52 62.03 64.81 72.01 
02.06.2021 20.89 58.72 78.55 81.71 
03.06.2021 13.07 37.41 79.61 102.22 
04.06.2021 17.17 33.96 50.48 112.51 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 3, 2025 
https://theaspd.com/index.php 
 
 

877 

 

05.06.2021   
  
  
  
  
  
  

24.73 30.24 51.13 109.85 
06.06.2021 27.38 41.9 54.97 92.38 
07.06.2021 23.78 52.11 69.28 103.24 
08.06.2021 34.49 51.16 75.89 106.13 
09.06.2021 5.5 58.27 85.65 127.55 
10.06.2021 5.27 39.99 63.77 115.88 

29.05.2021 Papum 
Pare -
Leoporiang 

2.02 0 0 0 
30.05.2021 16.56 2.02 2.02 2.02 
31.05.2021 24.38 18.58 18.58 18.58 
01.06.2021 14.75 40.94 42.96 42.96 
02.06.2021 11.13 39.13 55.69 57.71 
03.06.2021 10.61 25.88 50.26 68.84 
04.06.2021 15.94 21.74 36.49 77.43 
05.06.2021 25.48 26.55 37.68 76.81 
06.06.2021 35.28 41.42 52.03 77.91 
07.06.2021 25.69 60.76 76.7 98.44 
08.06.2021 46.18 60.97 86.45 113 
09.06.2021 7.28 71.87 107.15 148.57 
10.06.2021 4.19 53.46 79.15 139.91 
11.06.2021 3.66 11.47 57.65 118.62 
12.06.2021 3.43 7.85 15.13 87 
13.06.2021 18.1 7.09 11.28 64.74 
14.06.2021 20.82 21.53 25.19 36.66 
15.06.2021 16.86 38.92 42.35 50.2 
16.06.2021 5.5 37.68 55.78 62.87 
17.06.2021 13.49 22.36 43.18 64.71 
18.06.2021 8.77 18.99 35.85 74.77 

 
 
Among the three trend lines developed, the one representing the relationship between 3-day 

antecedent rainfall and daily rainfall was found to be the most appropriate, as all five landslide events 
positioned above the trend line. Therefore, this trend line is proposed as the rainfall threshold equation 
for the study area. 

y = 41.28 - 0.0718x       (3) 
Notably, the intercept values for all three trend lines (2, 3 and 5-day antecedent rainfall) ranged 

from 30.33 to 50.6 mm. This suggests that in Arunachal Pradesh, a daily rainfall event of approximately 
≥ 30 mm could potentially trigger a landslide, even without antecedent rainfall. The negative coefficient 
of antecedent rainfall in all equations (Fig.4) indicates an inverse relationship between cumulative 
antecedent rainfall and the daily rainfall required to trigger a landslide. The study recommends 
incorporating rainfall intensity in future research to improve the accuracy of the threshold relationship 
and reduce false positives. Due to the absence of rainfall intensity data for the Arunachal Pradesh, it is 
essential to adopt a precautionary threshold equation, as presented in Equation (3). 
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Table 2: Run Characteristics of Cluster Analysis 

 2-Day vs Daily 

Rainfall 

3-Day vs Daily 

Rainfall 

5-Day vs Daily Rainfall 

Scheme K Means Clustering 

Optimization Elbow Method 

 

 

 

 

 

Initial 

Starting 

Point 

 

 

 

 

 

 

C0 C1 C2 C0 C1 C2 C0 C1 C2 C3 C4 

Anteced

ent 

 

0.0 1.24 6.84 6.84 0.00 0.0 0.0 0.0 6.84 116.7 173.0

3 

Daily 11.99 0.23 43.27 36.67 11.99 2.02 11.99 2.02 36.67 66.8 32.7

9 

 

Final 

Cluster 

Centroi

d 

Anteced

ent 

43.6 10.02 97.98 112.5

6 

50.4

8 

11.99 89.8

4 

15.15 77.91 175.0

3 

197.8

5 

Daily 18.48 3.5 54.54 49.8

3 

17.17 6.06 11.87 4.72 35.2

8 

57.66 24.59 

 

Clustered Instances 

 

67 

(64%

) 

 

20 

(19%

) 

 

18 

(17%

) 

 

37 

(35%

) 

 

48 

(46%

) 

 

20 

(19%

) 

 

43 

(41%

) 

 

19 

(18%

) 

 

25 

(24%

) 

 

7 

(7%) 

 

11 

(10%

) 
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Fig.3 Scatter plot showing the different clusters. Antecedent rainfall vs. daily rainfall ‘L’ 

indicates landslide incidence. 
Implementation of Early Warning System 
The initial step in developing an early warning system for landslides is to assess the area's susceptibility. 
These systems are particularly effective in regions with steep slopes, where low-cohesion soil overlays 
crystalline bedrock and is subjected to seasonal monsoon rains. Such conditions increase landslide risk 
due to the loose soil cover on the crystalline rock, which can lead to the build-up of seepage pressure.  
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Fig. 4 Linear trend line for isolated cluster favouring landslide.2-day antecedent vs. daily rainfall; 3-day 
antecedent vs. daily rainfall; 5-day antecedent vs. daily rainfall. ‘L’ indicates landslide incidence. 
Although collecting soil and rock data can be demanding, it is vital for preventing landslide-related 
casualties and financial damages. By gathering rainfall information for specific areas, such as unstable 
slopes, antecedent precipitation can be accurately measured. This data can be integrated with daily 
forecasts to predict when rainfall might surpass critical thresholds. 
The proposed approach has the potential to deliver a 24-hour advance warning for unstable areas, 
significantly reducing casualties and mitigating landslide risks. By analysing and correlating rainfall 
thresholds, this innovative method offers a novel strategy for landslide early warning systems, particularly 
in the Eastern Himalayas, where landslides are common. The resulting model is simple, cost-effective and 
comprehensive, making it adaptable to other regions with similar climate and topography. 
 
CONCLUSION 
Landslides are a recurring natural disaster that threatens human lives and the environment globally. This 
study employs cluster analysis to determine the rainfall thresholds that cause landslides. In Arunachal 
Pradesh, single-day rainfall is commonly considered the main trigger for landslides, but antecedent rainfall 
also plays a significant role by increasing soil pore-water pressure. As cumulative antecedent rainfall 
increases, the amount of daily rainfall required to trigger a landslide decreases. In tropical regions, 
landslides are therefore influenced by both daily and antecedent rainfall. Crossing the threshold does not 
guarantee that a landslide will happen each time. Instead, it acts as a signal to trigger an early alert, 
allowing the community time to take precautions for a possible landslide. The early alert system depends 
on tracking both daily and antecedent rainfall in landslide-prone regions to evaluate the probability of a 
landslide using the rainfall threshold equation. Regular tracking of daily rainfall or intensity allows for 
timely warnings when values approach the threshold. Therefore, regular monitoring of rainfall data is also 
beneficial for landslide mitigation efforts. 
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