International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Embedded Artificial Neural Networks (Embedded-ANN) And
YOLO-Edge For Embedded Systems

Halil Hiiseyin Caligkan ", Talha Koruk *

"Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Computer
Engineering, Bursa, Turkiye. Email: caliskanhalil815@gmail.com

?Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Computer
Engineering, Bursa, Turkiye. Email: talha.koruk@btu.edu.tr

Abstract: In embedded systems, image classification with artificial neural networks and object detection with YOLO
cause both excessive memory usage and low frame rate per second. In this study, in order to reduce these problems
encountered in embedded systems, artificial neural networks were rewritten only with NumPy without using any deep
learning library. The results of this study are that this artificial neural network model developed with NumPy specifically
for embedded systems is approximately 265 times faster than artificial neural network models created with TensorFlow
having the same neural network architecture and consumes 6 times less memory. In addition, the fact that these developed
artificial neural networks operate at high speed using only the processor without using a graphics card in embedded systems
shows the feature of this neural network model to work independently of hardware. Moreover, YOLOuw8’s architecture has
been modified specifically for embedded systems and named as YOLO-Edge. According to results, YOLO-Edge is 4 times
faster than YOLOuv8m on Nuvidia Jetson Xavier Nx and 8 times faster on Rockchip 3588 (NPU).

Keywords: Artificial Neural Networks, Embedded Systems, Image Classification, YOLO.

1. INTRODUCTION

Embedded systems have various problems in implementing artificial intelligence models due to their limited
processing power [1]. Since artificial neural network models created with TensorFlow require high
computational power; It can be inefficient to run on embedded systems such as Raspberry Pi 5, Nvidia Jetson
Xavier Nx, Orange Pi 5 Plus. Therefore, the need for high-speed and low-latency artificial neural network
models optimized for embedded systems is increasing [2], [4]. In this study, an artificial neural network model
that can work efficiently in embedded systems has the advantage of low power consumption and high speed
and is created with NumPy. The matrix multiplications, transpose operations of matrices, and derivative
operations of activation functions of this artificial neural network model developed for embedded systems
are performed with NumPy. In addition, the matrices in the model are quantized and the Adam algorithm is
rewritten using NumPy. All these added features allow the model to get an average of 1860 FPS in image
classification when running only with the CPU without using a GPU or NPU in embedded systems [5]. Thus,
image classification can be performed efficiently using only a standard CPU without the need for any GPU
or NPU. The model's high FPS by working only with the CPU highlights the model's ability to work
independently of hardware. On the other hand, standard YOLO models consist of too many layers and
contain too many parameters, which can lead serious problems to occur in terms of speed and memory usage
in embedded systems [3], [10]. Some architectural modifications have been made in the YOLOVS8’s
architecture to cope with the difficulties encountered in the integration of standard YOLOv8 models to
embedded systems [22], [24], [25]. By adding DWConv and GhostConv to the backbone section, the
backbone section has been made capable of operating with high performance in embedded systems. In the
neck section, the model has been provided to detect smaller objects better with UpSample operations. The
model has been made lighter by adding LightConv to the head section. After all these optimization studies,
the new YOLO model was named YOLO-Edge. Furthermore, the YOLO-Edge model uses 42% less GPU
memory than YOLOv8m, according to tests conducted on RTX 3060, emphasizing that the model can run
well on embedded systems with low GPU memory space [26], [27], [28], [29].

2. LITERATURE REVIEW

Problems such as high memory consumption and low frames per second caused by artificial intelligence
models make it difficult to integrate such software into embedded systems with limited resources. In recent
years, many researches have been conducted worldwide to reduce these problems encountered in the

263

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

integration of artificial intelligence models into embedded systems. In this review, the studies and their results
are examined. In the following paper, resource-efficient neural networks for embedded systems are discussed.
The effects of reducing neural network weights from 32-bit floating point values to lower bit levels are
discussed in terms of reducing memory usage and increasing processing speed. It is explained that the model
can be lightened by removing some unnecessary weights or layers after training [2]. One of the literature
reviews, the classification of sensor data in small embedded systems with artificial neural networks, shows
that we can successfully process sensor data using artificial neural networks in low-power microcontrollers.
The best accuracy rate was obtained with a two-layer FENN containing 1493 parameters; this model took 36
ms to run and FFNNs gave the most successful results with an accuracy rate of 83%. Thanks to this research,
the integration of artificial neural networks in embedded systems has been further paved [41]. The following
work aims to detect objects at different scales using optimized versions of YOLOvS. By removing some
unnecessary layers in YOLOv8, a YOLO model that operates with lower energy consumption and lower
computational power has been developed. The model optimized for small objects achieved a major
improvement by reducing the model size from 6.3 MB to 1.4 MB. Additionally, the modified model runs
faster than the original YOLOvV8 model [12]. In the following paper, by developing two different
modifications of the YOLOv8n model, feature extraction and prediction performance have been improved.
By modifying the architecture of YOLOV8 and using layers such as GhostConv, faster and lighter YOLO
models have been developed [13]. In the following work, various changes have been made to the architecture
of YOLOV3. In addition to the standard 3 detection layers of YOLOv3, 2 new YOLO detection layers have
been added. SPP network has been added to extract a uniform feature map for inputs of different sizes. Faster
optimization has been achieved by using the tangent loss function instead of cross entropy. As a result, the
newly added two YOLO layers and SPP module did not affect the speed of the model while improving the
detection accuracy. The tangent function helped the model to provide better generalization performance by
reducing the training time. The model achieved a speed of 60 fps and became suitable for real-time
applications [23].

3. METHODS

Embedded Artificial Neural Networks (Embedded-ANN)

In this study, images in .jpg, .png and .jpeg formats that are intended to be trained with artificial neural
networks are read with OpenCV, the pixel value of each image is divided by 255 and normalized and brought
to the appropriate format. All these images brought to the appropriate format with OpenCV are put into a
Python list and finally converted to a NumPy array [8]. Meanwhile, the class equivalent of each image is kept
in another NumPy array. This NumPy array consisting of class numbers is also converted to a unit matrix and
brought to the appropriate format to be used in updating the weights in backpropagation. In the artificial
neural network model, instead of randomly initializing each weight, it is normalized with the He initialization
method and created in matrix form. In forward propagation, the bias value to be added to each weight is
created in matrix format depending on the number of neurons in each layer [9], [10], [11]. The schematic
representation of artificial neural networks created with NumPy is shown in Fig. 1. According to this scheme,
the matrix multiplication operations are performed in hidden layers. With the help of these hidden layers,
activation functions enable the model to learn non-linear relationships instead of learning linear
relationships.

264

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Hidden Layers

Input Layer Output Layer

Fig. 1. The schematic representation of artificial neural networks
Images consisting of lists in NumPy format come to the neural network model as hints and matrix
multiplication is performed with the first weight value. After this multiplication, the bias value is added. This
output is passed to the ReLU activation function [7]. This resulting value is also matrix multiplied with the
new weights and bias values are added. Then it is passed to the ReLU activation function again. In the last
layer of forward propagation, each visual classified using Softmax instead of ReLU is found to have a class
corresponding to it and the probability value of the class it belongs to. The matrix operations in forward
propagation are shown in Figure 3. The reason for using ReLU in this neural network is that, unlike activation
functions such as Silu and Tanh, it is linear and therefore faster than other activation functions [21]. In
addition, another reason for using ReLU as the activation function is that it reduces the vanishing gradient
problem, which is the problem of not being able to update the weights of the model as the gradients approach
0 while being transmitted to deeper layers during the training of the model. Briefly, ReLU is both a linear
activation function and reduces the vanishing gradient problem, which has enabled ReLU to be used in
Embedded-ANN. The images and label data of the model are divided into two as train and validation. During
the training of train data, instead of sending all the data to forward propagation collectively in each epoch,
the train data is divided into mini-batches and sent to each mini-batch for forward propagation. In this way,
the model updates its weights better and learns better as a result. The probability values of the classes formed
in the matrix form as a result of the Softmax function found in the last layer of forward propagation are sent
to backpropagation in each epoch [6]. These sent values are extracted from the unit matrices containing the
label information, normalized and brought to the form of the error matrix. This error is transferred to all
layers with the help of the chain rule and the gradients of the weights are calculated by taking the derivative
of the activation function affecting that weight and multiplying the matrix with the error matrix. The
calculated weight and bias gradients provide the formation of new weight and bias values with the Adam
optimizer algorithm. The betal value in the Adam optimizer algorithm is used to calculate the moving average
of the gradients, while the beta2 value calculates the moving average of the square of the gradients [36], [37].
Gradients may show sudden changes at the beginning of the training, betal balances these changes and allows
the gradient to take into account its past values. The beta2 value in the Adam optimizer algorithm provides
better weight updates by scaling large and small gradient values. At the beginning of the training, the
momentum values of all weight and bias values are brought into appropriate matrix formats. As a result, the
gradients of the weights, the gradients of the biases, betal, beta2 and momentum values provide the formation
of our updated weight and bias matrices. The type of each weight matrix in the artificial neural network model
created specifically for embedded systems is float64. Quantizing these weight matrices from float64 to float16
allows for less memory space to be taken up in embedded systems with limited resources [38], [39], [40]. Thus,
these matrices converted to float16 take up 4 times less space in RAM compared to float64. The reason for
using floatl6 instead of int8 in Embedded-ANN is that the weight matrices resulting from the He
initialization are between O and 1, and if int8 is used in quantization, the weight matrices will only be integers,
which causes a serious loss in the accuracy of the model. The areas occupied by data types in float type in

265

International Journal of Environmental Sciences

ISSN: 2229-7359
Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

RAM are presented in Table I. The artificial neural network model developed specifically for embedded
systems is evaluated according to validation data. In each epoch, validation data is forward propagation and
the matrix containing the validation results formed after forward propagation is compared with the matrix
consisting of labels in the form of a unit matrix. This comparison returns the validation accuracy value. In
each epoch, the validation accuracy value of the model is calculated and if the validation accuracy value is
greater than the previous epochs, the weights of that model are recorded. Thus, the weights that reach the
best validation accuracy value as a result of training are saved in NumPy format and become available for use
in the testing phase. In addition, the fact that these weights created by NumPy can be used in any embedded
system without any problems shows that the model is independent of the hardware. This neural network
model, developed specifically for embedded systems, has been tested on 8 different datasets. Thus, more
extensive information has been provided about the validation accuracy values of the model according to
different datasets. Information about the datasets used is shown in Table II.

Table I. Data types and their memory usages

Type Memory Usage
Float16 4
Float32 8
Float64 16
Float128 32
Float256 64
Table II. Properties of the utilized datasets
Dataset Type Size of Training Size of Validation | Number of Resolutio
Dataset Dataset Claseses
MNIST 60.000 10.000 10 28x28
Fashion MNIST 60.000 10.000 10 28x28
Cifar-10 60.000 10.000 10 32x32
Face Mask 10.800 992 2 160x160
Brain Tumor 2.934 711 2 224x224
Coffe Bean 1.200 400 4 96x96
Rock-Paper-Scissors 4.487 418 3 32x32
Fruits 347 92 2 224x224

YOLO-Edge for Embedded Systems

YOLO (You Only Look Once) is a deep learning-based object detection algorithm used for object detection
(42], [45], [46], [47]. YOLO's basic architecture consists of three parts: backbone, neck and head [44], [48],
[49], [50]. Backbone is a deep convolutional neural network architecture used to extract features such as edge,
shape and texture from the input image. This layer learns the edge, texture and other object-specific
distinguishing features required for object detection by generating a variety of feature maps as a result of
filtering the image. In short, the backbone part of YOLO models processes the image gradually by performing
filtering operations thanks to the Conv layers in it and extracts higher level features at each stage. The Neck
component acts as an intermediate layer that improves object detection performance by processing the
features extracted by the backbone. It improves the features to better detect objects at different scales. In
short, the neck part of YOLO models uses multi-scale feature maps to detect objects of different sizes. The
head section uses the feature maps processed by the backbone and neck to estimate which object types are in
the image, their coordinates and confidence scores. In short, the head part of YOLO models produces final
predictions from the processed features of the backbone and neck. YOLO models can estimate more than
one box for the same object. Using the IOU (Intersection over Union) value, overlapping boxes are eliminated
and the most reliable one is selected, and estimates with low confidence scores are filtered with thresholding.
Intersection over Union is a metric used to measure the similarity between the area containing the bounding
box coordinates estimated from the YOLO algorithm and the area containing the actual coordinates [33],
[34], [35]. A visual representation of how Intersection over Union works is shown in Fig. 2.

266

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Area of Overlap
loU = :
Area of Union
Poor Good Excellent

Fig. 2. The visual representation of how Intersection over Union works

In this study, the YOLO-Edge model is developed based on the YOLOVS architecture [14], [20]. The C2F
layers in the backbone section of YOLOVS were deleted due to the excessive Conv2D layers they contained.
Conv layers were replaced with DWConv and GhostConv. The computational cost of DWConv is lower
than traditional convolutional layers and unlike traditional convolutional layers, each channel is processed
with its own filter, thus having fewer parameters [16]. These features of DwConv cause the GFLOP value of
the created model to decrease, thus making the model lighter for embedded systems. In GhostConv, the
input image is processed with traditional convolutional layers to produce a small number of main feature
maps. New feature maps are created by applying linear operations to the produced main feature maps. This
method requires much less computation compared to standard convolutional layers but maintains the same
output size [15]. Thus, the model is accelerated without using extra convolution weights. SPPF was preferred
as the last layer in the backbone because it provides an easier connection to the neck section compared to
other convolution layers and because a single MaxPool2D layer can be applied more than once, thus allowing
larger-scale features to be extracted [17]. The schematic representation of the backbone of YOLO-Edge is
shown in Fig. 3. Significant changes have been made to the neck section of YOLOv8. Concat and some Conv
layers have been deleted due to the excessive computational load they contain. The model is prevented from
having 3 head sections and the neck section is connected to a single head section. UpSample layers added to
the neck section are used to convert low-resolution data to high resolution. The conv layer applied after
UpSample operations is used to apply convolution operation to the data with increased resolution and the
model becomes able to detect small-sized objects better. The schematic representation of the neck of YOLO-
Edge is shown in Fig. 4. Some Conv layers in the head section of YOLOv8 were deleted and replaced by
LightConv. Thus, the head section of YOLO-Edge was created. LightConv is a layer consisting of the
combination of Conv2D and DWConv. Thus, by adding LightConv, the number of parameters of the model
was reduced and the model became lighter [18], [19], [43]. The schematic representation of the architecture
of YOLO-Edge is presented in Fig. 5.

267

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s,2025
https://theaspd.com/index.php

‘ DWConv }—»{ GhostConv

A

‘ GhostConv ‘4—{ DWConv

SPPF

Fig. 3. The schematic representation of the backbone of YOLO-Edge

UpSample

!

| UpSample |

1
e]

Fig. 4. The schematic representation of the neck of YOLO-Edge

DWConv —> GhosiCorv — DWConv — GhosiConv

l

Cow «— UpSampe «— UpSampe «— SPPF

. {
Cov — Comv2D L—» Bbox. loss

\‘ J

Cov —> LightCow — Comv2D

l

Cis. loss

Fig. 5. The schematic representation of the architecture of YOLO-Edge

Table III. Comparison of YOLO-Edge and other YOLO models in terms of the number of layers, number
of parameters and GFLOP values

268

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Model Number of | Number of GFLOP
Layers Parameters
YOLO-Edge 57 1.428.817 10.0
YOLOvSs 225 11.166.560 28.8
YOLOvEBm 295 25.902.640 79.3
YOLOWSI 365 43.691.520 165.7
YOLOv8x 365 68.229.648 258.5

4. RESULTS

In this study, Embedded-ANN and the YOLO-Edge model were produced and their results were tested.
Validation accuracy values of Embedded-ANN and artificial neural networks with the same architecture
created with TensorFlow according to MNIST, Fashion MNIST, Cifar-10 datasets are shown in Table IV.
Tests of Embedded-ANN with more datasets and the valuation accuracy values obtained according to these
tests are shown in Table V. According to these results, the Embedded-ANN model has a validation accuracy
value of more than 95% in 5 out of 8 datasets, indicating that the basic mathematical structure of the model
(matrix multiplications, matrix transpose operations, derivatives of activation functions, correct setting of the
parameters of the Adam optimizer algorithm) works appropriately. The FPS values and memory footprints of
neural networks created with Embedded-ANN and TensorFlow on the Orange Pi 5 Plus are shown in Table
VI. According to these results, artificial neural network models created with Embedded-ANN run on average
265 times faster and consume 6 times less memory than artificial neural network models created with
TensorFlow. The high speed and low memory consumption of Embedded-ANN make it easy to integrate this
neural network model to embedded systems. The main reason for this FPS and memory usage difference
between Embedded-ANN and TensorFlow is that matrix multiplications, transpose operations, and
derivatives of activation functions are performed using NumPy. Thus, image classification operations can be
performed at high speed with Embedded-ANN in embedded systems with low memory capacity. In order to
test the YOLO-Edge model, it was tested with the UAV dataset that we created ourselves. The UAV dataset
consists only of UAV images and is a dataset consisting of 2616 images as a result of various data
augmentation operations such as brightness change, blurring, vertical rotation, and contrast increase. The
mAP, Precision, Recall and F1 values of the YOLO-Edge model trained with the UAV dataset at 640x640
resolution for 60 epochs are shown in Table VII. The GPU memories occupied by the YOLO-Edge model
and other YOLO models on the RTX 3060 are compared in Fig. 4. According to these results, YOLO-Edge
uses less GPU memory than other YOLO models, which makes the YOLO-Edge model suitable for embedded
systems. Thus, deep learning-based target detection models will be able to work easily in embedded systems
with low memory capacity in the defense industry, and high speed in image streaming will be provided with
a high number of frames per second.

Table IV. Comparison of ANN with TensorFlow and Embedded-ANN

Model MNIST Fashion MNIST Cifar-10
(validation %) (validation %) (validation %)
ANN with TensorFlow 96.35 87.03 19.19
Embedded-ANN 96.71 86.53 36.49
Table V. Validation accuracy values of Embedded-ANN based on various datasets and parameters
Dataset Type Validatio Epoch Number of Number of Neurons
Accuracy (%) Hidden Layers of Each Layers
MNIST 96.71 100 1 32
Fashion MNIST 86.53 100 1 32
Cifar-10 36.49 100 1 32
Face Mask 96.06 100 2 32
Brain Tumor 96.48 100 2 32
Coffe Bean 99.25 100 2 32

269

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Dataset Type Validatio Epoch Number of Number of Neurons
Accuracy (%) Hidden Layers of Each Layers
Rock-Paper-Scissors 87.55 100 2 32
Fruits 98.91 100 2 32

Table VI. Comparison of artificial neural networks created with Embedded-ANN and TensorFlow in terms

of FPS and memory usage

RAM Usage
Model FPS (MB)
ANN with Tensorflow 7 930
Embedded-ANN 1860 160

Table VII. Performance metrics of the YOLO-Edge model based on the UAV dataset

Model

mAP

Precision

Recall

F1

YOLO-Edge

0.954

0.798

0.954

0.868

GPU Memory Usage Comparison of YOLO Models

80

GPU Memory Usage (%)

YOLOvEm
YOLO Models

Fig. 4. GPU memory usage comparison of YOLO models

YOLO-Edge

YOLOvES

YOLOvBx

Sample images of real-time UAV detection and tracking using YOLO-Edge are shown in Fig. 5. These results
show that the deep learning architecture developed for YOLO-Edge provides accurate results by correctly
detecting UAV images taken in different environments and from different angles. By transferring the YOLO-
Edge to gimbal cameras used for target detection and tracking in the defense industry, autonomous detection
and tracking of unmanned aerial vehicles will be performed more quickly and at a lower cost. The FPS
comparison of YOLO-Edge and YOLOv8 models on Raspberry Pi 5, Nvidia Jetson Xavier Nx, Rockchip 3588
is shown in Table VIII. According to these results, the YOLO-Edge model is 4 times faster than YOLOv8m
on Nvidia Xavier NX (GPU) and 8 times faster on Rockchip 3588 (NPU).

270

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

Fig. 5. Images of UAVs detected by YOLO-Edge
Table VIII. Comparison of FPS values of YOLO-Edge and other YOLO models on different embedded

systems
Embedded System Model Resolution Format FPS
Raspberry Pi 5 (CPU) YOLO-Edge 640 RGB
Raspberry Pi 5 (CPU) YOLOvVS8s 640 RGB 1
Raspberry Pi 5 (CPU) YOLOvV8m 640 RGB 0.5
Raspberry Pi 5 (CPU) YOLOvSI 640 RGB 0.2
Raspberry Pi 5 (CPU) YOLOv8x 640 RGB 0.1
Orange Pi 5 Plus (CPU) YOLO-Edge 640 RGB 10
Orange Pi 5 Plus (CPU) YOLOvS8s 640 RGB 0.6
Orange Pi 5 Plus (CPU) YOLOv8m 640 RGB 0.3
Orange Pi 5 Plus (CPU) YOLOvSI 640 RGB 0.1
Orange Pi 5 Plus (CPU) YOLOv8x 640 RGB 0.1
Nvidia Jetson Xavier Nx (CPU) YOLO-Edge 640 RGB 0.7
Nvidia Jetson Xavier Nx (CPU) YOLOvSs 640 RGB 0.3
Nvidia Jetson Xavier Nx (CPU) YOLOv8m 640 RGB 0.1
Nvidia Jetson Xavier Nx (CPU) YOLOwS8I 640 RGB 0.1
Nvidia Jetson Xavier Nx (CPU) YOLOv8x 640 RGB 04
Nvidia Jetson Xavier Nx (GPU) YOLO-Edge 640 RGB 11
Nvidia Jetson Xavier Nx (GPU) YOLOvS8s 640 RGB 7
Nvidia Jetson Xavier Nx (GPU) YOLOv8m 640 RGB 3
Nvidia Jetson Xavier Nx (GPU) YOLOvSI 640 RGB 2
Nvidia Jetson Xavier Nx (GPU) YOLOv8x 640 RGB 1
Rockchip 3588 (NPU) YOLO-Edge 640 RGB 42
Rockchip 3588 (NPU) YOLOv8s 640 RGB 20
Rockchip 3588 (NPU) YOLOv8m 640 RGB 10
Rockchip 3588 (NPU) YOLOvSI 640 RGB 6
Rockchip 3588 (NPU) YOLOv8x 640 RGB 4

5. CONCLUSION

In this study, it is explained how the Embedded-ANN and YOLO-Edge models developed for embedded
systems with limited resources provide high FPS and low memory usage. The results of this new neural
network model are that it is on average 265 times faster and consumes 6 times less memory than TensorFlow
models with the same neural network architecture. Thanks to Embedded-ANN, we can reach an average of
1860 FPS in image classification using only a simple CPU without the need for any GPU, NPU or deep
learning libraries such as TensorFlow, Keras, Pytorch. In addition, the developed YOLO-Edge model has been
modified based on the architecture of YOLOvV8 and has been made suitable for providing high FPS in
embedded systems. YOLO-Edge will enable target detection and tracking software running on embedded
systems in the defense industry to run faster and consume less memory [30], [31], [32]. In this way, energy
saving and resource usage in embedded systems have become more efficient and more appropriate for defense
industry. In future studies, it is aimed to develop new deep learning models with lower inference time while
maintaining the high mAP value by integrating embedded artificial neural networks into the YOLO
architecture. Thus, with the addition of Embedded-ANN to YOLO's architecture, a new era is planned to
open for deep learning models running on embedded systems.

Acknowledgment:

This study was carried out within the scope of TUBITAK 2224-A Programme for Supporting Participation
in International Scientific Activities.

REFERENCES
1. Zhang, Z., & Li, J. (2023). A review of artificial intelligence in embedded systems. Micromachines, 14(5), 897.

271

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

Roth, W., Schindler, G., Klein, B., Peharz, R., Tschiatschek, S., Froning, H., ... & Ghahramani, Z. (2024). Resource-efficient
neural networks for embedded systems. Journal of Machine Learning Research, 25(50), 1-51. Voss RF, Clarke]. (1986)
Algorithmic Musical Composition, Silver Burdett Press, London.

Khanam, R., & Hussain, M. (2024). Yolovll: An overview of the key architectural enhancements. arXiv preprint
arXiv:2410.17725.

Venzke, M., Klisch, D., Kubik, P., Ali, A., Missier, J. D., & Turau, V. (2020). Artificial neural networks for sensor data
classification on small embedded systems. arXiv preprint arXiv:2012.08403.

Cittadini, E., Marinoni, M., & Buttazzo, G. (2025). A hardware accelerator to support deep learning processor units in real-
time image processing. Engineering Applications of Artificial Intelligence, 145, 110159.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews
Neuroscience, 21(6), 335-346.

Shin, Y., & Karniadakis, G. E. (2020). Trainability of relu networks and data-dependent initialization. Journal of Machine
Learning for Modeling and Computing, 1(1).

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825), 357-362.

Datta, L. (2020). A survey on activation functions and their relation with xavier and he normal initialization. arXiv preprint
arXiv:2004.06632. (pp. 1733-1738). IEEE.

Koturwar, S., & Merchant, S. (2017). Weight initialization of deep neural networks (DNNs) using data statistics. arXiv preprint
arXiv:1710.10570.

Hanin, B., & Rolnick, D. (2018). How to start training: The effect of initialization and architecture. Advances in neural
information processing systems, 31.

Rasheed, A. F., & Zarkoosh, M. (2025). Optimized YOLOv8 for multi-scale object detection. Journal of Real-Time Image
Processing, 22(1), 6.

Muna, A. S., & Ramo, F. M. (2024). Performance evaluation for face mask detection based on mult modification of yolov8
architecture. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 14(2), 89-95.

Terven, J., Cordova-Esparza, D. M., & Romero-Gonzilez,]J. A. (2023). A comprehensive review of yolo architectures in
computer vision: From yolovl to yolov8 and yolo-nas. Machine learning and knowledge extraction, 5(4), 1680-1716.

Cao, J., Bao, W., Shang, H., Yuan, M., & Cheng, Q. (2023). GCL-YOLO: A GhostConv-based lightweight yolo network for
UAYV small object detection. Remote Sensing, 15(20), 4932.

Zhang, P., Lo, E., & Lu, B. (2020, April). High performance depthwise and pointwise convolutions on mobile devices. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6795-6802).

Zhang, G., Wang, C., & Xiao, D. (2024). A novel daily behavior recognition model for cage-reared ducks by improving SPPF
and C3 of YOLOv5s. Computers and Electronics in Agriculture, 227, 109580.

Liu, P., Fu, H., & Ma, H. (2021). An end-to-end convolutional network for joint detecting and denoising adversarial
perturbations in vehicle classification. Computational Visual Media, 7, 217-227.

Li, Y., Li, Q., Pan, J., Zhou, Y., Zhu, H., Wei, H., & Liu, C. (2024). Sod-yolo: Small-object-detection algorithm based on
improved yolov8 for uav images. Remote Sensing, 16(16), 3057.

Zhao, T., Feng, R., & Wang, L. (2025). SCENE-YOLO: A One-stage Remote Sensing Object Detection Network with Scene
Supervision. [EEE Transactions on Geoscience and Remote Sensing.

Bai, Y. (2022). RELU-function and derived function review. In SHS web of conferences (Vol. 144, p. 02006). EDP Sciences.
Hussain, M. (2023). YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and
industrial defect detection. Machines, 11(7), 677.

Kaushal, M. (2022). Rapid-YOLO: A novel YOLO based architecture for shadow detection. Optik, 260, 169084.

Hasan, R. H., Hassoo, R. M., & Aboud, I. S. (2023). Yolo Versions Architecture. International Journal of Advances in Scientific
Research and Engineering, 9(11), 73.

Ferrante, G. S., Vasconcelos Nakamura, L. H., Sampaio, S., Filho, G. P. R., & Meneguette, R. 1. (2024). Evaluating YOLO
architectures for detecting road killed endangered Brazilian animals. Scientific reports, 14(1), 1353.

Kalinina, M., & Nikolaev, P. (2020, November). Research of YOLO architecture models in book detection. In 8th Scientific
Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2020) (pp. 218-221). Atlantis Press.
Vijayakumar, A., & Vairavasundaram, S. (2024). Yolo-based object detection models: A review and its applications. Multimedia
Tools and Applications, 83(35), 83535-83574.

Jovanovic, L., Bacanin, N., Zivkovic, M., Mani, J., Strumberger, 1., & Antonijevic, M. (2023, October). Comparison of yolo
architectures for face mask detection in images. In 2023 16th International Conference on Advanced Technologies, Systems
and Services in Telecommunications (TELSIKS) (pp. 179-182). IEEE.

Alif, M. A. R., & Hussain, M. (2024). YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application
in the agricultural domain. arXiv preprint arXiv:2406.10139.

Sumit, S. S., Awang Rambli, D. R., Mirjalili, S., Ejaz, M. M., & Miah, M. S. U. (2022). Restinet: On improving the performance
of tiny-yolo-based cnn architecture for applications in human detection. Applied Sciences, 12(18), 9331.

Zhang, Z., Lu, X., Cao, G., Yang, Y., Jiao, L., & Liu, F. (2021). ViT-YOLQO: Transformer-based YOLO for object detection. In
Proceedings of the IEEE/CVF international conference on computer vision (pp. 2799-2808).

Gunawan, T. S., Ismail, . M. M., Kartiwi, M., & Ismail, N. (2022, September). Performance Comparison of Various YOLO
Architectures on Object Detection of UAV Images. In 2022 IEEE 8th International Conference on Smart Instrumentation,
Measurement and Applications (ICSIMA) (pp. 257-261). IEEE.

272

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

4.

45.

46.

41.

48.

49.

50.

Rahman, M. A., & Wang, Y. (2016, December). Optimizing intersection-over-union in deep neural networks for image
segmentation. In International symposium on visual computing (pp. 234-244). Cham: Springer International Publishing.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric
and a loss for bounding box regression. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 658-666).

Zhang, H., & Zhang, S. (2024). Focaler-iou: More focused intersection over union loss. arXiv preprint arXiv:2401.10525.
Chiranjeevi, V. R., Dhanasekaran, S., Murugan, B. S., & Pandji, S. S. (2024, April). ADAM Optimizer Based Convolutional
Auto Encoder for Detecting Anomalies in Surveillance Videos. In 2024 International Conference on Communication,
Computing and Internet of Things (IC3IoT) (pp. 1-5). IEEE.

Swathika, R., & Kumar, S. D. (2024, February). RSS-Based Localization using Deep Learning Models with Optimizer in
LoRaWAN:-IoT Networks. In 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship
(ICWITE) (pp. 242-246). IEEE.

Roy, S. (2023). Understanding the impact of posttraining quantization on large language models. arXiv preprint
arXiv:2309.05210.

Xiao, P., Zhang, C., Guo, Q., Xiao, X., & Wang, H. (2024). Neural networks integer computation: Quantizing convolutional
neural networks of inference and training for object detection in embedded systems. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing.

Xiao, P., Lin, X., & Wang, H. (2022, July). Research on Neural Network Post-Quantization Method for Ship Detection in SAR
Images. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 2155-2158). IEEE.

Kir, S., & Giinay, E. E. (2022). Augmented Artificial Neural Network Model for the COVID-19 Mortality Prediction:
Preliminary Analysis of Vaccination in Turkey. Sakarya University Journal of Computer and Information Sciences, 5(1), 22-36.
Yolcu Oztel, G., & Oztel, 1. (2023). Deep Learning-based Road Segmentation & Pedestrian Detection System for Intelligent
Vehicles. Sakarya University Journal of Computer and Information Sciences, 6(1), 22-31.

Ozatilgan, A., & Kaya, M. (2024). A Lightweight Convolutional Neural Network for Classification of Brain Tumors Using
Magnetic Resonance Imaging. Sakarya University Journal of Computer and Information Sciences, 7(3), 482-493.

Bakhytov, Y., & Oz, C. (2024). Cigarette Detection in Images Based on YOLOVS. Sakarya University Journal of Computer and
Information Sciences, 7(2), 253-263.

Patel, K., Patel, V., Prajapati, V., Chauhan, D., Haji, A., & Degadwala, S. (2023, June). Safety helmet detection using YOLO
v8. In 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN) (pp. 22-26). IEEE.
Xiong, C., Zayed, T., & Abdelkader, E. M. (2024). A novel YOLOv8-GAM-Wise-loU model for automated detection of bridge
surface cracks. Construction and Building Materials, 414, 135025.

Bawankule, R., Gaikwad, V., Kulkarni, 1., Kulkarni, S., Jadhav, A., & Ranjan, N. (2023, June). Visual detection of waste using
YOLOWS. In 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS) (pp. 869-873). IEEE.
Bakirci, M. (2024). Utilizing YOLOVS for enhanced traffic monitoring in intelligent transportation systems (ITS) applications.
Digital signal processing, 152, 104594.

Soyluy, E., & Soylu, T. (2024). A performance comparison of YOLOv8 models for traffic sign detection in the Robotaxi-full
scale autonomous vehicle competition. Multimedia Tools and Applications, 83(8), 25005-25035.

Gasparovi¢, B., Mausa, G., Rukavina, J., & Lerga, J. (2023, June). Evaluating Yolov5, Yolov6, Yolov7, and Yolov8 in underwater
environment: Is there real improvement?. In 2023 8th International Conference on Smart and Sustainable Technologies

(SpliTech) (pp. 1-4). IEEE.

273

