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Abstract 
Agriculture and agribusiness had been using traditional methods till recently. The developments regarding AI 
applications in agriculture prompted many of them to adopt AI in various operations of agriculture and agribusiness. 
Considerable research has been done on this aspect. This qualitative PRISMA review aimed to evaluate the status of 
research in this respect. Google Scholar was used to identify the relevant papers, and the PRISMA process flow was 
used to screen and select the most appropriate papers based on some inclusion and exclusion criteria. This resulted in 
the final selection of 25 papers for this review. Considering that AI applications transform the current agricultural 
production systems into agile production systems, this review provided much information on how various AI and other 
technologies contribute to such a transformation. Production is the first stage of agribusiness.  At the local level, AI 
applications transform agriculture into sustainable food production. At the global level, it is concerned with global 
food availability and security. Apart from production, AI addresses product supply chains, post-harvest processing and 
marketing through market intelligence, to predict price and volume of arrivals in markets. AI chatbots recommend 
actions for agribusiness based on these predictions. All these apply to farmers who market their products themselves 
and large agribusiness firms. However, unless governments intervene with appropriate policies and strategies, a digital 
divide between the two will limit the access of AI technologies by small farmers. Some limitations of this review and 
some recommendations for research and practice have been given.  
Keywords: AI, IoT, ML, DL, drones, robots, arid practices, agile practices, agriculture, farming, agribusiness, 
controlled environment.  
 
INTRODUCTION 
The term "From Aridity to Agility" describes using AI-driven organisational diagnostics to enhance agility 
and scalability in controlled environment agribusinesses, transforming challenges into opportunities 
through data-driven insights. AI allows them to improve efficiency, optimise resources, make informed 
real-time decisions, and adapt to changing conditions. It turns operational inefficiencies (aridity) into 
adaptive capabilities (agility). Thus, their growth becomes sustainable. 
AI application in a controlled environment of agribusiness facilitates early problem detection, supply 
chain resilience and strategic innovations. The transition from aridity (constraints of resource scarcity, 
operational issues, etc) to agility (adaptability, responsiveness, growth) can be helped by AI. 
This simple qualitative PRISMA review aims to evaluate the status of research in this area. The paper is 
organised as follows. The next section describes the Methodology used to identify and select papers and 
data integration for this review. The individual papers are described in the Results section. The findings 
of the review are synthesised and interpreted in the Discussion section. The limitations of this review, 
conclusions and suggestions for further research and practice follow to end the paper.  
 
METHODOLOGY 
Google Scholar was searched to identify the relevant papers using search terms within the review topic. 
The identified papers were screened and selected using the PRISMA flow process based on certain 
inclusion and exclusion criteria given in Table 1. The process resulted in the final selection of 25 papers 
for this review. 
Table 1 Inclusion and exclusion criteria 

Inclusion criteria Exclusion criteria Remarks 
Only full-text papers Abstracts Abstracts may not contain all 

the required information. 
Papers in English Other languages Even the best translation may 

not be distortion-free. 
Published during 2020-2025 Earlier years To reflect the recent trends. 
 Books, chapters Full-texts considered, if 

available. 
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 Dissertations Guided research 
 Editorials, comments, etc Not considered a research 

paper. 
 Inadequate citation details Cannot be used. 

 
Figure 1 PRISMA 
 

 
 
RESULTS 
Sudha et al. (2025) noted that Scrum and Kanban aspects of agility contribute to flexibility, continuous 
improvement, rapid responses to rapid changes in the business environment, decision making and 
resilience. They enhance competitiveness, risk management, and exploitation of market opportunities to 
drive the commercialisation of agribusiness. Technological advancements like precision agriculture, 
controlled environment agriculture, IoT, AI and blockchain facilitate the transition of agribusiness from 
aridity to agility. Mechatronics and robotics are two technologies used in precision agriculture, which is 
now a major agribusiness trend. In mechatronics, AI and machine learning algorithms are used. Robots 
are used for planting, weeding, pest control, harvesting, and crop health monitoring (Dey, et al., 2025). 
One risk in agribusiness is the disruption of the grain supply chain. Once this happens, production levels 
in controlled environment agribusiness need to be regulated. Therefore, the resilience of the grain supply 
chain is important. Integrating emerging technologies within broader socioeconomic development efforts 
can significantly strengthen supply-chain resilience. Notable examples include blockchain systems, digital 
transformation initiatives and advancements in artificial intelligence. A triangular framework of 
conflicting events was employed to represent complex scenarios and extract nodes for the Bayesian 
network. Next, the scenario was segmented based on scene descriptions, enabling the construction of a 
scene stream and the derivation of an event network, which serves as the foundation for building the 
Bayesian network structure. Subsequently, expert insights and Dempster-Shafer (D-S) evidence theory 
were integrated to determine the network parameters and establish the Bayesian model. Finally, using 
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2022 drought data from the Yangtze River Basin in China, critical nodes within the grain supply chain 
were identified, and a phased strategy was proposed to enhance its resilience (Zhang & Zhou, 2025).  
Pest attacks can affect production in controlled environment agribusiness. If the occurrence of specific 
pests in the area can be predicted, efficient pest management strategies can be devised. Using habitat 
suitability modelling, Holuša and Kaláb (2023) identified areas suitable for the occurrence of Gryllotalpa 
gryllotalpa in the Czech Republic. The main explanatory variables were air temperature, humidity, and soil 
type. The authors used the machine learning model, Maxent, for this purpose.  
Land models help to understand and predict terrestrial processes, including agriculture. Dagon, 
Sanderson, Fisher, and Lawrence (2020) developed an ML method to globally fine-tune selected 
parameters of the Community Land Model version 5 (CLM5), using data on carbon and water flows. The 
focus was on parameters that influence key biophysical processes like energy exchange, water movement, 
and carbon absorption. To identify the most relevant parameters, sensitivity analyses were done, and 
objective metrics were used to rank their influence and distinguish their spatial effects. Next, a set of 
varied parameter combinations was created and trained feed-forward neural networks to mimic CLM5 
outputs based on these inputs. The networks were calibrated using global averages of annual carbon and 
water flux variations. Their accuracies were tested with validation and out-of-sample checks, and applied 
interpretation tools like feature importance and partial dependence. Finally, the trained models efficiently 
estimated globally optimal parameter values, outperforming manual tuning and expanding beyond the 
limited scope of single-site studies. 
A report of the World Economic Forum (WEF, 2025) observed that AI provides solutions to the problems 
(low productivity, fragmented landholdings, limited access to finance and the growing impacts of climate 
change), reducing the potential of Indian agriculture. A three-pillar framework was proposed for this 
purpose. It consisted of an "enable" pillar anchoring the role of governments as primary stakeholders in 
establishing foundational systems, policies, strategies, and institutional arrangements for AI integration 
into all operations in agriculture. The "create" pillar focuses on driving innovation, where start-ups and 
innovators collaborate and co-develop AI solutions with research institutions. The "deliver" pillar is about 
ensuring that the AI solutions reach the farmers through effective extension systems. Feedback loops 
should inform any refinement required. AI can help in crop planning, advise on crop varieties, inputs 
planning, incentives planning, farm operations, post-harvest operations and marketing. In all these 
applications, use cases need to be integrated, all stakeholders need to be involved and cross-cutting basic 
elements. The use cases are satellite-based crop monitoring, crop variety selection, drone-based field 
analysis, weather forecasting, AI chatbots to advise farmers, decision support systems, variable rate 
application of inputs, precision irrigation management, automated farm machinery, pest and disease 
control, soil and nutrient management, post-harvest management, market access and price forecasting, 
and agricultural finance and insurance. The datasets required are digital land records, crop calendar and 
yields, soil health data, satellite imagery, real-time market data, agricultural market network, import-export 
volumes, historical purchase prices of crops, production and consumption data, weather data, irrigation 
maps, storage networks, warehouse details, commodity profile, defects and pest images. The report ends 
with recommendations to the government, start-ups, industry, and for research.  
Chen et al. (2025) observed that Controlled Environment Agriculture (CEA) presents a promising avenue 
for sustainable food production in the face of climate change, resource limitations, and rapid 
urbanisation. Yet, the complexity of managing CEA systems, driven by the dynamic interaction of 
environmental factors and the need for multiscale integration, poses significant challenges. The 
integration of artificial intelligence (AI) is increasingly recognised as a transformative approach to 
navigating these complexities, fostering innovation and operational efficiency within sustainable food 
systems. In recent years, research on AI applications in CEA has surged, reflecting both technological 
progress and heightened interest in intelligent agricultural solutions. Central to this advancement is 
machine learning, which facilitates automated climate regulation, optimised yield outcomes, and data-
informed decision-making. This review synthesises key AI-driven applications, including climate 
forecasting, yield prediction, disease identification, and intelligent control systems, all of which contribute 
to enhanced resource use and crop resilience. Despite these advancements, several hurdles persist. The 
development of more sophisticated models, access to high-quality datasets, and strategies to mitigate 
implementation uncertainties remain critical for realising the full potential of AI in CEA.  
Niranjan et al. (2025) developed an AI-enabled framework that integrates IoT-based sensor networks, 
climate analytics, and machine learning algorithms to facilitate climate-responsive decision-making in 
crop management. This architecture synthesises real-time field inputs, such as soil moisture, temperature, 
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and satellite imagery, with weather forecasts and historical climate data to predict crop yields and 
irrigation requirements. Using a representative dataset, which includes synthetic climate-crop 
interactions, the authors demonstrated that incorporating climate variables significantly enhances 
predictive accuracy. For instance, a baseline model relying solely on soil parameters yields low 
performance (R² ≈ 0.21), whereas the climate-informed model achieves a substantially higher accuracy (R² 
≈ 0.72). The system generates practical recommendations, including adaptive irrigation scheduling and 
fertiliser optimisation, enabling farmers to better manage climate risks and improve productivity. 
Experimental findings affirm the value of climate-aware AI models in advancing precision agriculture.  
A review by Raza et al. (2023) noted that AI offers transformative solutions to key challenges in agriculture 
by enhancing efficiency and productivity across multiple domains, including crop and livestock 
monitoring, irrigation optimisation, pest and disease prediction, and the development of climate-resilient 
crop varieties. This paper examined the diverse applications and persistent challenges of AI in precision 
agriculture. Leveraging machine learning algorithms and predictive modelling, AI technologies enable the 
analysis of extensive climate, soil, and crop datasets to support climate-smart farming practices. These 
tools generate accurate forecasts and actionable recommendations for precision irrigation, nutrient 
management, pest and disease surveillance, and yield estimation. By optimising input use, minimising 
waste, and lowering environmental impact, AI contributes significantly to resource-efficient agriculture. 
Despite its promise, the adoption of AI faces barriers such as limited data quality and availability, technical 
skill gaps, and financial constraints. Nonetheless, harnessing AI's capabilities can accelerate the transition 
toward sustainable, resilient agricultural systems-advancing food security, improving resource stewardship, 
and mitigating the effects of climate change. 
Zidan and Febriyanti (2024) explored the transformative potential of AI, particularly machine learning 
and deep learning methodologies, in advancing climate adaptation strategies to improve agricultural 
outcomes. By integrating AI with climatological datasets, the research aims to anticipate and mitigate the 
adverse effects of climate variability on crop yields. The models employed analyse historical climate 
patterns in conjunction with crop performance data, drawing on variables such as temperature, 
precipitation, soil moisture, and crop genetics. Trained on these multidimensional datasets, the AI 
models demonstrate strong predictive capabilities across diverse climatic scenarios and generate tailored 
adaptation strategies that significantly enhance yield performance. As such, these tools offer valuable 
decision support for farmers and agricultural policymakers, enabling proactive, climate-aligned 
interventions. The findings highlight AI’s capacity to convert complex data into actionable insights, 
reinforcing its role in promoting resilient, data-driven agricultural practices and contributing to the 
broader advancement of climate-smart agricultural science. 
A book by Lal and Mishra (2025) investigates the transformative convergence of artificial intelligence (AI) 
and agriculture, examining how emerging technologies can be strategically applied to build sustainable 
and resilient food systems. In response to escalating global pressures, including climate change, 
population growth, and dwindling resources, it offers a comprehensive framework for utilising various AI 
technologies to refine agricultural methods, boost productivity, and advance environmental 
responsibility. The concluding chapter synthesises the key insights, distils key themes, and reflects on the 
evolving role of AI in shaping the future of agriculture. Central to the discussion is the imperative for 
ethical implementation, cross-sector collaboration, and conscientious innovation to foster a just and 
sustainable food landscape. 
Evans and Raja (2024) proposed an AI-based framework integrating AI, IoT, and cloud computing for 
sustainable farming. Sensors and satellite images are used for data collection. AI algorithms are used for 
processing the data. AI models are used for decision support for recommendations on irrigation, fertiliser 
application and crop rotation. Farmers can implement these AI-generated insights for resource 
optimisation. The authors obtained a 15% increase in yield with AI-based irrigation and a 10% yield 
increase in the case of ML-based yield prediction.   
Climate change presents formidable challenges to agriculture, manifesting through increased weather 
variability, dwindling water resources, and the proliferation of novel pests and diseases. Raza et al. (2023) 
investigated the transformative potential of AI in reshaping agricultural analytics to support climate-
resilient farming systems. AI algorithms can synthesise this data to generate actionable recommendations 
for planting schedules, fertiliser application, and pest management. Beyond immediate agronomic 
benefits, the integration of AI into climate-smart agriculture holds promise for long-term sustainability. 
Predictive analytics and AI-enabled supply chain optimisation can significantly improve post-harvest 
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handling, storage, and distribution, thereby reducing food loss and strengthening overall system 
efficiency. 
In a review, Gul and Banday (2024) examined the diverse and evolving applications of AI and ML across 
critical domains of agriculture. A notable advancement lies in the convergence of AI and ML with Internet 
of Things (IoT) technologies and autonomous agricultural machinery, which facilitates real-time 
monitoring and targeted interventions, boosting productivity while reducing labour demands. In the 
realm of crop breeding and genomics, AI accelerates the identification and development of climate-
resilient crop varieties, a vital strategy for meeting rising food demands and adapting to environmental 
stressors. However, the widespread adoption of these technologies faces persistent challenges, including 
inconsistent data quality, infrastructural deficits, and high implementation costs. Disparities in access 
remain pronounced, particularly among smallholder farmers in low-resource settings who often lack the 
necessary data and technological infrastructure. Furthermore, ethical considerations-such as data privacy 
and the widening digital divide-must be proactively addressed to ensure inclusive and equitable 
deployment of AI in agriculture. 
In a systematic review of 20 papers, Aijaz et al. (2025) provided a comprehensive analysis of the 
interdisciplinary integration of Artificial Intelligence (AI) within agriculture and food science. In the face 
of mounting global pressures-including climate change, population expansion, and ecological 
degradation- AI is positioned as a critical driver of resilience, efficiency, and sustainability across food 
systems. Drawing on cutting-edge research, the study examined the deployment of advanced AI 
methodologies- such as deep learning, reinforcement learning, and hybrid frameworks- in applications 
ranging from real-time crop surveillance and precision irrigation to post-harvest quality assessment and 
food safety monitoring. Particular attention was given to AI’s role in enhancing food traceability, enabling 
predictive maintenance of agricultural machinery, and optimising logistics through IoT-enabled and edge 
computing infrastructures. The paper critically assesses how these innovations coalesce within the 
emerging paradigm of Agriculture and Food 6.0, promoting circular economies, lowering environmental 
impact, and equipping smallholder farmers with intelligent, data-informed decision-making tools. 
Moreover, the integration of climate resilience strategies into AI protocols is explored as a means to 
strengthen adaptive capacity in the face of increasingly volatile environmental conditions. 
Despite its transformative potential, the integration of AI in agriculture faces several critical challenges, 
including data privacy concerns, high implementation costs, limited data availability, interpretability of 
models, technical capacity gaps, and ethical implications. Addressing these barriers is essential to ensure 
responsible and effective deployment. Looking ahead, AI offers vast opportunities to advance sustainable 
farming, strengthen climate resilience, foster interdisciplinary research, and inform evidence-based policy 
development. By synergising AI technologies with human expertise and collaborative frameworks, we can 
cultivate a future where agriculture flourishes-securing food systems and promoting sustainability for 
generations to come (Kumar, 2023). 
Mmbando (2025) reviewed the incorporation of remote sensing and AI into climate-smart agriculture 
(CSA). Combining AI and remote sensing helps to regulate risks, optimise resource utilisation, and 
enhance agricultural practice choices. The issues like policy frameworks, capacity building, lack of 
knowledge among farmers, technology-phobia, high costs, ethical and privacy issues and accessibility 
prevent these technologies from being widely adopted. AI and remote sensing ensure food systems remain 
secure in changing climates. 
A review by Kaya (2025) examined the pivotal role of intelligent environmental control systems, 
comprising sensors, automation, and AI. Case studies showed that the synergistic integration of these 
components can address persistent challenges such as energy efficiency, scalability, and system 
interoperability. Looking forward, AI-driven innovations in predictive maintenance and emerging vertical 
farming trends highlight the transformative potential of intelligent control systems in enhancing 
agricultural resilience, operational efficiency, and long-term sustainability. 
After discussing various applications, benefits and challenges, Al Bakri, Al Flaiti, Al-Balushi, and 
Poorngalingam (2024) stressed the need to address the digital divide between large-scale commercial farms 
and smallholder farmers to ensure equitable access to AI technologies. Governments, policymakers, and 
industry stakeholders need to collaborate to develop inclusive policies and infrastructure that foster 
equitable AI deployment in agriculture.  
The COVID-19 pandemic has amplified the vulnerabilities and systemic shortcomings of global food 
systems. Prevailing agricultural models often prioritise short-term productivity and profit margins at the 
expense of environmental stewardship and long-term sustainability. Meeting the demands of a projected 
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global population of ten billion over the next three decades will require transformative shifts in 
agricultural infrastructure and automation. These challenges, however, can be addressed through the 
strategic deployment of smart technologies like AI across agricultural operations. AI is increasingly 
recognised as a catalyst for achieving global sustainability targets, particularly through its integration with 
renewable energy systems. Its application in agriculture is poised to rejuvenate both legacy and emerging 
farming landscapes by enabling the retrofitting, installation, and seamless integration of automated tools 
and intelligent systems (Mana, et al., 2024) 
Patil (2024) noted that precision farming with AI faces many barriers. High implementation costs, data 
privacy concerns, and the rural digital divide limit its use. AI can empower farmers, alleviate climate 
threats, and secure the global food chain by encouraging innovation and inclusivity. The author 
emphasised the need for governmental interventions, public-private collaborations, and capacity-building 
to close these gaps and democratise agricultural AI technologies.  
A PRISMA review of 65 papers by Waqas et al. (2025) showed that ML and DL empower the analysis of 
intricate datasets, fostering data-informed decision-making, minimising dependence on subjective 
judgment, and enhancing agricultural management practices. Although widespread adoption faces 
hurdles-including limited data access, challenges in model transparency, scalability issues, security risks, 
and user interface complexities- these obstacles can be addressed through coordinated and collaborative 
efforts among key stakeholders.  
Using the results of some pilot studies, Arogundade and Njoku (2024) noted crop yield increases of 10 
to 30%. A reduction of 15% in the overall input costs, a 15% reduction in water use, and a 20% reduction 
in fertiliser use with the use of AI technology. AI balances productivity with sustainability. Small farmers 
have limited access to data and hence a low adoption rate. Integration of AI with other technologies has 
an even greater potential. Digital literacy training and education on AI applications to farmers, with the 
support of the government and NGOs, is advocated.  
Paramanik et al. (2025) discussed AI applications in crop improvement. In the case of genomics-assisted 
breeding, AI provides personalised, tailor-made solutions from the vast genomics datasets. ML algorithms 
are used to predict the desired traits from genomic markers. AI helps in plant phenotyping from the field 
data provided by sensors and unmanned aerial vehicles. ML algorithms process this data to map up to 
subtle phenotypic differences across the thousands of plots, allowing breeders to select the most desired 
phenotype under given environmental conditions. In the case of gene editing, ML algorithms can predict 
the best guide RNA sequences to minimise off-targets and maximise editing. Neural networks trained on 
experimental data are 90% accurate in predicting editing outcomes across different crop species. 
Reinforcement learning is used to optimise multiplex editing for complex traits controlled by multiple 
genes. These systems reduce the number of experimental iterations needed to get the desired trait 
combination. 
According to Kumari et al. (2025), a sustainable agriculture, which combines AI-driven and conventional 
approaches, is necessary to meet the increasing global food demand.  Ensuring equitable access and 
widespread adoption of advanced agricultural technologies requires coordinated action among 
governments, technology providers, and farming communities. A critical consideration is the alignment 
of technological innovations with the United Nations 2030 Agenda for Sustainable Development. 
Precision agriculture, powered by artificial intelligence (AI), the Internet of Things (IoT), and machine 
learning (ML), directly contributes to SDG 2 (Zero Hunger) by enhancing productivity and strengthening 
food security. Moreover, these technologies promote sustainable agricultural practices by optimising 
resource utilisation, minimising environmental impact, and improving land stewardship. In doing so, 
they support broader sustainability objectives, including SDG 12 (Responsible Consumption and 
Production), SDG 13 (Climate Action), and SDG 15 (Life on Land). 
Discussion 
Use of AI transforms arid practices into agile practices. Agribusiness involves crop production, post-
harvest processing and marketing. Most papers addressed the crop production aspect. Some specific 
exceptions were crop improvement (Paramanik et al., 2025), levels of yield increase and decrease in input 
utilisation from pilot studies (Arogundade & Njoku, 2024), climate change (Aijaz et al., 2025; (Gul & 
Banday, 2024; Raza et al., 2023; Zidan & Febriyanti, 2024; Nirnjan et al., 2025), land models (Dagon et 
al., 2020), pest attacks (Holuša & Kaláb, 2023), grain supply chain (Zhang & Zhou, 2025) and agility 
(Sudha et al., 2025; Dey et al., 2025).  
The reviewed articles generally discussed various AI applications, how they are used, the benefits and 
challenges. At the local level, sustainable agriculture is important. At the global level, food security for the 
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growing population is important (Mana et al., 2024; Mmbando, 2025; Lal & Mishra, 2025; WEF, 2025). 
Integration of AI with other technologies leads to synergistic effects of the component technologies. 
Smallholders are unable to access AI technology due to their resource constraints, and this leads to a 
digital divide. Deliberate policy and strategic interventions from the governments are required to address 
these problems (Patil, 2024; al Bakri et al., 2024). Kumari et al. (2025) linked precision farming using AI, 
IoT and ML technologies to specific SDG goals of the UN targeted for 2030. AI technologies with human 
expertise (Kumar, 2023) and with traditional methods.  
 
CONCLUSIONS 
Considering that AI applications transform the current agricultural production systems into agile 
production systems, this review provided much information on how various AI and other technologies 
contribute to such a transformation. Production is the first stage of agribusiness.  At the local level, AI 
applications transform agriculture into sustainable food production. At the global level, it is concerned 
with global food availability and security.  
Apart from production, AI addresses product supply chains, post-harvest processing and marketing 
through market intelligence, to predict price and volume of arrivals in markets. AI chatbots recommend 
actions for agribusiness based on these predictions. All these apply to farmers who market their products 
themselves and large agribusiness firms. However, unless governments intervene with appropriate policies 
and strategies, a digital divide between the two will limit the access of AI technologies by small farmers.  
There are many limitations to this review. Using only Google Scholar, restricting to 2020-2025, English 
language, and some exclusion criteria might have prevented the selection of many important papers.  
Some recommendations are listed below: 
1. To ensure wider adoption and practice of AI in agriculture and agribusiness, governments should 
devise policies and strategies to remove the digital divide between small farmers and large agribusiness 
firms.  
2. Stakeholders should collaborate to ensure full and proper utilisation of AI in agriculture to its full 
potential. All barriers to this need to be addressed by competent authorities. 
3. There should be more research on the removal of barriers and addressing the challenges to AI 
adoption by all those engaged in agriculture and agribusiness.  
 
REFERENCES  
1. Aijaz, N., Lan, H., Raza, T., Yaqub, M., Iqbal, R., & Pathan, M. S. (2025). Artificial intelligence in agriculture: Advancing 

crop productivity and sustainability. Journal of Agriculture and Food Research, 22, 101762.  
https://doi.org/10.1016/j.jafr.2025.101762  

2. Al Bakri, K. Z., Al Flaiti, M. K., Al-Balushi, S. A., & Poorngalingam, J. (2024). Revolutionizing agriculture: Harnessing the 
power of artificial intelligence for sustainable farming practices. International Journal of Advanced IT Research and Development, 
1(1), 1–9. https://ijaitrd.com/wp-content/uploads/2024/08/Revolutionizing-Agriculture-Harnessing-the-Power.pdf  

3. Arogundade, J. B., & Njoku, T. K. (2024). Maximising crop yields through AI-driven precision agriculture and machine 
learning. International Research Journal of Modernization in Engineering Technology and Science, 6(10), 1022–1042  

4. Chen, W.-H., Decardi-Nelson, B., Kubota, C., & You, F. (2025). AI applications in the environmental control of controlled 
environment agriculture in the digital age. Modern Agriculture, 3(2), e70027. https://doi.org/10.1002/moda.70027 

5. Dagon, K., Sanderson, B. M., Fisher, R. A., & Lawrence, D. M. (2020). A machine learning approach to emulation and 
biophysical parameter estimation with the Community Land Model, version 5. Advances in Statistical Climatology, Meteorology 
and Oceanography, 6(2), 223–244. https://doi.org/10.5194/ascmo-6-223-2020  

6. Dey, S., Widanagamage, N., Achar, S., Debangshi, U., Palla, S., Kim, J., & Jha, G. (2025). Precision agriculture tools, 
techniques, and future directions for climate resilience. In B. Pramanick, S. V. Singh, S. Maitra, S. Celletti, & A. Hossain 
(Eds.), Climate-Smart Agricultural Technologies: Approaches for Field Crops Production Systems (pp. 89–115). Springer Nature 
Singapore. https://doi.org/10.1007/978-981-96-7699-6_5  

7. Evans, I., & Raja, M. S. (2024, February). Leveraging AI for sustainable agriculture: Optimising water and resource usage in the face 
of climate change. In ICETETI 2024—Conference Proceedings (pp. 122–130).  

8. Gul, D., & Banday, R. U. (2024). Transforming crop management through advanced AI and machine learning: Insights into 
innovative strategies for sustainable agriculture. AI, Computer Science and Robotics Technology.  
https://doi.org/10.5772/acrt.20240030  

9. Holuša, J., & Kaláb, O. (2023). The habitat-suitability models of the European mole cricket (Gryllotalpa gryllotalpa) as 
information tool for conservation and pest management. Heliyon, 9(4), e14826.  
https://doi.org/10.1016/j.heliyon.2023.e14826 

10. Kaya, C. (2025). Intelligent environmental control in plant factories: Integrating sensors, automation, and AI for optimal 
crop production. Food and Energy Security, 14(1), e70026. https://doi.org/10.1002/fes3.70026 

11. Kumar, N. (2023, July 3). Leveraging artificial intelligence in agriculture: Transforming the future of farming. Illuminem. 
https://illuminem.com/illuminemvoices/leveraging-artificial-intelligence-in-agriculture-transforming-the-future-of-farming 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 25s,2025 
https://theaspd.com/index.php 
 

205 
 

12. Kumari, K., Nafchi, A. M., Mirzaee, S., & Abdalla, A. (2025). AI-driven future farming: Achieving climate-smart and 
sustainable agriculture. AgriEngineering, 7(3), 89. https://doi.org/10.3390/agriengineering7030089  

13. Lal, P., & Mishra, P. (Eds.). (2025). Transforming agriculture through artificial intelligence for sustainable food systems. Springer 
Nature Singapore. https://doi.org/10.1007/978-981-96-4795-8 

14. Mana, A. A., Allouhi, A., Hamrani, A., Rehman, S., El Jamaoui, I., & Jayachandran, K. (2024). Sustainable AI-based 
production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agricultural Technology, 7, 
100416. https://doi.org/10.1016/j.atech.2024.100416 

15. Mmbando, G. S. (2025). Harnessing artificial intelligence and remote sensing in climate-smart agriculture: The current 
strategies needed for enhancing global food security. Cogent Food & Agriculture, 11(1), 2454354.  
https://doi.org/10.1080/23311932.2025.2454354  

16. Niranjan, P., Moeed, S. A., Rao, V. C., Munawar, S., & Shireesha, P. (2025). AI-driven framework for smart farming: 
Enhancing crop productivity through climate-aware decision support. International Journal of Environmental Sciences, 11(6S), 
376–385.  

17. Paramanik, S., Poonguzhali, S., Mahalakshmi, M., Dishri, M., & Nichel, B. S. (2025). Artificial intelligence for crop 
improvement and food security: Innovations, challenges and future directions. AgriGate: An International Multidisciplinary e-
Magazine, 5(4), 411–423.  

18. Patil, D. (2024). Artificial intelligence innovations in precision farming: Enhancing climate-resilient crop management. 
SSRN. http://dx.doi.org/10.2139/ssrn.5057424 

19. Raza, A., Shahid, M. A., Safdar, M., Zaman, M., & Sabir, R. M. (2023). The role of artificial intelligence in climate-smart 
agriculture: A review of recent advances and future directions. Proceedings of the 2nd International Electronic Conference on 
Agriculture, 1, 15. https://doi.org/10.3390/IOCAG2023-16877  

20. Raza, A., Shahid, M. A., Safdar, M., Zaman, M., Abdur, M., Tariq, R., & Ul Hassan, M. (2023). Artificial intelligence-enabled 
precision agriculture: A review of applications and challenges. Proceedings of the 2nd International Electronic Conference on 
Agriculture, 1, 15. https://doi.org/10.3390/IOCAG2023-16878 

21. Sudha, M., Chandra, S., Roy, S., Manimegalai, V., Priya, P. K., & Boopathi, S. (2025). Agile Approaches to Commercializing 
Agricultural Business: Strategies for a Dynamic Marketing. In S. Maravilhas & R. Ladeira (Eds.), Impact of Digital 
Transformation on Business Growth and Performance (pp. 579-610). IGI Global Scientific Publishing.  
https://doi.org/10.4018/979-8-3693-9783-1.ch021 

22. Waqas, M., Adila, N., Humphries, U. W., Hlaing, P. T., Dechpichai, P., & Wangwongchai, A. (2025). Applications of 
machine learning and deep learning in agriculture: A comprehensive review. Green Technologies and Sustainability, 3, 100199. 
https://doi.org/10.1016/j.grets.2025.100199 

23. World Economic Forum. (2025, February). Future farming in India: A playbook for scaling artificial intelligence in agriculture. 
World Economic Forum. https://reports.weforum.org/docs/WEF_Future_Farming_in_India_2025.pdf 

24. Zhang, S., & Zhou, C. (2025). Identifying key nodes and enhancing resilience in grain supply chains under drought 
conditions. Systems, 13(1), 49. https://doi.org/10.3390/systems13010049 

25. Zidan, F., & Febriyanti, D. E. (2024). Optimising agricultural yields with artificial intelligence-based climate adaptation 
strategies. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(2), 136–147. https://doi.org/10.34306/itsdi.v5i2.663  

 


