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Abstract

Agriculture and agribusiness had been using traditional methods till recently. The developments regarding Al
applications in agriculture prompted many of them to adopt Al in various operations of agriculture and agribusiness.
Considerable research has been done on this aspect. This qualitative PRISMA review aimed to evaluate the status of
research in this respect. Google Scholar was used to identify the relevant papers, and the PRISMA process flow was
used to screen and select the most appropriate papers based on some inclusion and exclusion criteria. This resulted in
the final selection of 25 papers for this review. Considering that Al applications transform the current agricultural
production systems into agile production systems, this review provided much information on how various Al and other
technologies contribute to such a transformation. Production is the first stage of agribusiness. At the local level, Al
applications transform agriculture into sustainable food production. At the global level, it is concerned with global
food availability and security. Apart from production, Al addresses product supply chains, post-harvest processing and
marketing through market intelligence, to predict price and volume of arrivals in markets. Al chatbots recommend
actions for agribusiness based on these predictions. All these apply to farmers who market their products themselves
and large agribusiness firms. However, unless governments intervene with appropriate policies and strategies, a digital
divide between the two will limit the access of Al technologies by small farmers. Some limitations of this review and
some recommendations for research and practice have been given.
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INTRODUCTION

The term "From Aridity to Agility" describes using Al-driven organisational diagnostics to enhance agility
and scalability in controlled environment agribusinesses, transforming challenges into opportunities
through data-driven insights. Al allows them to improve efficiency, optimise resources, make informed
real-time decisions, and adapt to changing conditions. It turns operational inefficiencies (aridity) into
adaptive capabilities (agility). Thus, their growth becomes sustainable.

Al application in a controlled environment of agribusiness facilitates early problem detection, supply
chain resilience and strategic innovations. The transition from aridity (constraints of resource scarcity,
operational issues, etc) to agility (adaptability, responsiveness, growth) can be helped by Al

This simple qualitative PRISMA review aims to evaluate the status of research in this area. The paper is
organised as follows. The next section describes the Methodology used to identify and select papers and
data integration for this review. The individual papers are described in the Results section. The findings
of the review are synthesised and interpreted in the Discussion section. The limitations of this review,
conclusions and suggestions for further research and practice follow to end the paper.

METHODOLOGY

Google Scholar was searched to identify the relevant papers using search terms within the review topic.
The identified papers were screened and selected using the PRISMA flow process based on certain
inclusion and exclusion criteria given in Table 1. The process resulted in the final selection of 25 papers
for this review.

Table 1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria Remarks

Only full-text papers Abstracts Abstracts may not contain all
the required information.

Papers in English Other languages Even the best translation may
not be distortion-free.

Published during 2020-2025 Earlier years To reflect the recent trends.

Books, chapters Full-texts considered, if

available.
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Dissertations Guided research

Editorials, comments, etc Not considered a research
paper.

Inadequate citation details Cannot be used.

Figure 1 PRISMA
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Sudha et al. (2025) noted that Scrum and Kanban aspects of agility contribute to flexibility, continuous
improvement, rapid responses to rapid changes in the business environment, decision making and
resilience. They enhance competitiveness, risk management, and exploitation of market opportunities to
drive the commercialisation of agribusiness. Technological advancements like precision agriculture,
controlled environment agriculture, IoT, Al and blockchain facilitate the transition of agribusiness from
aridity to agility. Mechatronics and robotics are two technologies used in precision agriculture, which is
now a major agribusiness trend. In mechatronics, Al and machine learning algorithms are used. Robots
are used for planting, weeding, pest control, harvesting, and crop health monitoring (Dey, et al., 2025).
One risk in agribusiness is the disruption of the grain supply chain. Once this happens, production levels
in controlled environment agribusiness need to be regulated. Therefore, the resilience of the grain supply
chain is important. Integrating emerging technologies within broader socioeconomic development efforts
can significantly strengthen supply-chain resilience. Notable examples include blockchain systems, digital
transformation initiatives and advancements in artificial intelligence. A triangular framework of
conflicting events was employed to represent complex scenarios and extract nodes for the Bayesian
network. Next, the scenario was segmented based on scene descriptions, enabling the construction of a
scene stream and the derivation of an event network, which serves as the foundation for building the
Bayesian network structure. Subsequently, expert insights and Dempster-Shafer (D-S) evidence theory
were integrated to determine the network parameters and establish the Bayesian model. Finally, using
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2022 drought data from the Yangtze River Basin in China, critical nodes within the grain supply chain
were identified, and a phased strategy was proposed to enhance its resilience (Zhang & Zhou, 2025).
Pest attacks can affect production in controlled environment agribusiness. If the occurrence of specific
pests in the area can be predicted, efficient pest management strategies can be devised. Using habitat
suitability modelling, Holusa and Kalab (2023) identified areas suitable for the occurrence of Gryllotalpa
gnyllotalpa in the Czech Republic. The main explanatory variables were air temperature, humidity, and soil
type. The authors used the machine learning model, Maxent, for this purpose.

Land models help to understand and predict terrestrial processes, including agriculture. Dagon,
Sanderson, Fisher, and Lawrence (2020) developed an ML method to globally fine-tune selected
parameters of the Community Land Model version 5 (CLM5), using data on carbon and water flows. The
focus was on parameters that influence key biophysical processes like energy exchange, water movement,
and carbon absorption. To identify the most relevant parameters, sensitivity analyses were done, and
objective metrics were used to rank their influence and distinguish their spatial effects. Next, a set of
varied parameter combinations was created and trained feed-forward neural networks to mimic CLM5
outputs based on these inputs. The networks were calibrated using global averages of annual carbon and
water flux variations. Their accuracies were tested with validation and out-of-sample checks, and applied
interpretation tools like feature importance and partial dependence. Finally, the trained models efficiently
estimated globally optimal parameter values, outperforming manual tuning and expanding beyond the
limited scope of single-site studies.

A report of the World Economic Forum (WEF, 2025) observed that Al provides solutions to the problems
(low productivity, fragmented landholdings, limited access to finance and the growing impacts of climate
change), reducing the potential of Indian agriculture. A three-pillar framework was proposed for this
purpose. It consisted of an "enable" pillar anchoring the role of governments as primary stakeholders in
establishing foundational systems, policies, strategies, and institutional arrangements for Al integration
into all operations in agriculture. The "create" pillar focuses on driving innovation, where start-ups and
innovators collaborate and co-develop Al solutions with research institutions. The "deliver" pillar is about
ensuring that the Al solutions reach the farmers through effective extension systems. Feedback loops
should inform any refinement required. Al can help in crop planning, advise on crop varieties, inputs
planning, incentives planning, farm operations, post-harvest operations and marketing. In all these
applications, use cases need to be integrated, all stakeholders need to be involved and cross-cutting basic
elements. The use cases are satellite-based crop monitoring, crop variety selection, drone-based field
analysis, weather forecasting, Al chatbots to advise farmers, decision support systems, variable rate
application of inputs, precision irrigation management, automated farm machinery, pest and disease
control, soil and nutrient management, post-harvest management, market access and price forecasting,
and agricultural finance and insurance. The datasets required are digital land records, crop calendar and
yields, soil health data, satellite imagery, real-time market data, agricultural market network, import-export
volumes, historical purchase prices of crops, production and consumption data, weather data, irrigation
maps, storage networks, warehouse details, commodity profile, defects and pest images. The report ends
with recommendations to the government, start-ups, industry, and for research.

Chen et al. (2025) observed that Controlled Environment Agriculture (CEA) presents a promising avenue
for sustainable food production in the face of climate change, resource limitations, and rapid
urbanisation. Yet, the complexity of managing CEA systems, driven by the dynamic interaction of
environmental factors and the need for multiscale integration, poses significant challenges. The
integration of artificial intelligence (Al) is increasingly recognised as a transformative approach to
navigating these complexities, fostering innovation and operational efficiency within sustainable food
systems. In recent years, research on Al applications in CEA has surged, reflecting both technological
progress and heightened interest in intelligent agricultural solutions. Central to this advancement is
machine learning, which facilitates automated climate regulation, optimised yield outcomes, and data-
informed decision-making. This review synthesises key Al-driven applications, including climate
forecasting, yield prediction, disease identification, and intelligent control systems, all of which contribute
to enhanced resource use and crop resilience. Despite these advancements, several hurdles persist. The
development of more sophisticated models, access to high-quality datasets, and strategies to mitigate
implementation uncertainties remain critical for realising the full potential of Al in CEA.

Niranjan et al. (2025) developed an Al-enabled framework that integrates loT-based sensor networks,
climate analytics, and machine learning algorithms to facilitate climate-responsive decision-making in
crop management. This architecture synthesises real-time field inputs, such as soil moisture, temperature,

200



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s5,2025
https://theaspd.com/index.php

and satellite imagery, with weather forecasts and historical climate data to predict crop yields and
irrigation requirements. Using a representative dataset, which includes synthetic climate-crop
interactions, the authors demonstrated that incorporating climate variables significantly enhances
predictive accuracy. For instance, a baseline model relying solely on soil parameters yields low
performance (R? = 0.21), whereas the climate-informed model achieves a substantially higher accuracy (R2
= 0.72). The system generates practical recommendations, including adaptive irrigation scheduling and
fertiliser optimisation, enabling farmers to better manage climate risks and improve productivity.
Experimental findings affirm the value of climate-aware Al models in advancing precision agriculture.

A review by Raza et al. (2023) noted that Al offers transformative solutions to key challenges in agriculture
by enhancing efficiency and productivity across multiple domains, including crop and livestock
monitoring, irrigation optimisation, pest and disease prediction, and the development of climate-resilient
crop varieties. This paper examined the diverse applications and persistent challenges of Al in precision
agriculture. Leveraging machine learning algorithms and predictive modelling, Al technologies enable the
analysis of extensive climate, soil, and crop datasets to support climate-smart farming practices. These
tools generate accurate forecasts and actionable recommendations for precision irrigation, nutrient
management, pest and disease surveillance, and yield estimation. By optimising input use, minimising
waste, and lowering environmental impact, Al contributes significantly to resource-efficient agriculture.
Despite its promise, the adoption of Al faces barriers such as limited data quality and availability, technical
skill gaps, and financial constraints. Nonetheless, harnessing Al's capabilities can accelerate the transition
toward sustainable, resilient agricultural systems-advancing food security, improving resource stewardship,
and mitigating the effects of climate change.

Zidan and Febriyanti (2024) explored the transformative potential of Al, particularly machine learning
and deep learning methodologies, in advancing climate adaptation strategies to improve agricultural
outcomes. By integrating Al with climatological datasets, the research aims to anticipate and mitigate the
adverse effects of climate variability on crop yields. The models employed analyse historical climate
patterns in conjunction with crop performance data, drawing on variables such as temperature,
precipitation, soil moisture, and crop genetics. Trained on these multidimensional datasets, the Al
models demonstrate strong predictive capabilities across diverse climatic scenarios and generate tailored
adaptation strategies that significantly enhance yield performance. As such, these tools offer valuable
decision support for farmers and agricultural policymakers, enabling proactive, climate-aligned
interventions. The findings highlight Al's capacity to convert complex data into actionable insights,
reinforcing its role in promoting resilient, data-driven agricultural practices and contributing to the
broader advancement of climate-smart agricultural science.

A book by Lal and Mishra (2025) investigates the transformative convergence of artificial intelligence (Al)
and agriculture, examining how emerging technologies can be strategically applied to build sustainable
and resilient food systems. In response to escalating global pressures, including climate change,
population growth, and dwindling resources, it offers a comprehensive framework for utilising various Al
technologies to refine agricultural methods, boost productivity, and advance environmental
responsibility. The concluding chapter synthesises the key insights, distils key themes, and reflects on the
evolving role of Al in shaping the future of agriculture. Central to the discussion is the imperative for
ethical implementation, cross-sector collaboration, and conscientious innovation to foster a just and
sustainable food landscape.

Evans and Raja (2024) proposed an Al-based framework integrating Al, IoT, and cloud computing for
sustainable farming. Sensors and satellite images are used for data collection. Al algorithms are used for
processing the data. Al models are used for decision support for recommendations on irrigation, fertiliser
application and crop rotation. Farmers can implement these Al-generated insights for resource
optimisation. The authors obtained a 15% increase in yield with Al-based irrigation and a 10% yield
increase in the case of ML-based yield prediction.

Climate change presents formidable challenges to agriculture, manifesting through increased weather
variability, dwindling water resources, and the proliferation of novel pests and diseases. Raza et al. (2023)
investigated the transformative potential of Al in reshaping agricultural analytics to support climate-
resilient farming systems. Al algorithms can synthesise this data to generate actionable recommendations
for planting schedules, fertiliser application, and pest management. Beyond immediate agronomic
benefits, the integration of Al into climate-smart agriculture holds promise for long-term sustainability.
Predictive analytics and Al-enabled supply chain optimisation can significantly improve post-harvest
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handling, storage, and distribution, thereby reducing food loss and strengthening overall system
efficiency.

In a review, Gul and Banday (2024) examined the diverse and evolving applications of Al and ML across
critical domains of agriculture. A notable advancement lies in the convergence of Al and ML with Internet
of Things (IoT) technologies and autonomous agricultural machinery, which facilitates real-time
monitoring and targeted interventions, boosting productivity while reducing labour demands. In the
realm of crop breeding and genomics, Al accelerates the identification and development of climate-
resilient crop varieties, a vital strategy for meeting rising food demands and adapting to environmental
stressors. However, the widespread adoption of these technologies faces persistent challenges, including
inconsistent data quality, infrastructural deficits, and high implementation costs. Disparities in access
remain pronounced, particularly among smallholder farmers in low-resource settings who often lack the
necessary data and technological infrastructure. Furthermore, ethical considerations-such as data privacy
and the widening digital divide-must be proactively addressed to ensure inclusive and equitable
deployment of Al in agriculture.

In a systematic review of 20 papers, Aijaz et al. (2025) provided a comprehensive analysis of the
interdisciplinary integration of Artificial Intelligence (Al) within agriculture and food science. In the face
of mounting global pressures-including climate change, population expansion, and ecological
degradation- Al is positioned as a critical driver of resilience, efficiency, and sustainability across food
systems. Drawing on cutting-edge research, the study examined the deployment of advanced Al
methodologies- such as deep learning, reinforcement learning, and hybrid frameworks- in applications
ranging from real-time crop surveillance and precision irrigation to post-harvest quality assessment and
food safety monitoring. Particular attention was given to Al’s role in enhancing food traceability, enabling
predictive maintenance of agricultural machinery, and optimising logistics through IoT-enabled and edge
computing infrastructures. The paper critically assesses how these innovations coalesce within the
emerging paradigm of Agriculture and Food 6.0, promoting circular economies, lowering environmental
impact, and equipping smallholder farmers with intelligent, data-informed decision-making tools.
Moreover, the integration of climate resilience strategies into Al protocols is explored as a means to
strengthen adaptive capacity in the face of increasingly volatile environmental conditions.

Despite its transformative potential, the integration of Al in agriculture faces several critical challenges,
including data privacy concerns, high implementation costs, limited data availability, interpretability of
models, technical capacity gaps, and ethical implications. Addressing these barriers is essential to ensure
responsible and effective deployment. Looking ahead, Al offers vast opportunities to advance sustainable
farming, strengthen climate resilience, foster interdisciplinary research, and inform evidence-based policy
development. By synergising Al technologies with human expertise and collaborative frameworks, we can
cultivate a future where agriculture flourishes-securing food systems and promoting sustainability for
generations to come (Kumar, 2023).

Mmbando (2025) reviewed the incorporation of remote sensing and Al into climate-smart agriculture
(CSA). Combining Al and remote sensing helps to regulate risks, optimise resource utilisation, and
enhance agricultural practice choices. The issues like policy frameworks, capacity building, lack of
knowledge among farmers, technology-phobia, high costs, ethical and privacy issues and accessibility
prevent these technologies from being widely adopted. Al and remote sensing ensure food systems remain
secure in changing climates.

A review by Kaya (2025) examined the pivotal role of intelligent environmental control systems,
comprising sensors, automation, and Al. Case studies showed that the synergistic integration of these
components can address persistent challenges such as energy efficiency, scalability, and system
interoperability. Looking forward, Al-driven innovations in predictive maintenance and emerging vertical
farming trends highlight the transformative potential of intelligent control systems in enhancing
agricultural resilience, operational efficiency, and long-term sustainability.

After discussing various applications, benefits and challenges, Al Bakri, Al Flaiti, Al-Balushi, and
Poorngalingam (2024) stressed the need to address the digital divide between large-scale commercial farms
and smallholder farmers to ensure equitable access to Al technologies. Governments, policymakers, and
industry stakeholders need to collaborate to develop inclusive policies and infrastructure that foster
equitable Al deployment in agriculture.

The COVID-19 pandemic has amplified the vulnerabilities and systemic shortcomings of global food
systems. Prevailing agricultural models often prioritise short-term productivity and profit margins at the
expense of environmental stewardship and long-term sustainability. Meeting the demands of a projected
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global population of ten billion over the next three decades will require transformative shifts in
agricultural infrastructure and automation. These challenges, however, can be addressed through the
strategic deployment of smart technologies like Al across agricultural operations. Al is increasingly
recognised as a catalyst for achieving global sustainability targets, particularly through its integration with
renewable energy systems. Its application in agriculture is poised to rejuvenate both legacy and emerging
farming landscapes by enabling the retrofitting, installation, and seamless integration of automated tools
and intelligent systems (Mana, et al., 2024)

Patil (2024) noted that precision farming with Al faces many barriers. High implementation costs, data
privacy concerns, and the rural digital divide limit its use. Al can empower farmers, alleviate climate
threats, and secure the global food chain by encouraging innovation and inclusivity. The author
emphasised the need for governmental interventions, public-private collaborations, and capacity-building
to close these gaps and democratise agricultural Al technologies.

A PRISMA review of 65 papers by Waqas et al. (2025) showed that ML and DL empower the analysis of
intricate datasets, fostering data-informed decision-making, minimising dependence on subjective
judgment, and enhancing agricultural management practices. Although widespread adoption faces
hurdles-including limited data access, challenges in model transparency, scalability issues, security risks,
and user interface complexities- these obstacles can be addressed through coordinated and collaborative
efforts among key stakeholders.

Using the results of some pilot studies, Arogundade and Njoku (2024) noted crop yield increases of 10
to 30%. A reduction of 15% in the overall input costs, a 15% reduction in water use, and a 20% reduction
in fertiliser use with the use of Al technology. Al balances productivity with sustainability. Small farmers
have limited access to data and hence a low adoption rate. Integration of Al with other technologies has
an even greater potential. Digital literacy training and education on Al applications to farmers, with the
support of the government and NGOs, is advocated.

Paramanik et al. (2025) discussed Al applications in crop improvement. In the case of genomics-assisted
breeding, Al provides personalised, tailor-made solutions from the vast genomics datasets. ML algorithms
are used to predict the desired traits from genomic markers. Al helps in plant phenotyping from the field
data provided by sensors and unmanned aerial vehicles. ML algorithms process this data to map up to
subtle phenotypic differences across the thousands of plots, allowing breeders to select the most desired
phenotype under given environmental conditions. In the case of gene editing, ML algorithms can predict
the best guide RNA sequences to minimise off-targets and maximise editing. Neural networks trained on
experimental data are 90% accurate in predicting editing outcomes across different crop species.
Reinforcement learning is used to optimise multiplex editing for complex traits controlled by multiple
genes. These systems reduce the number of experimental iterations needed to get the desired trait
combination.

According to Kumari et al. (2025), a sustainable agriculture, which combines Al-driven and conventional
approaches, is necessary to meet the increasing global food demand. Ensuring equitable access and
widespread adoption of advanced agricultural technologies requires coordinated action among
governments, technology providers, and farming communities. A critical consideration is the alignment
of technological innovations with the United Nations 2030 Agenda for Sustainable Development.
Precision agriculture, powered by artificial intelligence (Al), the Internet of Things (IoT), and machine
learning (ML), directly contributes to SDG 2 (Zero Hunger) by enhancing productivity and strengthening
food security. Moreover, these technologies promote sustainable agricultural practices by optimising
resource utilisation, minimising environmental impact, and improving land stewardship. In doing so,
they support broader sustainability objectives, including SDG 12 (Responsible Consumption and
Production), SDG 13 (Climate Action), and SDG 15 (Life on Land).

Discussion

Use of Al transforms arid practices into agile practices. Agribusiness involves crop production, post-
harvest processing and marketing. Most papers addressed the crop production aspect. Some specific
exceptions were crop improvement (Paramanik et al., 2025), levels of yield increase and decrease in input
utilisation from pilot studies (Arogundade & Njoku, 2024), climate change (Aijaz et al., 2025; (Gul &
Banday, 2024; Raza et al., 2023; Zidan & Febriyanti, 2024; Nirnjan et al., 2025), land models (Dagon et
al., 2020), pest attacks (Holusa & Kalab, 2023), grain supply chain (Zhang & Zhou, 2025) and agility
(Sudha et al., 2025; Dey et al., 2025).

The reviewed articles generally discussed various Al applications, how they are used, the benefits and
challenges. At the local level, sustainable agriculture is important. At the global level, food security for the
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growing population is important (Mana et al., 2024; Mmbando, 2025; Lal & Mishra, 2025; WEF, 2025).
Integration of Al with other technologies leads to synergistic effects of the component technologies.
Smallholders are unable to access Al technology due to their resource constraints, and this leads to a
digital divide. Deliberate policy and strategic interventions from the governments are required to address
these problems (Patil, 2024; al Bakri et al., 2024). Kumari et al. (2025) linked precision farming using Al,
IoT and ML technologies to specific SDG goals of the UN targeted for 2030. Al technologies with human
expertise (Kumar, 2023) and with traditional methods.

CONCLUSIONS

Considering that Al applications transform the current agricultural production systems into agile
production systems, this review provided much information on how various Al and other technologies
contribute to such a transformation. Production is the first stage of agribusiness. At the local level, Al
applications transform agriculture into sustainable food production. At the global level, it is concerned
with global food availability and security.

Apart from production, Al addresses product supply chains, post-harvest processing and marketing
through market intelligence, to predict price and volume of arrivals in markets. Al chatbots recommend
actions for agribusiness based on these predictions. All these apply to farmers who market their products
themselves and large agribusiness firms. However, unless governments intervene with appropriate policies
and strategies, a digital divide between the two will limit the access of Al technologies by small farmers.
There are many limitations to this review. Using only Google Scholar, restricting to 2020-2025, English
language, and some exclusion criteria might have prevented the selection of many important papers.
Some recommendations are listed below:

1. To ensure wider adoption and practice of Al in agriculture and agribusiness, governments should
devise policies and strategies to remove the digital divide between small farmers and large agribusiness
firms.

2. Stakeholders should collaborate to ensure full and proper utilisation of Al in agriculture to its full
potential. All barriers to this need to be addressed by competent authorities.

3. There should be more research on the removal of barriers and addressing the challenges to Al
adoption by all those engaged in agriculture and agribusiness.
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