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Abstract:

Accurate prediction of suspended sediment concentration (SSC) is critical for water resources management, sediment
control, and reservoir operation. This paper compares the performance of the Random Forest (RF), XGBoost, Long
Short-Term Memory (LSTM), and Stacked Ensemble in predicting SSC on a daily basis with different lagvalues (1-5
days). Model performance was assessed using the coefficient of determination (R2), root mean square error (RMSE),
mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE). The results show that the inclusion of antecedent
conditions enhances the predictive ability considerably, with a 2-day lag configuration producing the best predictive
accuracy (R* = 0.96, NSE = 0.95; N). Tree-based methods (both RF and XGBoost) were more effective in capturing
nonlinear responses and extremes compared to baseline models, whereas LSTM was fairly good at capturing sequential
dependencies and essentially smooth peaks. The Stacked Ensemble model performed consistently better than all
standalone models with respect to accuracy, stability, and variance reproduction between training and testing phases,
as shown in scatter plots, Taylor diagrams and time-series simulation. The above results emphasize the need to apply
hybrid methods to SSC prediction. The suggested ensemble framework would provide a robust and transferrable
approach to the hydrological and water management community to anticipate and manage sediment and ensure that
floods are controlled, and basin-scale systems sustainable.

Keywords: Machine Learning, Random Forest, Extreme Gradient Boosting, Long Short:Term Memory, Stacked
Ensemble, suspended sediment concentration prediction

1. INTRODUCTION

The transportation of sediment in rivers is a serious issue for water resources management as it is
associated with water quality degradation, reservoir siltation, dam safety, navigability, aquatic habitats,
hydropower efficiency, and soil erosion (Kaveh et al., 2017; Francke et al., 2008). Suspended sediment
concentration (SSC), especially, is a matter of great concern, as it is both a physical and chemical pollutant
through increasing the turbidity, as well as transported adsorbed contaminants (Dogan et al., 2007).
Accurate estimation of SSC is vital in hydraulic project planning, sustainability, and planning of the
watershed (Kisi & Zounemat-Kermani, 2016). Direct measurements of SSC are limited by the intensive
and expensive sampling exercises, leading to scarce coverage in most areas (Al-Mukhtar & Al-Yaseen,
2019). In contrast, streamflow and water level data are largely accessible, and they are key determinants
of sediment movement (Vafakhah, 2013), forming favourable predictors of SSC estimation.
Conventional methods of SSC prediction, which include sediment rating curves, regression models and
process-based hydrological models, have notable shortcomings. Physically based and conceptual models
often demand extensive input data that exceed availability in many basins (Kalbus et al., 2012). Similarly,
empirical approaches cannot represent dynamic, nonlinear, and stochastic behaviors of sediment
transport, which results in a poor general prediction (Afan et al., 2016). Shiau and Chen (2015)
emphasized that sediment rating curves are inadequate to capture the observed dispersion between
sediment and discharge, which reduces their applicability. Recent advances on sediment modeling
confirm these drawbacks and note that more flexible models are necessary that can address nonlinearity
and uncertainty (Yue et al., 2024, Wang et al., 2025, Szaliniska et al., 2024). These difficulties highlight
the requirement of more comprehensive, flexible modelling frameworks that will be able to capture the
dynamics of sediment processes across a spectrum of hydrological conditions.

Data-driven methods, and in particular Artificial Intelligence (Al), have become strong alternatives as they
have the capability of capturing non-linear behavior and are able to process noisy hydrological data.
Machine learning algorithms like Random Forest (RF), Extreme Gradient Boosting (XGBoost) and model
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structures like Long Short-Term Memory (LSTM) have been used successfully to perform hydrological
forecasting, including streamflow and water quality prediction (Breiman, 2001; Chen & Guestrin, 2016;
Kratzert et al., 2019; Khosravi et al., 2024; Fan et al., 2025; Li et al., 2021). The LSTM networks are well
adapted to time-series forecasting problems due to the gated design that suppresses the shortterm
dependencies (Feng et al., 2020), whereas RF and XGBoost are considered to be robust, scalable, and easy
to understand.

Although this advanced, majority of previous studies were based on single-model framework, restricted
datasets, or the use of a small number of input variables. Very few have systematically compared deep
learning, ensemble machine learning, and hybrid approaches for sediment forecasting in data-scarce,
monsoon-driven river systems. Other recent efforts incorporated tree-based models with optimization
(Mirzakhani et al., 2022) or hybridized LSTM with boosting methods on extreme events (Slater et al.,
2023; Fan et al., 2025), however, both used shorter datasets and did not provide strong quantification of
uncertainty. Recent reviews stress that ensemble and hybrid frameworks can offer resilience by combining
complementary model strengths (Dehghan-Souraki et al., 2024).

In a bid to bridge these gaps, the study compares and evaluates four state-of-the-art Al frameworks (LSTM,
RF, XGBoost, and a Stacked Ensemble) in predicting suspended sediment concentration (SSC) in the
Subarnarekha River at Jamshedpur, India. The analysis leverages a rare 51-year dataset (1972-2023) of
daily discharge and water level observations, combined with lagged predictor selection (via auto- and
partial correlation), kfold cross-validation, and uncertainty quantification. By systematically
benchmarking these approaches, the study makes three distinctive contributions: (i) it provides one of
the most comprehensive long-term evaluations of Al-based SSC forecasting in an Indian river system, (ii)
it shows the potential of stacked ensembles to exceed individual models by capturing complementary
strengths, and (iii) it provides pragmatic information to the management of the sediment issue in
monsoon-influenced rivers, wherein precise prediction is a key element in reducing the risk of floods,
operating reservoirs and in the control of water quality.

2. Study Area

The Subarnarekha is one of the longest east-flowing interstate river. It originates at Nagri village in Ranchi
district, Jharkhand, at an elevation of 997 m. The river is approximately 395 kilometers long. The river's
primary tributaries are Kanchi, Kharkai, and Karkari. The basin location is in the north east region of
India, between latitudes 21°33' 0" N to 23°32' 0" N and longitudes 85°09' 0" E to 87°27' 0" E. The basin
is enclosed by the Chhotnagpur Plateau in the north-west, the Brahmani basin in the south-west, the
Burhabalang basin in the south, and the Bay of Bengal in the South-East. The basin has a total catchment
area of 18,951 square kilometers.

The Jamshedpur gaging station, founded in 1972, is located on the Subarnarekha River in Jamshedpur,
India at latitude 22°49'00" N and longitude 86°12'39" E. The drainage area of the Subarnarekha River
up to Jamshedpur station is 12649 km? (Figure 1). Based on the DEM, the elevation ranges between -64
m and 997 m.
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Figure 1- Location of Jamshedpur Station in Subarnarekha Basin
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3. Dataset and Statistical Analysis

For the purpose of this study, the data collected for the Jamshedpur Station were daily discharge (m’/s),
water level (m) and their corresponding suspended sediment concentrations (g/1) from CWC,
Bhubaneshwar, Odisha, India. Daily discharge (m’/s), water level (m) and suspended sediment
concentrations (g/1) data were used to predict suspended sediment concentrations (g/1) during the period
1972-2023. The dataset spans a duration of 51 years, from 27 November 1972 to 31 March 2023. The
raw data indicate large outliers in discharge (Q), water level (WL), and suspended sediment concentration
(SSC), which were reduced using IQR and Isolation Forest filtering. The cleaned dataset more accurately
depicts the underlying variability and is more suited for model training and interpretation. It was divided
into the training (80% of dataset) and test (20% of dataset) purposes to build the predictive SSC models.
Table 1 summarizes the descriptive statistics of discharge (Q), water level (WL), and suspended sediment
concentration (SSC). Discharge shows high variability (CV = 141.6%) and strong positive skewness (C,
= 2.10), indicating that occasional high-flow events strongly influence the distribution. WL is
comparatively stable (CV = 0.35%), with only minor deviations around the mean stage. SSC exhibits low
mean values (0.055 g/L) but substantial variability (CV = 83.6%) and moderate positive skewness (C,, =
1.42), reflecting its sensitivity to episodic transport processes. Overall, the statistics indicate that while
stage remains stable, discharge variability governs SSC dynamics, underlining the importance of
incorporating nonlinear and eventresponsive predictors in the modeling framework.

Table 1 - Descriptive statistics of discharge (Q), water level (WL), and suspended sediment concentration

(SSC) at the study site.

Cleaned Dataset Mean | SD CV (%) (Sé‘gmess Max Min
Q(m’/s) 57658 | 81625 | 141568 | 2.103 426897 | 0.04
WL(m) 115.231 | 0.4 0347 | 1.065 116.8 113.93
SSC(g/1) 0055 |0046 | 83573 | 1422 0.26 0

4. METHODS

The methodological approach to the prediction of suspended sediment concentration (SSC) involved a
logical process of curation, feature engineering, and model building (Figure 2). Raw data were processed
through imputation of missing data and removal of outliers, prediction variables were selected and lagged
variables were created with normalization employed to ensure compatibility across feature sets. The
dataset was partitioned into training (80%) and testing (20%) subsets. Four predictive models were
developed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory
(LSTM), and a Stacked Ensemble integrating the base learners through a linear regression meta-learner
using k-fold cross-validation. Model training involved systematic hyperparameter optimization, and their
predictive accuracy was evaluated using multiple statistical indicators (R2, RMSE, MAE, NSE). The best-
performing model was identified as the final predictor of SSC.
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Figure 2- Illustrates the overall methodological framework

4.1. Deep learning models used to predict SSC

4.1.1. Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber (1997) proposed the LSTM model, an extension of RNN that uses three

components for prediction. The fundamental formulas for the LSTM structure are as follows:

e = 0(Ugxy + Wyhi_q + by) (1)
it = O'(Uixt + Wiht—l + bl) (2)
0t =0(Upxy + Wohi_1 + by) 3)
h; = a; * tanh(c;) 4)

Where x;, he1, and o: indicate input, hidden, and output layers respectively. U and W indicate the weights
in the gates (input (i), forget (g), and output (o). b and ht are the bias term and the hidden state,
respectively. The sigmoid was chosen as the activation function.

4.1.2. Random Forest (RF)

Random Forest (RF) (Breiman, 2001) is an ensemble of decision trees trained using bagging, with each
tree growing on a bootstrapped sample of data. At each split, a random subset of characteristics is
evaluated, introducing decorrelation between trees and improving resilience against overfitting. The
ensemble prediction for input x is:

y==Tb Ty 5)
where B denotes the number of trees and Tu(x) the prediction of the b-th tree. RF's inherent feature
importance ranking (Gini impurity reduction) and scalability for high-dimensional data enable it to be an
adaptable tool for classification and regression problems (Liaw & Wiener, 2002).

4.1.3. Extreme Gradient Boosting (XGBoost)

XGBoost (Chen & Guestrin, 2016) is a gradient-boosting framework that optimizes a regularized objective
function using additive tree models, L2-norm penalty, and gradient-based methods. The objective at

iteration t is:

£8 = T (70570 + £,00) + 20 ©
Q(f) =T + 5 Alwl? (7)

where f: is the t-th tree, T the number of leaves, w leaf weights, and y, A regularization hyperparameters.
XGBoost's handling of sparse data, parallelized tree construction, and early halting features have
established it as a cutting-edge approach for structured data (Ke et al., 2017).
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4.1.4. Stacked Ensemble

Stacked generalization (Wolpert, 1992) uses a meta-learner to best aggregate predictions from various base
models (e.g., RF, XGBoost). To avoid data leakage, base learner outputs were generated using k-fold cross-
validation, where out-of-fold predictions served as meta-features. The meta-learner f .. was then trained
on these features to yield the final stacked prediction: {hy (x)}X_;:

Istack = fmeta(ha (%), ..., Ry (x)) ®)
This framework takes advantage of the complementary nature of heterogeneous models and can
outperform individual learners, especially on complex hydrological (van der Laan et al., 2007).

4.2. Hyperparameter, tunning, and optimization of four DL models used for the prediction of SSL
Hyperparameter tuning was performed to ensure robust SSC forecasts. For Random Forest (RF),
parameters including n_estimators (100, 200), max_depth (5, 10), and min_samples_split (2, 5) were
optimized via grid search with 3-fold cross-validation. XGBoost (XGB) was tuned over n_estimators (100,
200), max_depth (5, 10), and learning_rate (0.01, 0.1), targeting the highest RZ and lowest error metrics.
The LSTM model had 50 and 30 units at the first and the second layer, respectively, dropout (0.2), and
was trained during 50 epochs with a 16-batches batch size via the Adam optimizer. Standardized and also
reshaped input features were adjusted to fit into the requirements of sequential learning.

The Stacked Ensemble combined RF, XGB, and LSTM as base learners. Base model predictions were
generated using kfold cross-validation and transformed into meta-features. A linear regression meta-
learner was then trained on these features to integrate outputs, ensuring a balanced trade-off between
accuracy and generalizability

Table 2 - Tuned Hyperparameters and Methodological Steps for RF, XGB, LSTM, and Stacked Ensemble

Model Tuned Hyperparameters

RF n_estimators: 100, 200; max_depth: 5, 10; min_samples_split: 2, 5; grid
search with 3-fold CV

XGB n_estimators: 100, 200; max_depth: 5, 10; learning_rate: 0.01, 0.1;
optimized for max R? & min error

LSTM Two LSTM layers (50, 30 units), dropout = 0.2; Adam optimizer; 50
epochs; batch size = 16; standardized sequential inputs

Stacked Base learners: RF, XGB, LSTM; training with k-fold CV; meta-

Ensemble features — Linear Regression meta-learner for optimal model
combination

5. RESULT AND DISCUSSION

The predictive performance of RF, XGBoost, LSTM, and their Stacked Ensemble was assessed for
suspended sediment concentration (SSC) using lag times from 1 to 5 days. In this framework, lag days
denote how many antecedent observations are incorporated as predictors; for example, a 2-day lag
considers conditions from both the previous day and the day before to estimate today’s SSC. This
formulation captures short-term hydrological memory, which is critical for sediment mobilization.
Model performance across lag days

Table - 3 gives the statistical assessment measures (R*, RMSE, MAE and NSE) of all models with different
lag structures. As it can be seen, the 2-day lag yielded the best predictive precision, both R* and NSE were
greater than 0.96 and 0.95 in the majority of cases. Among the models tested, Stacked Ensemble produced
the best results during the training and testing process followed by RF and XGBoost, with LSTM
performing a little bit less, especially reproducing extreme values of SSC. These numerical results add to
the graphical patterns depicted in the following illustrations.

Table 3 - Statistical performance (R2, RMSE, MAE, NSE) of Random Forest, XGBoost, LSTM, and
Stacked Ensemble models for predicting suspended sediment concentration (SSC) across different lag
times (1-5 days) during training and testing.

Lag

Model Name (Days)

Training Testing
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R’ RMSE | MAE |NSE |R’ RMSE | MAE | NSE
1 0.958 | 0.009 0.005 | 0.958 | 0.897 | 0.015 0.007 | 0.897
2 0.973 | 0.007 0.003 | 0.973 | 0.937 | 0.012 0.005 | 0.937
Random
Forest 3 0.898 | 0.015 0.007 | 0.898 | 0.902 | 0.015 0.007 | 0.902
4 0.895 | 0.015 0.007 | 0.895 | 0.898 | 0.015 0.007 | 0.898
5 0.897 | 0.015 0.007 | 0.897 | 0.885 | 0.016 0.007 | 0.885
1 0.951 | 0.010 0.005 | 0.951 | 0.899 | 0.015 0.007 | 0.899
2 0.963 | 0.009 0.004 | 0.963 | 0.940 | 0.011 0.005 | 0.940
XGBoost 3 0.939 | 0.011 0.005 |0.939 | 0.905 | 0.014 0.007 | 0.905
4 0.937 | 0.011 0.006 | 0.937 | 0.889 | 0.015 0.007 | 0.889
5 0.936 | 0.012 0.006 | 0.936 | 0.882 | 0.016 0.007 | 0.882
1 0.899 | 0.015 0.009 | 0.899 | 0.888 | 0.015 0.009 | 0.888
2 0.921 | 0.013 0.007 | 0.921 | 0.933 | 0.012 0.007 | 0.933
LSTM 3 0.876 | 0.016 0.010 | 0.876 | 0.889 | 0.015 0.010 | 0.889
4 0.886 | 0.015 0.008 | 0.886 | 0.886 | 0.016 0.008 | 0.886
5 0.889 | 0.015 0.008 | 0.889 | 0.878 | 0.016 0.009 | 0.878
1 0.949 | 0.010 0.005 | 0.949 | 0.901 | 0.014 0.007 | 0.901
2 0.964 | 0.009 0.004 | 0.964 | 0.941 | 0.011 0.005 | 0.941
Isitlilsc:(;ile 3 0.918 | 0.013 0.006 | 0.918 | 0.906 | 0.014 0.007 | 0.906
4 0.915 | 0.013 0.006 |0.915 | 0.896 | 0.015 0.007 | 0.896
5 0.916 | 0.013 0.006 | 0.916 | 0.886 | 0.016 0.007 | 0.886

Across all models, the 2-day lag configuration yielded the best results, with the highest R? (>0.96) and
NSE (>0.95) and the lowest error indices (RMSE = 0.009-0.011). This demonstrates that sediment
response in the basin is primarily governed by conditions in the preceding 48 hours, while longer lags (>2
days) added less relevant information and slightly reduced predictive accuracy. The line plots of statistical
metrics (Figure 3) clearly illustrate this trend, with the Ensemble consistently outperforming individual
models across all lag structures.
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Figure 3- Training and testing performance of Random Forest (RF), XGBoost, LSTM, and Stacked
Ensemble models across different lag days. Subplots show evaluation metrics: (a) R2, (b) RMSE, (c) MAE,
and (d) NSE. Solid lines represent training performance, while dashed lines indicate testing performance.

Observed vs. predicted relationships

Scatter plots (Figure - 4) of observed versus predicted SSC confirm these findings. All models showed
strong positive correlation, but the regression trend line was most closely aligned with the observed data
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in the case of the Ensemble. Unlike a 1:1 reference line, the plotted line represents the fitted regression
trend line, which for the Ensemble had a slope near unity and R2> 0.94 during testing. RF and XGBoost
also demonstrated good agreement, while LSTM showed a tendency to smooth peaks and underestimate

higher SSC values.
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Figure 4- Scatter plots of observed versus predicted suspended sediment concentration (SSC) during
training and testing phases for (a, b) Random Forest, (c, d) XGBoost, (e, f) LSTM, and (g, h) Stacked
Ensemble models.

Taylor diagram analysis

Taylor diagrams provided further insights into model behaviour during both training (Figure 5) and
testing (Figure 6). In the training phase, the Ensemble was located nearest to the reference point, with
correlation coefficients exceeding 0.96 and nearly identical variance reproduction, confirming its
structural fidelity. RF and XGBoost also clustered close to the reference, while LSTM, though correlated
(r = 0.92), underestimated variance. In the testing phase, the Ensemble maintained the closest proximity
to the observed reference point, whereas LSTM’s variance deviation became more pronounced. The
consistency of RF and XGBoost across both phases highlights their stability, but the Ensemble clearly
provided the most balanced representation of correlation, variability, and error minimization
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Figure 6 - Taylor diagram for testing dataset

Figure 5 - Taylor diagram for training dataset
showing comparative performance of RF, XGB,

showing comparative performance of RF, XGB,

ISTM, and Stacked Ensemble models in LSIM, and Stacked Ensemble models in
predicting SSC predicting SSC.

86



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 25s, 2025
https://theaspd.com/index.php

Temporal dynamics of SSC prediction

Time series plots (Figure - 7) of observed and predicted SSC further underline the differences among
models. The Ensemble tracked both seasonal cycles and episodic high-flow sediment pulses with high
fidelity, capturing both the magnitude and timing of peaks. RF and XGBoost also performed strongly,
although with slight over- or under-estimation during extremes. LSTM predictions appeared smoother,
effectively reproducing baseline sediment levels but underrepresenting sharp peaks, which aligns with its
scatter and Taylor diagram patterns.
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Figure 7 - Time series comparison of observed and predicted suspended sediment concentration (SSC)
during training and testing phases for (a, b) Random Forest, (c, d) XGBoost, (e, {) LSTM, and (g, h)
Stacked Ensemble models.

To summarize, it is possible to note three key things that the table and figures reveal: (i) a lagged
antecedent condition is beneficial in increasing the predicting ability, with 2-day lag being the most
optimal; (ii) tree-based models (RF, XGBoost) capture nonlinear responses and extremes, while LSTM
emphasizes sequential dependencies but tends to smooth peaks; and, (iii) the Stacked Ensemble model
effectively supplements these strengths to produce a balanced, robust, and explicable framework of SSC
prediction.

Implications for Practice

With better performance outcomes, the Stacked Ensemble demonstrates the prospect to become a stable
decision-support system in sediment forecasting. It allows water managers to predict more accurately the
level of both baseline and peak sediment, and hence predict future surges of sediment, optimize reservoir
management, and design erosion control. Its resistance to data noise and nonlinearities is also a strong
reason to use it in basins where flood-driven sediment pulses and long-term accumulation endanger
infrastructure and water security.

6. CONCLUSION

This study evaluated the predictive skill of RF, XGBoost, LSTM, and their Stacked Ensemble for SSC
prediction under varying lag structures. The results highlight three major findings:

1. Lag day sensitivity - A 2-day lag provided the most informative predictor set, emphasize the short-term
memory effect in sediment mobilization.

2. Model complementarity - RF and XGBoost captured nonlinear responses and extremes, LSTM
addressed temporal dependencies, but the Ensemble integrated these capabilities to overcome individual
limitations.
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3. Ensemble superiority - Among all figures, metrics, and datasets, the Stacked Ensemble consistently
outperformed standalone models, producing higher correlations, lower errors, and improved structural
fidelity, as validated by scatter plots, Taylor diagrams and time series comparisons.

Overall, Stacked Ensemble framework provides a robust, accurate, and generalizable approach for SSC
prediction. By harnessing lagged information on hydrological behaviour and by integrating the
complementary performance characteristics of varied learning methods, it presents a realistic avenue
toward enhanced sediment forecasting, basin-scale management of water resources, and design of
sediment management strategies.
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