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Abstract: 
Accurate prediction of suspended sediment concentration (SSC) is critical for water resources management, sediment 
control, and reservoir operation. This paper compares the performance of the Random Forest (RF), XGBoost, Long 
Short-Term Memory (LSTM), and Stacked Ensemble in predicting SSC on a daily basis with different lag-values (1-5 
days). Model performance was assessed using the coefficient of determination (R²), root mean square error (RMSE), 
mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). The results show that the inclusion of antecedent 
conditions enhances the predictive ability considerably, with a 2-day lag configuration producing the best predictive 
accuracy (R2 = 0.96, NSE = 0.95; N). Tree-based methods (both RF and XGBoost) were more effective in capturing 
nonlinear responses and extremes compared to baseline models, whereas LSTM was fairly good at capturing sequential 
dependencies and essentially smooth peaks. The Stacked Ensemble model performed consistently better than all 
standalone models with respect to accuracy, stability, and variance reproduction between training and testing phases, 
as shown in scatter plots, Taylor diagrams and time-series simulation. The above results emphasize the need to apply 
hybrid methods to SSC prediction. The suggested ensemble framework would provide a robust and transferrable 
approach to the hydrological and water management community to anticipate and manage sediment and ensure that 
floods are controlled, and basin-scale systems sustainable. 
Keywords: Machine Learning, Random Forest, Extreme Gradient Boosting, Long Short-Term Memory, Stacked 
Ensemble, suspended sediment concentration prediction 
 
1. INTRODUCTION 
The transportation of sediment in rivers is a serious issue for water resources management as it is 
associated with water quality degradation, reservoir siltation, dam safety, navigability, aquatic habitats, 
hydropower efficiency, and soil erosion (Kaveh et al., 2017; Francke et al., 2008). Suspended sediment 
concentration (SSC), especially, is a matter of great concern, as it is both a physical and chemical pollutant 
through increasing the turbidity, as well as transported adsorbed contaminants (Doğan et al., 2007). 
Accurate estimation of SSC is vital in hydraulic project planning, sustainability, and planning of the 
watershed (Kisi & Zounemat-Kermani, 2016). Direct measurements of SSC are limited by the intensive 
and expensive sampling exercises, leading to scarce coverage in most areas (Al-Mukhtar & Al-Yaseen, 
2019). In contrast, streamflow and water level data are largely accessible, and they are key determinants 
of sediment movement (Vafakhah, 2013), forming favourable predictors of SSC estimation. 
Conventional methods of SSC prediction, which include sediment rating curves, regression models and 
process-based hydrological models, have notable shortcomings. Physically based and conceptual models 
often demand extensive input data that exceed availability in many basins (Kalbus et al., 2012). Similarly, 
empirical approaches cannot represent dynamic, nonlinear, and stochastic behaviors of sediment 
transport, which results in a poor general prediction (Afan et al., 2016). Shiau and Chen (2015) 
emphasized that sediment rating curves are inadequate to capture the observed dispersion between 
sediment and discharge, which reduces their applicability. Recent advances on sediment modeling 
confirm these drawbacks and note that more flexible models are necessary that can address nonlinearity 
and uncertainty (Yue et al., 2024, Wang et al., 2025, Szalińska et al., 2024). These difficulties highlight 
the requirement of more comprehensive, flexible modelling frameworks that will be able to capture the 
dynamics of sediment processes across a spectrum of hydrological conditions. 
Data-driven methods, and in particular Artificial Intelligence (AI), have become strong alternatives as they 
have the capability of capturing non-linear behavior and are able to process noisy hydrological data. 
Machine learning algorithms like Random Forest (RF), Extreme Gradient Boosting (XGBoost) and model 
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structures like Long Short-Term Memory (LSTM) have been used successfully to perform hydrological 
forecasting, including streamflow and water quality prediction (Breiman, 2001; Chen & Guestrin, 2016; 
Kratzert et al., 2019; Khosravi et al., 2024; Fan et al., 2025; Li et al., 2021). The LSTM networks are well 
adapted to time-series forecasting problems due to the gated design that suppresses the short-term 
dependencies (Feng et al., 2020), whereas RF and XGBoost are considered to be robust, scalable, and easy 
to understand. 
Although this advanced, majority of previous studies were based on single-model framework, restricted 
datasets, or the use of a small number of input variables. Very few have systematically compared deep 
learning, ensemble machine learning, and hybrid approaches for sediment forecasting in data-scarce, 
monsoon-driven river systems. Other recent efforts incorporated tree-based models with optimization 
(Mirzakhani et al., 2022) or hybridized LSTM with boosting methods on extreme events (Slater et al., 
2023; Fan et al., 2025), however, both used shorter datasets and did not provide strong quantification of 
uncertainty. Recent reviews stress that ensemble and hybrid frameworks can offer resilience by combining 
complementary model strengths (Dehghan-Souraki et al., 2024). 
In a bid to bridge these gaps, the study compares and evaluates four state-of-the-art AI frameworks (LSTM, 
RF, XGBoost, and a Stacked Ensemble) in predicting suspended sediment concentration (SSC) in the 
Subarnarekha River at Jamshedpur, India. The analysis leverages a rare 51-year dataset (1972–2023) of 
daily discharge and water level observations, combined with lagged predictor selection (via auto- and 
partial correlation), k-fold cross-validation, and uncertainty quantification. By systematically 
benchmarking these approaches, the study makes three distinctive contributions: (i) it provides one of 
the most comprehensive long-term evaluations of AI-based SSC forecasting in an Indian river system, (ii) 
it shows the potential of stacked ensembles to exceed individual models by capturing complementary 
strengths, and (iii) it provides pragmatic information to the management of the sediment issue in 
monsoon-influenced rivers, wherein precise prediction is a key element in reducing the risk of floods, 
operating reservoirs and in the control of water quality. 
 
2. Study Area 
The Subarnarekha is one of the longest east-flowing interstate river. It originates at Nagri village in Ranchi 
district, Jharkhand, at an elevation of 997 m. The river is approximately 395 kilometers long. The river's 
primary tributaries are Kanchi, Kharkai, and Karkari. The basin location is in the north east region of 
India, between latitudes 21°33' 0" N to 23°32' 0" N and longitudes 85°09' 0" E to 87°27' 0" E. The basin 
is enclosed by the Chhotnagpur Plateau in the north-west, the Brahmani basin in the south-west, the 
Burhabalang basin in the south, and the Bay of Bengal in the South-East. The basin has a total catchment 
area of 18,951 square kilometers. 
The Jamshedpur gaging station, founded in 1972, is located on the Subarnarekha River in Jamshedpur, 
India at latitude 22°49'00" N and longitude 86°12'39" E. The drainage area of the Subarnarekha River 
up to Jamshedpur station is 12649 km2 (Figure 1). Based on the DEM, the elevation ranges between -64 
m and 997 m.  

 
Figure 1- Location of Jamshedpur Station in Subarnarekha Basin 
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3. Dataset and Statistical Analysis 
For the purpose of this study, the data collected for the Jamshedpur Station were daily discharge (m3/s), 
water level (m) and their corresponding suspended sediment concentrations (g/l) from CWC, 
Bhubaneshwar, Odisha, India. Daily discharge (m3/s), water level (m) and suspended sediment 
concentrations (g/l) data were used to predict suspended sediment concentrations (g/l) during the period 
1972–2023. The dataset spans a duration of 51 years, from 27 November 1972 to 31 March 2023. The 
raw data indicate large outliers in discharge (Q), water level (WL), and suspended sediment concentration 
(SSC), which were reduced using IQR and Isolation Forest filtering. The cleaned dataset more accurately 
depicts the underlying variability and is more suited for model training and interpretation. It was divided 
into the training (80% of dataset) and test (20% of dataset) purposes to build the predictive SSC models. 
Table 1 summarizes the descriptive statistics of discharge (Q), water level (WL), and suspended sediment 
concentration (SSC). Discharge shows high variability (CV = 141.6%) and strong positive skewness (Csx 
= 2.10), indicating that occasional high-flow events strongly influence the distribution. WL is 
comparatively stable (CV = 0.35%), with only minor deviations around the mean stage. SSC exhibits low 
mean values (0.055 g/L) but substantial variability (CV = 83.6%) and moderate positive skewness (Csx = 
1.42), reflecting its sensitivity to episodic transport processes. Overall, the statistics indicate that while 
stage remains stable, discharge variability governs SSC dynamics, underlining the importance of 
incorporating nonlinear and event-responsive predictors in the modeling framework. 
Table 1 - Descriptive statistics of discharge (Q), water level (WL), and suspended sediment concentration 
(SSC) at the study site. 

Cleaned Dataset Mean SD CV (%) 
Skewness 
(Csx) 

Max Min 

Q(m3/s) 57.658 81.625 141.568 2.103 426.897 0.04 

WL(m) 115.231 0.4 0.347 1.065 116.8 113.93 

SSC(g/l) 0.055 0.046 83.573 1.422 0.26 0 

 
4. METHODS 
The methodological approach to the prediction of suspended sediment concentration (SSC) involved a 
logical process of curation, feature engineering, and model building (Figure 2). Raw data were processed 
through imputation of missing data and removal of outliers, prediction variables were selected and lagged 
variables were created with normalization employed to ensure compatibility across feature sets. The 
dataset was partitioned into training (80%) and testing (20%) subsets. Four predictive models were 
developed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory 
(LSTM), and a Stacked Ensemble integrating the base learners through a linear regression meta-learner 
using k-fold cross-validation. Model training involved systematic hyperparameter optimization, and their 
predictive accuracy was evaluated using multiple statistical indicators (R², RMSE, MAE, NSE). The best-
performing model was identified as the final predictor of SSC. 
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Figure 2- Illustrates the overall methodological framework 
4.1. Deep learning models used to predict SSC 
4.1.1. Long Short Term Memory (LSTM) 
Hochreiter and Schmidhuber (1997) proposed the LSTM model, an extension of RNN that uses three 
components for prediction. The fundamental formulas for the LSTM structure are as follows: 
𝑔𝑡 = 𝜎(𝑈𝑔𝑥𝑡 +𝑊𝑔ℎ𝑡−1 + 𝑏𝑔)        (1) 
𝑖𝑡 = 𝜎(𝑈𝑖𝑥𝑡 +𝑊𝑖ℎ𝑡−1 + 𝑏𝑖)         (2) 
𝑜𝑡 = 𝜎(𝑈𝑜𝑥𝑡 +𝑊𝑜ℎ𝑡−1 + 𝑏𝑜)        (3) 
ℎ𝑡 = 𝜎𝑡 ∗ tanh(𝑐𝑡)          (4) 
Where xt, ht-1, and ot indicate input, hidden, and output layers respectively. U and W indicate the weights 
in the gates (input (it), forget (gt), and output (ot)). b and ht are the bias term and the hidden state, 
respectively. The sigmoid was chosen as the activation function. 
4.1.2. Random Forest (RF) 
Random Forest (RF) (Breiman, 2001) is an ensemble of decision trees trained using bagging, with each 
tree growing on a bootstrapped sample of data. At each split, a random subset of characteristics is 
evaluated, introducing decorrelation between trees and improving resilience against overfitting. The 
ensemble prediction for input x is: 

𝑦̂ =
1

𝐵
∑ 𝑇𝑏(𝑥)
𝐵
𝑏=1           (5) 

where B denotes the number of trees and Tb(x) the prediction of the b-th tree. RF's inherent feature 
importance ranking (Gini impurity reduction) and scalability for high-dimensional data enable it to be an 
adaptable tool for classification and regression problems (Liaw & Wiener, 2002). 
4.1.3. Extreme Gradient Boosting (XGBoost) 
XGBoost (Chen & Guestrin, 2016) is a gradient-boosting framework that optimizes a regularized objective 
function using additive tree models, L2-norm penalty, and gradient-based methods. The objective at 
iteration t is: 

ℒ𝑡 = ∑ 𝑙 (𝑦𝑖𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡)

𝑛
𝑖=1        (6) 

𝛺(𝑓𝑡) = γ𝑇 +
1

2
𝜆‖𝑤‖2         (7) 

where ft is the t-th tree, T the number of leaves, w leaf weights, and γ, λ regularization hyperparameters. 
XGBoost's handling of sparse data, parallelized tree construction, and early halting features have 
established it as a cutting-edge approach for structured data (Ke et al., 2017). 
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4.1.4. Stacked Ensemble 
Stacked generalization (Wolpert, 1992) uses a meta-learner to best aggregate predictions from various base 
models (e.g., RF, XGBoost). To avoid data leakage, base learner outputs were generated using k-fold cross-
validation, where out-of-fold predictions served as meta-features. The meta-learner 𝑓meta was then trained 
on these features to yield the final stacked prediction: {ℎ𝑘(𝑥)}𝑘=1

𝐾 : 
𝑦̂𝑠𝑡𝑎𝑐𝑘 = 𝑓𝑚𝑒𝑡𝑎(ℎ1(𝑥),… . . , ℎ𝑘(𝑥))        (8) 
This framework takes advantage of the complementary nature of heterogeneous models and can 
outperform individual learners, especially on complex hydrological (van der Laan et al., 2007). 
4.2. Hyperparameter, tunning, and optimization of four DL models used for the prediction of SSL 
Hyperparameter tuning was performed to ensure robust SSC forecasts. For Random Forest (RF), 
parameters including n_estimators (100, 200), max_depth (5, 10), and min_samples_split (2, 5) were 
optimized via grid search with 3-fold cross-validation. XGBoost (XGB) was tuned over n_estimators (100, 
200), max_depth (5, 10), and learning_rate (0.01, 0.1), targeting the highest R² and lowest error metrics. 
The LSTM model had 50 and 30 units at the first and the second layer, respectively, dropout (0.2), and 
was trained during 50 epochs with a 16-batches batch size via the Adam optimizer. Standardized and also 
reshaped input features were adjusted to fit into the requirements of sequential learning. 
The Stacked Ensemble combined RF, XGB, and LSTM as base learners. Base model predictions were 
generated using k-fold cross-validation and transformed into meta-features. A linear regression meta-
learner was then trained on these features to integrate outputs, ensuring a balanced trade-off between 
accuracy and generalizability 
Table 2 - Tuned Hyperparameters and Methodological Steps for RF, XGB, LSTM, and Stacked Ensemble 

Model Tuned Hyperparameters 

RF 
n_estimators: 100, 200; max_depth: 5, 10; min_samples_split: 2, 5; grid 
search with 3-fold CV 

XGB 
n_estimators: 100, 200; max_depth: 5, 10; learning_rate: 0.01, 0.1; 
optimized for max R² & min error 

LSTM 
Two LSTM layers (50, 30 units), dropout = 0.2; Adam optimizer; 50 
epochs; batch size = 16; standardized sequential inputs 

Stacked 
Ensemble 

Base learners: RF, XGB, LSTM; training with k-fold CV; meta-
features → Linear Regression meta-learner for optimal model 
combination 

 
5. RESULT AND DISCUSSION 
The predictive performance of RF, XGBoost, LSTM, and their Stacked Ensemble was assessed for 
suspended sediment concentration (SSC) using lag times from 1 to 5 days. In this framework, lag days 
denote how many antecedent observations are incorporated as predictors; for example, a 2-day lag 
considers conditions from both the previous day and the day before to estimate today’s SSC. This 
formulation captures short-term hydrological memory, which is critical for sediment mobilization. 
Model performance across lag days 
Table - 3 gives the statistical assessment measures (R2, RMSE, MAE and NSE) of all models with different 
lag structures. As it can be seen, the 2-day lag yielded the best predictive precision, both R2 and NSE were 
greater than 0.96 and 0.95 in the majority of cases. Among the models tested, Stacked Ensemble produced 
the best results during the training and testing process followed by RF and XGBoost, with LSTM 
performing a little bit less, especially reproducing extreme values of SSC. These numerical results add to 
the graphical patterns depicted in the following illustrations. 
Table 3 - Statistical performance (R², RMSE, MAE, NSE) of Random Forest, XGBoost, LSTM, and 
Stacked Ensemble models for predicting suspended sediment concentration (SSC) across different lag 
times (1–5 days) during training and testing. 

Model Name 
Lag 
(Days) 

Training Testing 
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R2 RMSE MAE NSE R2 RMSE MAE NSE 

Random 
Forest 

1 0.958 0.009 0.005 0.958 0.897 0.015 0.007 0.897 

2 0.973 0.007 0.003 0.973 0.937 0.012 0.005 0.937 

3 0.898 0.015 0.007 0.898 0.902 0.015 0.007 0.902 

4 0.895 0.015 0.007 0.895 0.898 0.015 0.007 0.898 

5 0.897 0.015 0.007 0.897 0.885 0.016 0.007 0.885 

XGBoost 

1 0.951 0.010 0.005 0.951 0.899 0.015 0.007 0.899 

2 0.963 0.009 0.004 0.963 0.940 0.011 0.005 0.940 

3 0.939 0.011 0.005 0.939 0.905 0.014 0.007 0.905 

4 0.937 0.011 0.006 0.937 0.889 0.015 0.007 0.889 

5 0.936 0.012 0.006 0.936 0.882 0.016 0.007 0.882 

LSTM 

1 0.899 0.015 0.009 0.899 0.888 0.015 0.009 0.888 

2 0.921 0.013 0.007 0.921 0.933 0.012 0.007 0.933 

3 0.876 0.016 0.010 0.876 0.889 0.015 0.010 0.889 

4 0.886 0.015 0.008 0.886 0.886 0.016 0.008 0.886 
5 0.889 0.015 0.008 0.889 0.878 0.016 0.009 0.878 

Stacked 
Ensemble 

1 0.949 0.010 0.005 0.949 0.901 0.014 0.007 0.901 

2 0.964 0.009 0.004 0.964 0.941 0.011 0.005 0.941 

3 0.918 0.013 0.006 0.918 0.906 0.014 0.007 0.906 

4 0.915 0.013 0.006 0.915 0.896 0.015 0.007 0.896 

5 0.916 0.013 0.006 0.916 0.886 0.016 0.007 0.886 
Across all models, the 2-day lag configuration yielded the best results, with the highest R² (>0.96) and 
NSE (>0.95) and the lowest error indices (RMSE ≈ 0.009–0.011). This demonstrates that sediment 
response in the basin is primarily governed by conditions in the preceding 48 hours, while longer lags (>2 
days) added less relevant information and slightly reduced predictive accuracy. The line plots of statistical 
metrics (Figure 3) clearly illustrate this trend, with the Ensemble consistently outperforming individual 
models across all lag structures. 
 

 
Figure 3- Training and testing performance of Random Forest (RF), XGBoost, LSTM, and Stacked 
Ensemble models across different lag days. Subplots show evaluation metrics: (a) R², (b) RMSE, (c) MAE, 
and (d) NSE. Solid lines represent training performance, while dashed lines indicate testing performance. 
Observed vs. predicted relationships 
Scatter plots (Figure - 4) of observed versus predicted SSC confirm these findings. All models showed 
strong positive correlation, but the regression trend line was most closely aligned with the observed data 
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in the case of the Ensemble. Unlike a 1:1 reference line, the plotted line represents the fitted regression 
trend line, which for the Ensemble had a slope near unity and R² > 0.94 during testing. RF and XGBoost 
also demonstrated good agreement, while LSTM showed a tendency to smooth peaks and underestimate 
higher SSC values. 

 
Figure 4- Scatter plots of observed versus predicted suspended sediment concentration (SSC) during 
training and testing phases for (a, b) Random Forest, (c, d) XGBoost, (e, f) LSTM, and (g, h) Stacked 
Ensemble models. 
Taylor diagram analysis 
Taylor diagrams provided further insights into model behaviour during both training (Figure 5) and 
testing (Figure 6). In the training phase, the Ensemble was located nearest to the reference point, with 
correlation coefficients exceeding 0.96 and nearly identical variance reproduction, confirming its 
structural fidelity. RF and XGBoost also clustered close to the reference, while LSTM, though correlated 
(r ≈ 0.92), underestimated variance. In the testing phase, the Ensemble maintained the closest proximity 
to the observed reference point, whereas LSTM’s variance deviation became more pronounced. The 
consistency of RF and XGBoost across both phases highlights their stability, but the Ensemble clearly 
provided the most balanced representation of correlation, variability, and error minimization 

 
Figure 5 - Taylor diagram for training dataset 
showing comparative performance of RF, XGB, 
LSTM, and Stacked Ensemble models in 
predicting SSC 

 
Figure 6 - Taylor diagram for testing dataset 
showing comparative performance of RF, XGB, 
LSTM, and Stacked Ensemble models in 
predicting SSC. 
 

 
 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 25s, 2025  
https://theaspd.com/index.php 
 

87 
 

Temporal dynamics of SSC prediction 
Time series plots (Figure - 7) of observed and predicted SSC further underline the differences among 
models. The Ensemble tracked both seasonal cycles and episodic high-flow sediment pulses with high 
fidelity, capturing both the magnitude and timing of peaks. RF and XGBoost also performed strongly, 
although with slight over- or under-estimation during extremes. LSTM predictions appeared smoother, 
effectively reproducing baseline sediment levels but underrepresenting sharp peaks, which aligns with its 
scatter and Taylor diagram patterns. 

 
Figure 7 - Time series comparison of observed and predicted suspended sediment concentration (SSC) 
during training and testing phases for (a, b) Random Forest, (c, d) XGBoost, (e, f) LSTM, and (g, h) 
Stacked Ensemble models. 
To summarize, it is possible to note three key things that the table and figures reveal: (i) a lagged 
antecedent condition is beneficial in increasing the predicting ability, with 2-day lag being the most 
optimal; (ii) tree-based models (RF, XGBoost) capture nonlinear responses and extremes, while LSTM 
emphasizes sequential dependencies but tends to smooth peaks; and, (iii) the Stacked Ensemble model 
effectively supplements these strengths to produce a balanced, robust, and explicable framework of SSC 
prediction. 
Implications for Practice 
With better performance outcomes, the Stacked Ensemble demonstrates the prospect to become a stable 
decision-support system in sediment forecasting. It allows water managers to predict more accurately the 
level of both baseline and peak sediment, and hence predict future surges of sediment, optimize reservoir 
management, and design erosion control. Its resistance to data noise and nonlinearities is also a strong 
reason to use it in basins where flood-driven sediment pulses and long-term accumulation endanger 
infrastructure and water security. 
6. CONCLUSION 
This study evaluated the predictive skill of RF, XGBoost, LSTM, and their Stacked Ensemble for SSC 
prediction under varying lag structures. The results highlight three major findings: 
1. Lag day sensitivity - A 2-day lag provided the most informative predictor set, emphasize the short-term 
memory effect in sediment mobilization. 
2. Model complementarity - RF and XGBoost captured nonlinear responses and extremes, LSTM 
addressed temporal dependencies, but the Ensemble integrated these capabilities to overcome individual 
limitations. 
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3. Ensemble superiority - Among all figures, metrics, and datasets, the Stacked Ensemble consistently 
outperformed standalone models, producing higher correlations, lower errors, and improved structural 
fidelity, as validated by scatter plots, Taylor diagrams and time series comparisons. 
Overall, Stacked Ensemble framework provides a robust, accurate, and generalizable approach for SSC 
prediction. By harnessing lagged information on hydrological behaviour and by integrating the 
complementary performance characteristics of varied learning methods, it presents a realistic avenue 
toward enhanced sediment forecasting, basin-scale management of water resources, and design of 
sediment management strategies. 
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