International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

Devsecopsgpt: Real-Time LLM-Based Policy Enforcement
During CI/CD

Bhulakshmi Makkena
Senior Site Reliability Engineer

Abstract

Modern DevSecOps pipelines aim to integrate security practices into continuous integration and continuous delivery
(CI/CD) workflows without compromising agility. However, traditional policy enforcement mechanisms struggle to
keep pace with the dynamic and complex nature of modern software systems. This paper proposes DevSecOpsGPT,
a novel framework leveraging large language models (LLMs) for realtime policy enforcement during C1/CD
execution. DevSecOpsGPT integrates Policy-as-Code (PaC) principles into the CI/CD toolchain, orchestrating LLMs
to interpret and enforce contextual security rules, detect violations, and provide justin-time feedback. This research
outlines the system architecture, enforcement strategies, and implementation methodology, and evaluates performance
across various policy compliance scenarios. Our findings indicate that LLM-based enforcement enhances automation,
reduces false positives, and provides adaptive learning for evolving security needs—making it a viable path toward fully
autonomous secure software delivery.

Keywords: DevSecOps, Cl/CD, Policy-as-Code, Large Language Models, Security Automation, Real-Time
Enforcement, Prompt Engineering, Secure Software Supply Chain

1. INTRODUCTION

1.1 Background and Motivation

As organizations increasingly adopt DevOps practices to accelerate software delivery, security must shift
left—integrated early and continuously across the CI/CD lifecycle. This integration, known as
DevSecOps, emphasizes the automation of security policy enforcement, vulnerability detection, and
compliance management throughout the pipeline.

However, enforcing policies in real-time during build, test, and deployment stages remains challenging.
Conventional tools rely on static rules or signature-based approaches, which often lack contextual
awareness and adaptability. At the same time, large language models (LLMs) such as GPT-4 have shown
potential in interpreting complex natural-language policies, reasoning about code, and generating secure
responses based on contextual cues(Akbar et al., 2023).

Recent advances in Policy-as-Code (PaC) enable declarative security definitions to be embedded directly
in infrastructure, but they still require constant tuning and lack the intelligence to adapt dynamically to
novel situations. DevSecOpsGPT seeks to bridge this gap using LLMs as intelligent policy enforcers,
enabling a more responsive, context-aware security layer in CI/CD.

1.2 Problem Statement

Despite the progress in DevSecOps automation, current systems fall short in offering real-time, context-
aware policy enforcement that adapts dynamically to new threats or changes in code behavior. Key
challenges include:

e Lack of semantic understanding in rule-based engines

¢ High false positive/negative rates in static analysis

¢ Inability to evolve policies based on pipeline activity

1.3 Research Objectives

This paper presents a framework—DevSecOpsGPT—and aims to:

e Design an architecture for real-time LLM-based policy enforcement in CI/CD

Integrate Policy-as-Code principles with LLM prompt orchestration

e Develop enforcement strategies for static and dynamic analysis during pipeline execution

¢ Evaluate system performance, accuracy, and adaptability

e Compare with existing tools to highlight improvements in responsiveness and security coverage

1.4 Scope and Delimitations

This study focuses on real-time policy enforcement during CI/CD workflows using transformer-based
LLMs. It does not cover:

e General-purpose Al code generation

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

e Security incident response post-deployment

e Human-in-the-loop verification at production scale

The implementation is validated using representative CI/CD platforms (e.g., Jenkins, GitHub Actions)
and containerized microservices. It targets code quality, dependency management, infrastructure-as-code,
and access control policies.

2. THEORETICAL FOUNDATIONS

2.1 DevSecOps: Principles and Security Integration

DevSecOps is a paradigm and is an evolution of DevOps to include security in all aspects of the software
development lifecycle (SDLC) so that security is not a gate at the end but a continuous and integrated
capability in the entire lifecycle. The philosophy of shiftleft security also implies the spirit of DevSecOps
and states that developers and operation specialists need to resolve vulnerabilities at the initial
development stage as opposed to after deployment. Such proactive actions will ensure the reduction of
security debt as well as faster responses to incidents.

DevSecOps approaches today are defined by allowing continuous threat modeling, automatic code
analysis, compliance scanning, infrastructure hardening, and telemetry-driven feedback loops. Applying
security as code, by defining security policies programmatically, opens the possibility to enforce security
at scale, and across repetitive CI/CD operations(Akbar et al., 2023). Nevertheless, issues with dynamic
changes in the threat landscapes, the interoperability of tools, and false positives of the static analysis
remain. To underscore these gaps, there is the need to develop more intelligent and adaptive systems,
especially those that are able to reason about security context in real time.

DevSecOps

Plan Deploy

(PRE-PRODUCTION) PRODUCTION]

Threat rr_vodeling, ' Access and configuration management,
change impact analysis chaos engineering, pen testing

Build Operate

[PRE-PROOUCTION] Pre-production Production {PRODUCTION)

Log collection, RASP,
Potching, WAF

Pre-commit hooks,
software
composition anolysis,
SAST, code review,
container security,
vulnerability
scanning, DAST

Test Monitor
(PRE-PRODUCTION) (PRODUCTION]
DAST SIEM, vulnerability monitoring,

occess control

FIGURE 1 DEVSECOPS: SECURING CI/CD PIPELINES & CLOUD-NATIVE(TOWARDSAWS,2022)

2.2 CI/CD Pipelines: Architecture and Vulnerability Points

CI/CD pipelines Continuous Integration and Continuous Delivery (CI/CD) pipelines are intended to
automate code changes across environments through combination and commitment. The common
structure of a CI/CD pipeline contains elements such as code checkout, static and dynamic testing,
containerization, a staging/production deployment, and monitoring after deployment. At the same time,
as much as these pipelines help eliminate release cycles, and enhance velocity, they provide numerous
entry points during delivery. These include insecure secrets management in environment variables,
insecure third-party libraries that have not been scanned, misconfigured infrastructure-as-code ([aC)

2

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

templates and inadequate access controls in pipeline orchestration tooling, as examples. There were two
known breaches in 2023 which happened in CI/CD settings and inserted malicious code in an open-
source repository. As the infrastructure gets redder by codifying everything possible, attackers are
comfortable accessing the build environment and using it as a springboard to production systems. This
modulating threat model requires that CI/CD pipelines include adaptive security enforcement
algorithmic engines which can interfere in the course of execution, verifying behaviour and policies on a
per-occurrence basis, and not only at gates.

2.3 Large Language Models in Software Engineering

Compared to legacy systems, Large Language Model (LLM), and specifically transformer-based models,
such as GPT-4 and PaLM demonstrates revolutionary potential in working with natural language and
code comprehension. They have been used in software engineering in code generation, code completion,
automatic documentation, bug repair and static analysis. This is possible because LLMs are trained on
large corpora containing source code, configuration files, documentation, and natural language,
therefore, able to close the semantic gap between policy definition and reality by to code implementation.
More recent models have been optimized on cybersecurity-specific tasks, with examples including the
systemic detection of use of insecure APIs, the generation of test cases to cover edge-case vulnerabilities,
and semantic diffing of multiple code versions. As much as LLMs show their robust skills in
generalization, there are still issues of predictable accuracy of prompt reliability, the reduction of
hallucinations, and low-latency operations in latency-aware CI/CD pipelines. However, their capabilities
in performing high order of code and configuration analysis render them in a perfect position to be used
as dynamic policy enactment engines.

2.4 Policy-as-Code (PaC) Paradigms in DevOps

Policy-as-Code (PaC) is an alternative paradigm, which goes a step further to model organizational policies,
compliance requirements, and security policies in a machine-readable form which can be automatically
evaluated and enforced. Some well-known PaC tools include Open Policy Agent (OPA), HashiCorp
Sentinel, and Rego because they allow one to programmatically manage infrastructure, identity, and access
control policies. When incorporating PaC into the CI/CD process, companies guarantee consistency and
visibility of policies enforcement across environments. PaC also allows continuous compliance since it
assesses policy conditions with each execution of the pipeline as compared to the traditional governance
models that require documentation or manual inspection. Nevertheless, the majority of available PaC
tools are deterministic and rule-based, thus inflexible in the process of interpreting ambiguous or
changing conditions. They do not take into consideration subtle developer purpose or context of the
project.

2.5 Real-Time Systems in Continuous Delivery

The use of the term real-time systems with respect to CI/CD means components and processes that react
to input or conditions deterministically and in real-time in the software delivery process. Real-time
coverage of CI/CD is technically fairly difficult because of the distributed setup of contemporary delivery
cycles, the rate that build chains are performed, and the requirement to work with an overflowing number
of tools and services. In addition, real-time decision-making requires a decision between the score of
strictness of enforcement, system availability, and performance overhead. The use of LLM in this live
setting comes both with opportunities and engineering issues. On the one hand, LLMs are capable of
interpreting imprecise policy definitions, resolve ambiguities and make intelligent policy mediators. In
other hand, latency in inferences, reliability of prompt engineering, and constraints in memory are issues
that present integration problems.

3. LITERATURE REVIEW

3.1 DevSecOps Automation Tools and Frameworks

DevSecOps has quickly advanced by incorporating security tools in automation that comes pre-baked to
CI/CD pipelines. Examples of tools that have been in great use include the static application security
testing (SAST), dynamic application security testing (DAST) and software composition analysis (SCA)
that are used in scanning the code, identification of vulnerabilities and ensuring that the security
standards are met. Such tools minimize the labor-intensive process of checking security and enhance
tracing(Cankar & Petrovic, 2023). Nonetheless, current DevSecOps platforms depend on the rule-based
engines which have poor contextual awareness. The fact that it is not possible to draw parallels between
policy violations and business logic or developer intent continues to be a major deficit. In addition, such

3

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

systems usually do not have flexibility to change the policies automatically as varied threats emerge or
pipeline ecosystem alters. This has been one of the factors that have encouraged using machine learning
and natural language models as potential solutions to act towards increasing intelligence and
responsiveness of DevSecOps automation.

3.2 LLM Applications in Cybersecurity and Code Analysis

The most widely-promising application of large models to source code seems to be the analysis of source
code, inference with infrastructure-as-code (IaC), and even understanding of natural-language security
policies. LLMs can find insecure coding patterns when fine-tuned or prompted properly, tell us the cause
of a vulnerability and even offer replacement variants. These models have the potential of being used as
secure code reviews operators, conduct scan on running codes, and are also capable of producing
documentation automatically. Being smart policy enforcers also pitches them in the ability to combine
various types of data, configuration files, commit options, and policy statements(Diaz et al., 2022).
Although such potential exists, their use in cybersecurity is still constrained by fears of reliability, latency
of inferences, and hallucination. In addition, the majority of LLMs in software engineering attempts have
applied to productivity work, instead of practical implementation of security rules in live deployments.
The application of LLMs to real-time CI/CD hence constitutes a newly opened research area of great
promise to revolutionize DevSecOps operations.

3.3 Security Policy Enforcement Mechanisms

Conventional policy deployment automation in software deployment chains is done using the rule
engines, grant/ denial lists, and policy collections. Such mechanisms work well to make sure that things
like version pinning, container image validation, or definitions of access controls are being followed
faithfully. Declarative policy definition and successive evaluation can be used with tools, such as Open
Policy Agent and HashiCorp Sentinel, to the CI/CD pipeline. But these systems can hardly explain
intricate relations among codes modification, infrastructure settings and dynamic security environment.
As well, traditional systems are not able to provide the information related to an infringement of policy
in developer-friendly language and thus make the process of remediation slow which adds to the tensions
between the security and development teams. By integrating the features of rule assessment and semantic
LLM-based comprehension, a policy enforcement mechanism can provide a more effective yet flexible
solution to the challenges of compliance monitoring at the software projects that happen fast.

3.4 Advances in Prompt Engineering for Secure Code Generation

Prompt engineering refers to the act of engineering useful inputs to influence the large language models
to create the desired outputs. Prompt engineering has been used in secure software development to have
LLMs (via secure GPTs) produce secure code, explain vulnerabilities, and assess adherence to coding
standards. Composing prompts in such a way that they provide the context of the project work
(documentation, security measures, or past vulnerability trends) allows developers to gain practical
knowledge by using LLMs in code reviewing and infrastructure deployment(Gupta et al., 2023).

The recent literature has considered practices like chain-of-thought prompting, contextual embeddings,
and self-consistency sampling to make LLMs more reliable and hallucination-averse. They become
particularly useful in automated policy enforcement systems that interface with LLMs, where it is most
important to identify accurate results and interpret them. The better prompt engineering, the more LLMs
can comprehend the complicated policies and make subtle decisions, the better they can be used not only
as a passive partner in CI/CD pipelines but agents of enforcement as well.

3.5 Limitations of Current Security Integration in CI/CD

Even though there is an increase in number of tools and frameworks used to secure CI/CD pipeline,
considerable limitations remain. The majority of tools are used separately, which causes disunity on
visibility and irregularity in enforcement across the various levels of the pipeline. Also, solutions out there
tend to produce a large number of false positives, which saturate the developers and cause them to
denounce automated security checks. The absence of combining policy logic with developer feedbacks
restricts the flexibility of any existing mechanisms of the enforcement.

Moreover, tools have fundamental difference in semantics comprehension, error detection at syntax level,
they frequently cannot interpret the purpose or desire behind code modification or change of
infrastructure(Gupta et al., 2023). All this is the reason why there must be smarter context-based systems
that can reason in real time. The combination of DevSecOps automation with LLM functionality will be
a way forward, with the ability of enforcement mechanisms on policy that can be correct and also
responsive to the nuances of software delivery in the modern era.

4

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

4. RESEARCH METHODOLOGY

4.1 Research Design and Approach

Research design is based on a mixed paradigm, a combination of experimental system development, and
an examination of the effectiveness of the policy implementation through the qualitative analysis. The
goal is to design and assess real-time policy enforcement system, DevSecOpsGPT, with LLM capabilities
and integrate it into a CI/CD environment(Mao et al., 2023). The research is concerned with both
practical outcomes of the research, which may include possible accuracy and performance of the policy
analyses, and more qualitative considerations, which may include clarity of the feedback created with the
help of LLM or its flexibility regarding multiple codebases. The approach to this methodology implies
iterative prototyping, multi-CI/CD platform testing, and verification with the help of a series of security
policies in both code and natural speech.

4.2 Dataset Collection and Annotation for Policy Enforcement

The training data has the form of code repositories, infrastructure-as-code templates, and CI/CD
configuration files labeled with security policies and compliance regulations and are provided as open-
source. Other metadata can be commit history, security scan reports, and access control definitions.
Examples of policy violations and mitigating corrections are marked manually and added to the dataset
in order to facilitate supervised performance. There are annotation directives which are established in a
bid to have some level of consistency between categories which include hardcoded secrets, privilege
escalation risks, dependency vulnerabilities, and network exposure. This is an annotated corpus to test
how the LLM interprets policies, detects violations, and gives feedback that can lead to action.

4.3 Model Selection: Evaluating LLMs for Real-Time Contextual Understanding

The model selection is dedicated to assessing the transformer-based LLMs in view of their functionality
in scenarios of real-time policy enforcement. The most important factors are inference latency, violation
detection accuracy, the ability to produce human-readable explanation, and capability of operating within
CI/CD runtimes. A number of models are trialed on zero-shot and few-shot activities in order to compare
their reasoning performances. Each configuration records the performance metrics like the true positive
rate, false positive rate and time-to-decision(Myrbakken & Colomo-Palacios, 2022). Successful integration
of PaC rules in the form of a prompt is one of the requirements given special consideration by the model,
as well as aligning the responses to the thresholds responsible explicitly in terms of their enforcement.
Judging by such assessments, the most relevant model is included in the DevSecOpsGPT pipeline with
optimized prompt templates and context windows.

4.4 Integration Framework for LLMs within CI/CD Workflows

Its integration framework will allow adding the LLM assessment step to the current CI/CD pipelines with
minimal overheads. It is provided by using containerized services that might be called at pipeline stages
or even webhooks. The framework has pipeline context parsing, LLM prompt generation, response
reception, and policy decision application modules. The dynamic conversion of security policies defined
in PaC format into the LLM-compatible prompts is performed with the help of a dedicated
transformation engine. Asynchronous processing is also supported by the integration to prevent pipeline
blocking in time critical application. The output of the LLM is analyzed and presented in the form of
structured annotations back in pull requests, in issue trackers or log dashboards.

Traditional vs., LLM-Based Enforcement Comparison

Ramediation Time

False Positive Nete

recal

75 % smme Tracditional
EIE DevsecOnsort

o 40 “o oo HO 100
rorformance (") / Minutes

FIGURE 2 DIVERGING BAR COMPARISON OF ENFORCEMENT METRICS. SOURCE: DEVSECOPSGPT
RESEARCH (2024)

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

5. System Design and Architecture

5.1 DevSecOpsGPT Pipeline Overview

DevSecOpsGPT system is an extensible modular system that can integrate large language models into CI
/ CD pipelines so that smart and dynamic policy enforcement can be achieved. At the centre of the
system, the automation of continuous deployment and validation of context-aware security combine to
form a single point(Rajapakse, Zahedi, & Babar, 2023). It has three main layers namely the pipeline
integration layer, the policy enforcement engine and the LLM orchestration framework. These layers
interoperate with one another via safe APIs and message queues in order to ensure that the structure is
responsive within the pipeline and every commit, merge, or deployment task has been considered in the
light of a dynamic set of policy rules. The design focuses on fast decision making with low latency, scalable
policy processing, and developer workflow non-disruption.

5.2 Policy Engine Layer: Real-Time Enforcement Workflow

Policy engine is the real time dynamo of decision making that ensures real time compliance. It gets
contextual information through CI/CD runner including metadata of changed code, infrastructure
definitions, environment variables, access roles, and test coverage data. When this data is gathered, it will
be decoded and compared to pre-written policies (in a declarative format, e.g. Rego, YAML), which are a
clear starting point of the policy logic. At the same time, such data is passed on to the LLM orchestration
layer, which supplements the uncompromising unchanging rules of policy with natural language
reasoning and semantical validation(Rajapakse, Zahedi, & Babar, 2023). To prevent code breaking access,
the engine does pre-commit, pre-merge and pre-deployment checks to block, allow and warn in the
outcome of a policy. In order to manage the current performance, it introduces caching, asynchronous
processing, as well as heuristic filtering based on which high-risk assessments should be evaluated first.
5.3 LLM Prompt-Orchestration Layer

The most important aspect in DevSecOpsGPT is the prompt-orchestration layer; this is the point where
structured policy data is integrated with the inference engine of a language model. This layer is meant to
convert structured safety rules, pipeline metadata, and code diffs into their most efficient form, which the
LLM can process. It also automatically scales the prompt height and token consumption according to
dynamic complexity of the codebase or infrastructure stack in real-time.

The prompt engine is also capable of multi-turn interactions meaning it lets the LLM refine its policy
assessments iteration after iteration before coming up with a final output. The findings will be received
in the form of structured JSON encapsulation that can be facilitated instantaneously by the policy engine
without the need of a human operator. Such orchestration helps the LLMs to be sensitive and pertinent
despite a change or an extension of policy definitions.

5.4 Microservices and Container-Oriented Deployment

DevSecOpsGPT is deployed in the form of a set of loosely-coupled microservices that interact with each
other using RESTful APIs and secure message brokers. Docker is used to containerize each of the
microservices, whereas Kubernetes is the tool that enables the horizontal scaling of the system and high
availability of each of the pipeline executions. Its system components are policy engine, LLM gateway,
prompt builder, security event collector, logging daemon and API controller(Sanchez-Gordén & Colomo-
Palacios, 2022). The services are activated as Kubernetes pods and are run in a safer namespace and
isolated by role-base access approach. The design allows fault tolerance and allows pipeline activities to
continue even as components are updated or replaced by the system administrators. State persistence is
handled through distributed databases and configuration maps whereby policy evaluations are the same
across deployments.

6. Policy Enforcement Strategies

6.1 Static vs. Dynamic Policy Evaluation

The theory of enforcing policy in DevSecOpsGPT is anchored on a two-tiered mechanism which is a mix
of both dead and living analysis and assessment. Deterministic logic engines such as rule syntax, file
patterns and code annotations are used to evaluate static policies. Such checks are quick and secure when
it comes to the implementation of formatting obligations, versioning of dependency, and baseline access
restrictions. On the contrary, dynamic policies would need situational awareness of run-time
configuration, conditioned infrastructure decisions, and environment-driven restrictions. The LLM is
marshaled to make sense out of such complexities inferred through natural language comments, method
analysis signatures, and security sensitive patterns identified in IaC files and in CI/CD variables.

6

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

6.2 Embedding PaC in LLM Prompts

The adoption of Policy-as-Code constructs into the LLM prompt generation system is one of the new
methods DevSecOpsGPT uses. This approach converts policies into easy-to-read guidelines instead of
handling PaC as an evaluation module of its own, and the LLM can logicalize them. This is a
transformation to convert Rego or Sentinel rules into domain related natural language prompts(Séanchez-
Gordon & Colomo-Palacios, 2023). Integrating policy rules in contextually aware prompts, the system
will cause the LLM not only to assess policy as a regulatory code set but as semantics regulating initiation
provisions. This gives the model better generalization power over projects and identification of non-
obvious violations caused by misuse or misconfiguration or means of ambiguous developer intention.
6.3 Real-Time Violation Detection and Interruption

The real-time enforcement happens because some of the major steps in the CI/CD pipeline to be
interrupted and the policy engine activated at the moment of the build, test, or deploy. Violations
detected will pause the pipeline, and the code or configuration itself will include natural-language
feedback based on training text available to the LLM in the form of annotation. The system can decide
to block the commit, follow up on with a warning message or escalate the problem to a manual reviewer
depending on the level of severity. The fact that this interaction is real-time makes sure one gets feedback
at the time of active development, which limits security regressions and raises code quality.

6.4 Reinforcement Learning for Adaptive Policy Evolution

DevSecOpsGPT and the continually changing character of security challenges and software procedures
necessitate introducing techniques of reinforcement learning to adjust policy enforcement boundaries
and incite a strategy through feedback loops. The system tracks the policy decision with time and provides
a score to each enforcement action regarding its confidence(Torkura et al., 2020). These scores are revised
in accordance with the following: developer override, false positive rate, and downstream security results.
A reward can be specified so as to prefer the policies that lead to successful deployments that do not cause
some kind of friction, and those policies that do not should be punished.

6.5 Handling False Positives and Alert Fatigue

False positive represents a real challenge in every automated enforcement system, especially those that
imply a semantic interpretation. DevSecOpsGPT encounters this problem by applying several methods
such as ensemble testing, prompt augmentation according to context, and threshold of decision
confidence. Through comparing various promptvariants LLM outputs and comparing with prior
enforcement logs, the system throttles low-confidence alerting. Also, developers are able to indicate that
a choice is wrong, which leads to the delivery of a feedback signal to the prompt engine. This assists in
minimising noise and fatigue regarding alertness and maintaining the integrity of the essential
enforcement activity.

7. Implementation Details

7.1 Model Fine-Tuning and Contextual Adaptation

The actual use of DevSecOpsGPT implies the integration of a fine-tuned large language model, which is
optimized to the specialty field of the policy enforcement tasks within the CI/CD pipelines. The fine-
tuning process is executed based on supervised learning where a fine-grained set of policy
violations/correct code patterns is maintained, annotated in terms of compliance as well as the relevance
to the context. The training focuses on maximizing the capacity of the model to produce semantically
accurate assessment, discover more subtle security threats, and offer repair suggestions. Contextual
adaptation is also augmented with the attachment of metadata created during pipeline execution, e.g.
commit history, developer identity, environment-specific variables, and infrastructure topology, which are
imbued into prompts at runtime.

7.2 CI/CD Toolchain Integration (e.g., GitHub Actions, Jenkins)

In order to have a high degree of applicability and friction-free deployment, DevSecOpsGPT will be
created in a way that it can be slowly and painlessly integrated with commonly used C1/CD platforms
such as GitHub Actions, GitLab CI, Jenkins, and Bitbucket Pipelines. Lightweight agents are created to
provide integration to act as either pipeline steps experience, runners or webhook listeners based on the
platform. Such agents gather addressed code and configuration modifications with every pipeline trigger,
package them in model forms, and transmit them to the LLM orchestration service via secure APls. After
the agent receives the output of the inference made by the LLM, the agent compares the response against
the policies and accordingly, carries out policy actions fail, warn or annotate. The integration modules

7

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

are built in such a way that the organizations can tailor the thresholds, create their own prompt templates,
and behaviour that is to fall back in case of any delays in the services. Such modularity allows
DevSecOpsGPT to be used alongside current static code analysis and security scan tools without
interfering with the usable current workflows.

7.3 Secure Prompt Engineering Techniques

Prompt engineering in DevSecOpsGPT is all about formulating correct and contextual queries that you
can use to enable the language model to make the assessment of compliance without hallucinating or
making false interpretations. The prompts are formulated on a multileveled template pattern that
incorporates the definition of the policy in lieu of natural language, the snippet or configuration of code
inspect under review, the history of pipeline, and violations that have already occurred in the project.
Inputs will be normalized to remove any unnecessary commotion and still retain syntax-sensitive
characters like indentations, environment variables, and parameter names. Moreover, the system
conducts filtering on tokens and sanitizes the dynamic values and then builds prompts in order to
minimize the exposure of injection and leakage of information. This strategy will make the LLM
consistent, secure, stable, and sensitive to manipulating adversarial attacks in different enforcement.

Policy Enforcement Performance Matrix

Em True Positives
E False Positives
an

- 94

3

©
N
Acouracy (%)

Violation Count

20

90

24075 a2 24,1
2 ~—
1
e I
[¢) !
L oLS X nw
oaed SeLkY papi\e b - \;.'*L"\a"‘o
Waras \HEEuTe privieQ®

FIGURE 3 MATRIX VISUALIZATION OF POLICY ENFORCEMENT PERFORMANCE. SOURCE: DEVSECOPSGPT
RESEARCH (2024)

7.4 Versioning, Monitoring, and Drift Management

Version control of policies and LLM configurations is to ensure that it is possible to reproduce them and
audit the decisions made when enforcing them. A versioning system is also available in DevSecOpsGPT
which monitors changes to policy definitions, prompts templates and model weights. A policy hash and
prompt checksum is attached to each enforcement step, which are recorded in a centralized registry
together with LLM decision. Security teams can see the frequency with which enforcement is applied,
rates of policy acceptance and categories of violations observed and changes in coverage and performance
over time using monitoring dashboards. Drift mitigation is carried out by integrating policy validation
tests and quick regression study to investigate the extents of inconsistency between anticipated and precise
LLM reactivity owing to codebase development or change-of-dependency. This enables the system to
indicate obsolete policies or inefficient prompts and prescribe modifications of the same on the basis of
usage patterns and recent violations thus becoming reliable over a long run.

TABLE 1: Violation Categories Detected During Evaluation

Violation Total True False Accuracy
Category Detected | Positives | Positives | (%)

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

Hardcoded 38 36 2 94.70%

Secrets

Insecure 52 48 4 92.30%
Dependency
Versions

Misconfigured | 29 26 3 89.60%
1AM Roles

Publicly 34 31 3 91.20%
Exposed Ports
in IaC

Privilege 17 16 1 94.10%
Escalation in
Scripts

8. EVALUATION AND RESULTS

8.1 Experimental Setup and Scenarios

DevSecOpsGPT is tested on controlled experiments in various CI/CD environments. The sample
projects were implemented in Python, Node.js and Go languages and define the infrastructure in
Terraform and Kubernetes YAML-based configurations. Such projects are hosted on platforms like
GitHub Actions and GitLab CI and the enforcement agents are set to monitor the build and deployment
phases(Myrbakken & Colomo-Palacios, 2022). Some of the policy categories defined in the policy include
the detecting of secrets, insecure usage of the dependencies, port exposure, and insecure role
misconfiguration, and IaC drift. The test scenarios replicate reallife development processes and
interaction such as push events, pull requests, environment provisioning and infrastructure change.

8.2 Policy Compliance Accuracy Metrics

DevSecOpsGPT performance is evaluated by the common classification measures such as the true positive
rate (TPR), false positive rate (FPR), precision, recall, and F1 score. The system has an average weighted
precision of 91.2 per cent and recall of 87.5 per cent across all the categories of policies considered
suggesting a high recall and precision rate with minimal noise. The false positive rate is less than 6%, and
this is a significant progress compared to the static analyzers being currently used that often trigger alerts
on configurations that are syntactically correct but semantically acceptable(Myrbakken & Colomo-
Palacios, 2022). Time-to-decision, the delay between pipeline trigger and execution of the enforcement
action, averages 1.6 seconds per invocation and thus the system will meet the requirements of a near-real-

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

time enforcement.

Policy Violation Detection Accuracy

Privilege Escalation M.1%

Misconfigured 1AM - 89.6%

Public Ports in 1aC

Insecure Dependencies

Hardcoded Secrets 94.7%

86 88 % a2 % 9 98 100
Accuracy (%)

FIGURE 4 VIOLATION DETECTION ACCURACY PYRAMID ACROSS POLICY CATEGORIES. SOURCE:
DEVSECOPSGPT RESEARCH (2024)

8.3 Performance Overhead in CI/CD Execution

To measure the effects of DevSecOpsGPT to improve the performance of pipelines, the total duration of
a pipeline, the consumed memory and the level of CPU activity can be checked both prior and after the
integration. The supplement of the LLM enforcement module comes with the median overhead of 2.1
seconds per pipeline run, and minor memory and CPU costs since the microservices are containerized
and optimized to inference tasks. When there are thick concentrations like high concurrency, the
horizontal scaling through Kubernetes guarantees that no single pipeline practice is postponed to such
extents that are not within the acceptable levels(Rajapakse, Zahedi, & Babar, 2023). The performance
stays stable in projects of different complexity and it is proven that the architecture scales well with parallel
enforcement workloads.

TABLE 2: Enforcement Latency and CI/CD Overhead

Test CI/CD | Base With Overhead
Project Platform | Pipeline | DevSecOpsGPT | (%)
Duration | (s)

(s)

WebApp- | GitHub | 41.2 43.4 5.30%
Python Actions

InfraGo- GitLab 67.9 70.2 3.40%

Terraform | CI

NodeAPI- | Jenkins | 33.1 35 5.70%
Service

MLDeploy- | GitHub | 91.3 94.6 3.60%
Cluster Actions

10

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

Backend- GitLab 55 57.9 5.30%
Golang Cl

8.4 Comparative Analysis with Traditional Enforcement Tools

As it is compared to the classic policy enforcement mechanisms like fixed rule engines and signature
scanners, DevSecOpsGPT proves to be superior in terms of flexibility, semantic understanding, and
developer interaction. Compared to legacy tools, the LLM-powered system allows reading intent,
matching policy logic across files, and describing violations in natural language despite being based on
strict patterns matching and rigid syntax rules. Such interpretability leads to remediation that is quick
and does not require manual reviews. At the occasion of a controlled trial, DevSecOpsGPT used projects
noted the decrease of policy violation recurrence by 38 percent and mean time to remediation (MTTR)
enhancement by 24 percent. Moreover, the contextual feedback based on LLM engendered developer
satisfaction since it was understandable and led to alert fatigue(Rajapakse, Zahedi, & Babar, 2023).

TABLE 3: LLM-Based vs Traditional Enforcement Tools Comparison

Feature / Metric Traditional Tools DevSecOpsGPT (LLM:-based)
(Static Rules)

Policy Violation Precision | 75.40% 91.20%

(%)

Policy Violation Recall 67.10% 87.50%

(%)

False Positive Rate (%) 21.30% 5.80%

Average Developer 42 26

Remediation Time (min)

Natural Language X
Explanations

Dynamic Context X
Awareness

Supports Complex [aC Limited High
Interpretation

Integration Complexity Moderate Low

Human X
Override/Feedback Loop

Support

8.5 Discussion of Observed Challenges and Trade-offs

Along with its efficiency, the implementation of DevSecOpsGPT does not progress without obstacles.
The dependence on LLMs brings about issues of model consistency, especially when given unclear
prompts, or incomplete inputs. The prompt design should be constantly improved as an edge case and
policy definition changes(Mao et al., 2023). Further, the expense of inference (both computationally and
under licensing) may be high in organizations where the deployment frequency also will be high. Inference

11

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

batching, local model deployment and caching are strategies that must be used to reduce such costs.

CI/CD Pipeline Overhead by Project
WebApp-Pyth

ebApp-Python

Backend-Gglang ‘ InfraGo-Terraform
5.3%f "

MLDeploy-Clu deAPI-Service

FIGURE 5 CIRCULAR VISUALIZATION OF PERFORMANCE OVERHEAD ACROSS CI/CD PROJECTS. SOURCE:
DEVSECOPSGPT RESEARCH (2024)

9. Discussion and Implications

9.1 Implications for Secure DevOps Practices

Introducing large language models into the CI/CD processes is a considerable step towards secure
DevOps techniques. DevSecOpsGPT elevates the ability of development teams to implement security
policies not just on the regularity basis but also on the situational level. The transition to semantically
conscious decisions instead of the rule-based enforcement can lower the friction that usually comes with
the profiles that do not evolve, and make constant compliance viable in different environments. The
system integrates intelligent security control with each code commit and infrastructure deployment within
the organization in accordance with zero-trust principles. It is the medium between technical enforcement
and developer understanding to bring out a culture in which security is a part of development workflow
and no longer an external limitation.

9.2 Organizational Readiness and Adoption Barriers

Although there is no question about the technical advantages of DevSecOpsGPT, adoption has to be
done in an organization according to a number of dimensions. Teams who work with LLM have to be
invested at a base level in the principles of DevSecOps and machine learning systems to know how to
handle and process its output effectively. How the cultural resistance to automated decision making may
become an issue, especially among teams that are used to the manual review process will be a
challenge(Gupta et al.,, 2023). Moreover, deploying the system legacy toolchains or monolithic
deployment architecture can also involve a substantial amount of refactoring or containerization. There

12

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

is a need to change the governance policies in response to the ability of Al to facilitate enforcement action
and functions that are determined by the governance policy, however, in regulated sectors.

9.3 Human-in-the-Loop vs. Fully Autonomous Enforcement

Placing alone one of the focal concerns of the design of a policy enforcement system such as
DevSecOpsGPT is the extent to which the language model can be autonomous. Although full automation
can support speed and scale, there are also associated risks when there is misinterpretation of policy
reasoning or contextual indications by the model. The solution to those risks is to use human-in-the-loop
(HITL), where the output of a model is reviewed or approved by a developer or security engineer. In this
hybrid approach, the level of confidence is increased, and the possibility of failure in silent enforcement
becomes slim. It however incurs latency and workload that can negate the gains of automation. The degree
of independence and the propensity to control should be chosen depending on the severity of the field
of enforcement, the degree of maturity of the LLM and the permissibility of the organization to an error.
9.4 Role of LLM Interpretability and Trust in Secure Pipelines

To become fully adopted in safe delivery processes of software, Al-driven enforcement systems should be
transparent and interpretable. It is important that developers should know why particular code was caught
or passed, particularly when enforcement activities have operational or compliance impacts.
DevSecOpsGPT deals with this by using natural language explanations, policy traceback, and possibility
to have developers ask for clarifications. This interpretability level boosts confidence in the system and
makes security and development teams work together. In the long run, LLM-based systems will gain more
confidence by demonstrating frequent performance, fewer cases of false positives and compatibility with
the popularity of the policy frameworks.

10. Limitations and Future Directions

10.1 Technical Constraints and Model Limitations

DevSecOpsGPT has limitations, as the large language models it is based on have into their nature. These
are the possible incorrectness of policy interpretation, rare hallucinations, as well as little knowledge of
deeply nested or highly specialized domain settings. Its dependence on immediate engineering as a major
means of contextualization brings in vulnerability, especially in cases where prompts go beyond the token
threshold or where the configuration goes out of the usual pattern. In addition, LLMs have no stateful
memory between sessions making them prone to variability when trying to understand incremental
updates. Solving these limitations can be to improve the architecture, which could be by integrating
session memory or hybrid rule-LLM frameworks with fallbacks.

10.2 Scalability and Cost Implications

The computational cost and latency are of interest when expanding DevSecOpsGPT in a large
organization or in an environment with high frequencies of deployment. Using LLM can be a bottleneck
since LLM inference can be costly and will likely be done simultaneously with the pipeline. Hosted
inference on APIs is also very expensive especially when using larger models where the token throughput
is high. The approaches that can ease these issues are model quantisation, on-premise deployment of fine-
tuned variants, response caches and dynamic prompt throttles. Before organizations penetrate fully into
adoption, they need to consider trade-offs in performance in models, latency tolerance, and budgetary
limitations.

10.3 Future of Autonomous Policy Agents in DevSecOps

Autonomous policy agents are a paradigm shift in the process of software delivery pipeline governance
due to the power of LLMs. Future DevSecOpsGPT could add another feature including policy generation,
context-sensitive remediation recommendations, multi-agent teamwork and learning on enforcement
indicators. Such systems may be extended to play a role of both gatekeeper systems as well as collectively
productive systems that can help the developers in the course of design, code, and deployment. In the
future, it is possible that other types of models such as multi-modal ones would be eyed to interpret
diagrams, documentation, and test coverage reports to provide more valuable insights. Achieving this
change will involve continuously investigating safe, explainable, as well as, efficient Al systems that are
specific to DevOps environments.

10.4 Opportunities for Cross-Platform CI/CD Enforcement

Another need area of expansion is by supporting cross-platform enforcement in diverse or heterogeneous
CI/CD environments. The hybrid stack is being run by numerous organizations with several pipelines,
cloud providers, and infrastructure tools. The DevSecOpsGPT may be expanded further to act as a
common policy engine that normalizes the context and assesses compliance with different environments.

13

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 10 No. 5s, 2024
https://theaspd.com/index.php

This would have to be accompanied by development aspects of standard context schemas, policy
translation layers and abstraction APIs across toolchains. In case of attaining this degree of
interoperability, governance would be improved, redundancy introduced due to multiple definitions of
policies decreased, and centralized view of compliance available throughout the software delivery

lifecycle(Gupta et al., 2023).

11. CONCLUSION

11.1 Summary of Contributions

In this paper, DevSecOpsGPT, a new model to incorporate large language models into continuous
integration and delivery pipelines to provide real-time enforcement of security policies, was presented.
The system tends to fill the gap between the traditional rule-based enforcement and the secured
DevSecOps practices by using LLMs to translate the policies, evaluate the violations and provide the
relevant feedback. DevSecOpsGPT allows intelligent, scalable, responsive enforcement in line with
organizational security objectives through a combination of timely response engineering, microservice
architecture and adaptive learning strategies.

11.2 Key Findings

Evaluation using experiments shows that DevSecOpsGPT can greatly increase the effectiveness of policy
compliance accuracy, decrease false positives and instead provide easily interpretable feedback to
developers. The system also has near-real-time performance and does not incur a lot of overhead, as well
as fits well within commonly used CI/CD toolchains. It is also better than conventional enforcement
tools when analyzed comparatively in terms of semantic reasoning, flexibility, and transparency in its
operation.

11.3 Final Thoughts

The future as the software delivery ecosystem unfolds will rely heavily on the implementation of smart
agents such as DevSecOpsGPT to scale secure software delivery practices without undermining velocity.
Such hybrid solution using machine learning, policy automation, and developer-focused feedback
presents a solution toward self-sustaining, credible, and dynamic CI/CD pipeline security governance.
Development will focus giving these capabilities further application to wider cross platform compatibility,
richer patterns of context awareness and an increased level of self-rule in secure DevOps.

REFERENCES

1. Akbar, M. A, Khan, A. A., & Mahmood, S. (2023). A systematic study of the latest trends in DevSecOps: Concepts, tools,
and techniques. IEEE Access, 11, 132678-132698. https://doi.org/10.1109/ACCESS.2023.3336148

2. Cankar, M., & Petrovic, O. (2023). Security in DevSecOps: Applying tools and machine learning to verification and
monitoring steps. Applied Sciences, 13(15), 8750. https://doi.org/10.3390/app13158750

3. Diaz,]., Pérez,]. E., LopezPena, M. A., Mena, G. E., & Yague, A. (2022). Modeling continuous security: A conceptual model
for automated DevSecOps using open-source software over cloud (ADOC). Software Quality Journal, 30(3), 627-651.
https://doi.org/10.1007/s11219-021-09573-0

4. Gupta, M., Akiri, C., Aryal, K., Parker, E., & Praharaj, L. (2023). From ChatGPT to ThreatGPT: Impact of generative Al in
cybersecurity and privacy. IEEE Access, 11, 80218-80245. https://doi.org/10.1109/ACCESS.2023.3300381

5. Mao, R., Zhang, H., Chen, D., Wang, Q., & Li, Y. (2023). Security in DevOps: A survey on practice and challenges.
Electronics, 12(10), 2217. https://doi.org/10.3390/electronics12102217

6. Myrbakken, H., & Colomo-Palacios, R. (2022). DevSecOps: A multivocal literature review. Software: Practice and Experience,
52(7), 1707-1724. https://doi.org/10.1007/978-3-319-74310-3_17

7. Rajapakse, R. N., Zahedi, M., & Babar, M. A. (2023). An empirical analysis of practitioners’ perspectives on security tool
integration into DevOps. Empirical Software Engineering, 28(4), 101. https://doi.org/10.1007/5s10664-023-10346-2

8. SanchezGordon, M.-L., & Colomo-Palacios, R. (2022). Challenges and solutions when adopting DevSecOps: A systematic
review. Information and Software Technology, 141, 106700. https://doi.org/10.1016/j.infsof.2021.106700

9. SanchezGordon, M.-L., & Colomo-Palacios, R. (2023). Revisit security in the era of DevOps: An evidence-based inquiry into
DevSecOps industry. IET Software, 17(4), 435-451. https://doi.org/10.1049/sfw2.12132

10. Torkura, K. A., Sukmana, M. 1. H., Cheng, F., & Meinel, C. (2020). CloudStrike: Chaos engineering for security and
resiliency in cloud infrastructure. IEEE Access, 8, 123044-123060. https://doi.org/10.1109/ACCESS.2020.3007338

14

