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Abstract

Thermal drift remains a critical challenge in MEMS sensors, where nonlinear material responses under wide
temperature ranges introduce bias and instability. This work presents a simulation-to-system framework for hybrid
piezocapacitive MEMS sensors, combining finite element multiphysics modeling with machine learning—based
drift compensation. FEM simulations incorporating nonlinear temperature dependencies of silicon and AIN
generated datasets across —40 °C to +125 °C, capturing capacitance variations, piezoelectric charge responses,
and resonance frequency shifts. Extracted features were used to train ridge regression, support vector machines,
and shallow neural networks, with performance validated on unseen thermal cycles.

Results show that ridge regression achieved stable but less accurate compensation (R? = 0.91, RMSE = 0.38),
SVMs provided improved nonlinear mapping (R? = 0.95, RMSE = 0.24), and shallow neural networks delivered
the highest accuracy (R? = 0.98, RMSE = 0.12). System-evel FPGA/ASIC simulations confirmed feasibility of
real-time compensation under resource constraints. The framework eliminates dependence on early hardware
prototypes, reducing cost and accelerating design cycles. This study establishes FEM-driven datasets as a reliable
foundation for compensation model design, paving the way for future hardware validation and cross-material
generalization.

Keywords: Thermal drift compensation, Finite element modeling (FEM), Piezoelectric—capacitive transduction,
Machine learning, Feature extraction and normalization.

INTRODUCTION

Microelectromechanical systems (MEMS) have transformed precision sensing, with piezoelectric and
capacitive devices now central to aerospace navigation, automotive safety, industrial monitoring, and
biomedical systems. Recent advances in piezoelectric MEMS resonators have achieved lower
impedance and improved temperature stability [1], while calibrationfree accelerometers show
promise for operation in high-temperature vibration environments [2]. These studies confirm the
potential of piezoelectric devices, yet they also highlight that thermal drift continues to limit sensor
stability, especially in long-term and harsh operating conditions.

Thermal drift has long been recognized as a fundamental barrier to high-precision MEMS
performance. In capacitive accelerometers, temperature variation directly introduces bias and scale
factor errors that undermine navigation accuracy [3]. Even shielded pressure and force sensors,
designed for robustness, display nonlinear drift effects when subjected to extended thermal cycling
[4]. In practice, no single architecture has fully overcome the challenge of temperature-induced error
accumulation.

To address this, a wide range of compensation techniques have been developed. Algorithmic
strategies, such as lightweight calibration schemes, have shown improvements but often rely on
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restrictive assumptions [5]. Thermal modeling at the microstructural level offers more physical insight
into drift mechanisms [6], while circuit-level approaches such as PID feedback [7] and structural
modifications such as differential designs [8] attempt to suppress variation by design. Despite their
strengths, these methods share three critical weaknesses: they generally assume linear thermal
behavior, they are computationally heavy for on-chip integration, and they rarely consider long-term
reliability.

Taken together, prior work leaves several important research gaps. First, most compensation models
assume linearity, overlooking the nonlinear hysteresis and electromechanical-thermal coupling
observed in practice [9]. Second, hybrid approaches that combine piezoelectric and capacitive sensing
are almost absent, despite clear potential for self-referencing and improved robustness [10]. Third,
although machine learning has emerged as a promising tool, its use remains largely limited to
simulations or offline processing, with little progress toward lightweight on-chip implementations.
Finally, long-term validation under accelerated thermal cycling is rarely reported, leaving uncertainty
about performance over a sensor’s operational lifetime [11].

Guney [12] developed a CMOS-MEMS accelerometer array with compensation, but without a
nonlinear framework. Li [13] investigated temperature effects in MEMS inertial sensors using static
compensation, while Patel [14] analyzed thermal behavior without validating reliability under cycling
conditions. These works confirm that while the community acknowledges the challenge of drift,
existing approaches stop short of delivering comprehensive, long-term, and on-chip solutions.

In this work, we address these limitations by introducing a hybrid MEMS piezoelectric-capacitive
sensor that incorporates nonlinear thermal modeling and lightweight machine learning
compensation directly on-chip. The key contributions are:

1. A nonlinear drift model capturing coupled electromechanical-thermal effects.

2. A hybrid architecture capable of self-referencing through combined sensing modes.

3. An efficient ML framework tailored for real-time, on-chip implementation.

4. Validation through accelerated thermal cycling, providing reliability insights beyond short-term
testing.

RELATED WORK
Thermal drift in MEMS sensors originates from the interplay of multiple physical effects, and
understanding these mechanisms is critical for ensuring reliable performance. Notably, finite element
modeling of capacitive accelerometers has demonstrated that thermal expansion mismatches between
device layers and the substrate generate residual stress, which in turn causes bias instability [15].
Beyond structural mismatches, dielectric constant variation has been shown through simulation to
induce measurable capacitance drift during thermal cycling, underscoring the sensitivity of capacitive
devices to temperature-dependent permittivity [16]. Similarly, piezoelectric MEMS devices have been
investigated through numerical modeling of AIN thin films, where nonlinear changes in piezoelectric
coefficients across wide thermal ranges revealed intrinsic material limitations [17].
Importantly, recent FEM-based studies have also explored hybrid piezo-capacitive devices, showing
that complementary sensing mechanisms can mitigate temperature-induced errors and provide
greater stability under variable conditions [18]. Taken together, these works confirm that multiphysics
simulation is not only capable of replicating the principal drift mechanisms but also offers a cost-
effective and versatile tool for predicting MEMS behavior across extreme temperature ranges prior to
fabrication.
Compensation Strategies in Simulation
Alongside mechanism modeling, simulation has become a vital platform for evaluating drift
compensation strategies before committing to costly prototyping. At the structural level, hybrid
architectures have been virtually prototyped to demonstrate redundancy in sensing modes and
improved resilience against temperature variations [18]. More recently, attention has shifted toward
computational compensation methods. For example, machine learning approaches such as ridge
regression, support vector machines, and shallow neural networks have been trained entirely on
synthetic FEM datasets, achieving robust nonlinear drift prediction without experimental inputs [19].
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Furthermore, thermal-mechanical simulations of MEMS gyroscopes have integrated drift prediction
models directly into multiphysics environments, thereby generating synthetic data that more closely
approximate real-world operational conditions [20]. A particularly notable development is the
extension of these methods into hardware prototyping environments. In one study, FPGA-level
verification of neural network compensation models was performed using only simulated outputs,
illustrating the feasibility of embedding correction mechanisms virtually before device fabrication
[21]. These advances highlight the growing maturity of simulation-based compensation frameworks,
bridging the gap between sensor design and system-level validation.

Research Gap

Despite the progress made, several important limitations remain in the existing body of work. First,
most FEM-based studies still rely on linearized temperature dependencies of material properties,
which restrict their accuracy in modeling nonlinear thermal responses [15, 16]. Second,
compensation models are generally built on single drift mechanisms—such as expansion, dielectric
variation, or piezoelectric coefficient changes—rather than integrating these effects within a unified
simulation framework [17, 18]. Third, while machine learning-based approaches show promise, they
are often validated only on static FEM datasets, with limited assessment of robustness under extended
thermal cycling or variable operational conditions [19, 20]. Finally, although FPGA-based simulation
frameworks represent a meaningful step toward practical deployment, comprehensive system-level
validation of drift compensation—spanning MEMS devices, circuits, and integration pipelines—
remains largely unexplored [21].

METHODOLOGY
The study focuses on the design of a hybrid piezo-capacitive MEMS sensor, selected for its ability to
exploit complementary transduction mechanisms to suppress thermally induced drift (Figure. 1). The
device was modeled using finite element (FEM) analysis, with capacitive and piezoelectric domains
co-simulated under identical boundary conditions. Material properties of silicon, aluminum nitride
(AIN), and dielectric layers were adopted from published models. To ensure fidelity, nonlinear
dependencies were incorporated for thermal expansion coefficients, dielectric permittivity, and
piezoelectric constants:
AL = a(T)LyAT
e(TA
C(T) = am

Q(T) =d;j(T)o;;(THA
where a(T) is the temperature-dependent coefficient of thermal expansion, C(T) is capacitance,
&(T) is permittivity, d(T) is plate separation, Q(T) is piezoelectric charge, and d;;(T), 0;;(T)
represent piezoelectric constants and applied stress tensors, respectively.
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Figure 1. Crosssectional schematic of the hybrid piezo-capacitive MEMS sensor, showing the

variable gap (ddd), piezoelectric AIN layer, electrodes, anchors, and substrate, with thermal
expansion and charge generation indicated.
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Multiphysics Simulation Environment

To replicate operational conditions, the FEM model was exposed to thermal cycles between —40°C
and +125 °C, covering the temperature range required by automotive and aerospace standards. The
simulations coupled structural mechanics, electrostatics, and piezoelectric modules (Figure. 2),
enabling concurrent evaluation of mechanical deformation, capacitance variations, and piezoelectric
drift. All simulations were automated via scripting interfaces, ensuring reproducibility and scalability
across multiple thermal sweeps.
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Figure 2. FEM Simulation setup with Multiphysics Coupling
Data Collection and Feature Engineering
The simulation pipeline generated time-series datasets across diverse thermal trajectories. Extracted
features included resonance frequency shifts, capacitance variations, and piezoelectric outputs, all
normalized for comparability across cycles. Both steady-state and transient responses were retained
to capture long-term drift and shortterm fluctuations. The drift error for each cycle was quantified
as:
Ay(T) = y(T) — yo

where y, is the reference output at baseline temperature and y(T) is the thermally perturbed
response.
Drift Compensation Framework
A machine learning framework was developed to compensate thermal drift. Three representative
models were selected:
e Ridge regression for baseline linear correction:

y=XB, B =XTX+AD)"1XTy
e Support Vector Machines (SVMs) for nonlinear kernel-based mapping:

90 =) (@ = &K () + b
i=1

e Shallow Neural Networks (SNNs) for adaptive feature learning:

Yy =fW;-o(Wix + by) + b3)
where X is the feature matrix, A is the ridge penalty, K(:) is the kernel function, and & is the
nonlinear activation function. Models were trained on FEM-generated datasets and validated using
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System-Level Integration and Validation

The validated compensation models were embedded into FPGA/ASIC environments to assess real-
time feasibility under hardware constraints (Figure. 3). Key performance metrics included inference
latency ( Ljyency ), memory footprint ( M,4e1 ), and computational overhead. Real-time deployment
feasibility was formulated as:

tlatency < tsamplingl Mmodel < MPPGA

ensuring that model execution remains within hardware sampling intervals and available resources.
This stage eliminates dependence on fabricated prototypes while demonstrating implement ability in
resource-constrained systems.

Sensor Data stream Compeazation Modzls

(FEMML Pipeling)  —— )
(Ruidge, SVM, NN)

v

Simulation Enviropment

{FPGA/ASIC)

v
Outputs

Latency. Memory usage

Figure 3. System-level integration flow of the proposed compensation framework

The proposed methodology establishes a simulation-to-system pipeline, integrating device modeling,
multiphysics thermal drift simulation, machine learning compensation, and hardware-level feasibility
validation. Unlike prior works where FEM was employed solely as a diagnostic tool, this approach
leverages FEM as both a data generator and verification platform for compensation models. By
decoupling compensation development from physical prototypes, the framework reduces cost,
accelerates design iterations, and ensures rigorous validation across diverse thermal scenarios prior
to fabrication.

RESULT AND DISCUSSION

The simulation results confirm that the proposed hybrid piezo-capacitive MEMS sensor exhibits
strong multiphysics interactions across the examined thermal range (-40 °C to +125 °C). FEM
outputs revealed a consistent increase in capacitance drift with temperature, accompanied by
nonlinear charge variations in the AIN layer and measurable resonance frequency shifts, all of which
align with theoretical predictions based on material property dependencies. Feature extraction from
these time-series responses enabled the separation of steady-state and transient drift components,
ensuring that both long-term bias and short-term fluctuations were captured in the dataset. Machine
learning models trained on these features demonstrated substantial improvements in drift
compensation, with the shallow neural network achieving the lowest RMSE, while ridge regression
offered the most efficient implementation for hardware deployment. System-level validation in
FPGA/ASIC environments further confirmed the feasibility of real-time compensation, with latency
and memory requirements remaining within practical limits. Overall, these results highlight both the
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robustness of the simulation-to-system pipeline and its potential to reduce development costs while
maintaining high reliability under diverse thermal conditions.

FEM Simulation Results

The finite element simulations provide a detailed characterization of the thermal response of the
proposed hybrid piezo-capacitive MEMS sensor across the operating range of -40 °C to +125 °C. The
results demonstrate the complex multiphysics interactions that govern device behavior and confirm
the importance of explicitly modeling nonlinear material dependencies.

The first metric evaluated was the capacitance variation with temperature (Figure. 4). At -40 °C, the
capacitance remained relatively stable at approximately 95.2 fF, while at room temperature (25 °C) it
was 100 fF, and at 125 °C it increased to 112.8 {F. This represents a drift of nearly 18% across the
full thermal sweep. The increase is primarily attributed to a reduction in electrode gap spacing caused
by differential thermal expansion, compounded by nonlinear increases in dielectric permittivity at
higher temperatures. These results emphasize that simplified linear models are insufficient to capture
realistic drift trends.

The piezoelectric charge response of the AIN layer also exhibited strong thermal dependence (Figure.
5). At -40 °C, the generated charge was limited to approximately +2.1 pC, but at 25 °C increased to
+5.4 pC, and by 125 °C it reached nearly +12.7 pC. This corresponds to a more than fivefold increase,
reflecting both temperature-induced stress gradients and the nonlinear dependence of piezoelectric
coupling coefficients on thermal loading. The polarity-dependent nature of the charge output further
validates the hybrid sensing approach, as the piezoelectric domain provides a complementary
transduction pathway not available in purely capacitive devices.

A third critical observation was the resonance frequency shift under thermoelastic deformation
(Figure. 6). The baseline resonance frequency at 25 °C was 100 kHz, which increased slightly at -40
°C (102.6 kHz) but dropped to 94.8 kHz at 125 °C, indicating a net reduction of approximately 7.7%.
This downward shift arises from temperature-induced structural softening and redistribution of
internal stresses, both of which reduce the effective stiffness of the sensor. While smaller in
magnitude than capacitance or charge variations, resonance shifts are particularly important as they
directly affect long-term bias stability in MEMS devices.

Table 1 summarizes the extracted drift magnitudes at three critical temperature points. Both absolute
values and percentage deviations are reported to highlight the relative importance of each domain.

Table 1. Extracted drift magnitudes at critical temperatures for the proposed hybrid piezo-
capacitive MEMS sensor.

Parameter -40 °C (Low | 25 °C (Room | 125 °C (High | Drift (-40 °C —
Temp) Temp) Temp) 125 °C)

Capacitance (fF) 95.2 100.0 112.8 +18.0%

Piezoelectric Charge | +2.1 +5.4 +12.7 +7505%

(pC)

Resonance Frequency | 102.6 100.0 94.8 -7.7%

(kHz)

The results in Table 1 highlight the distinct roles of the capacitive, piezoelectric, and resonant
domains in the overall thermal response of the device. Capacitance drift dominates absolute signal
variation, increasing steadily with temperature. Piezoelectric charge, although smaller in absolute
magnitude, demonstrates the highest relative sensitivity, with output increasing more than fivefold
across the thermal range. Resonance frequency shifts remain below 8%, but their influence on bias
stability makes them critical for long-term reliability.
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Figure 6. Resonance Frequency vs Temperature
Feature Extraction and Dataset Validation
The raw FEM outputs, including capacitance, piezoelectric charge, and resonance frequency
responses across thermal cycles, were transformed into machine learning-ready features. To ensure
comparability across domains with different units, each feature was normalized using min-max
scaling,
norm . Xi— min (x;)
g " max(x;) — min (x;)
which removed scaling bias while preserving relative variations. Drift error for each feature was
quantified relative to the 25 °C baseline,

Vf(T) = f(T) _f(Tref)
enabling separation of long-term steady-state drift from transient fluctuations during rapid thermal
changes.
To confirm statistical reliability, feature distributions were examined and found to follow smooth
unimodal profiles with consistent coverage across the thermal range (Figure. 8). Correlation analysis
showed moderate coupling between capacitance and resonance drift, consistent with thermoelastic
effects. Robustness was validated through 10-fold crossvalidation (k=10) and 95% confidence
intervals, both of which confirmed reproducibility with variability below +2.5%. A representative
example of the normalized feature set is shown in Figure. 7. Together, these results establish that
FEM outputs can be reliably converted into generalizable features suitable for data-driven
compensation models.
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Machine Learning Compensation Performance

The objective of this stage is to rigorously evaluate the performance of the machine learning models
in compensating for thermal drift within the FEM-generated dataset. Three models were assessed—
ridge regression (baseline linear correction), support vector machines (kernel-based nonlinear
regression), and shallow neural networks (adaptive nonlinear learners). Each model was trained on
FEM outputs and validated on ten unseen thermal trajectories to emulate long-term variability in real
MEMS operation.

Performance Metrics

Model performance was quantified using:

Y i—9)°
X i —y)?
where y; is the true FEM drift and §; the predicted compensation. Results showed that shallow

neural networks achieved the best overall accuracy (lowest RMSE, highest R? ), while ridge regression
provided stable correction with minimal variance but could not fully capture nonlinear effects. SVMs

1% - 1% -
RMSE = NZ (yi — )% MAE =NZ lyi =9, R*=1—
i=1 i=1

performed moderately well, balancing accuracy and computational cost.

Generalization and Robustness

Overfitting checks were carried out using train-validation learning curves. Ridge regression showed
no overfitting due to its linear nature. SVMs generalized well but were sensitive to kernel
hyperparameters. Neural networks exhibited slight overfitting, mitigated by early stopping and
regularization.
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Robustness was evaluated across 10 unseen FEM trajectories, representing different thermal sweeps.
Box plot analysis revealed that ridge regression had the narrowest error spread (high stability), while
neural networks had the lowest median error but with slightly higher variability.
Quantitative performance comparison of Ridge regression, SVM, and shallow neural networks on
FEM:-simulated thermal drift compensation
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Model RMSE MAE (equiv. | R2 Notes
(equiv. units) | units)
Ridge Regression 0.38 0.29 0.91 | Stable, low variance, but underfits
extreme drift
Support Vector | 0.24 0.18 0.95 | Strong nonlinear mapping,
Machine (SVM) sensitive to kernel tuning
Shallow Neural | 0.12 0.09 0.98 | Best accuracy, captures
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DISCUSSION

One of the primary strengths of this framework is its reliance on FEM-generated datasets, which
eliminate the need for early physical prototyping. This not only reduces design cost and accelerates
iteration cycles but also enables controlled exploration of individual drift mechanisms. By
incorporating nonlinear temperature dependencies in material coefficients—thermal expansion,
dielectric permittivity, and piezoelectric constants—the simulations capture realistic multiphysics
behavior, going beyond the simplified assumptions seen in earlier studies. Another strength lies in
the machine learning compensation framework. While ridge regression provides a lightweight,
hardware-efficient baseline, the support vector machine and shallow neural network models
demonstrate the ability to capture nonlinearities in thermal drift with higher fidelity. Importantly,
system-level validation through FPGA/ASIC simulations bridges the often-missed gap between
algorithm design and hardware feasibility, showing that the proposed methods are implementable
within practical computational and memory constraints. Collectively, these strengths establish the
novelty of this work: a unified methodology that connects device physics, machine learning, and
embedded system integration.

Limitations

Despite these contributions, certain limitations must be acknowledged. The reliability of FEM-
generated datasets depends critically on the accuracy of material parameters, and deviations in
nonlinear coefficients of silicon or AIN may introduce modeling errors. Moreover, validation remains
limited to data. While the results provide strong evidence of feasibility, fabricated prototypes would
inevitably expose additional challenges such as process variations, parasitic effects, and long-term
material degradation. Thus, the absence of experimental validation currently constrains the
generalizability of the findings, even though the methodology itself remains robust.

Future Work

Looking ahead, several research directions emerge naturally from this study. Hardware prototyping
will be a key step to benchmark the simulation-driven compensation strategies against real sensor
outputs and confirm their real-world applicability. More advanced machine learning models, such as
deep neural networks or recurrent architectures, may further enhance compensation by capturing
higher-order nonlinearities and long-term drift memory effects. Finally, extending this framework to
other material platforms, including silicon carbide (SiC) and gallium nitride (GaN), would allow
investigation of cross-material generalization, thereby expanding the impact of this methodology
across emerging MEMS technologies.

CONCLUSION

This study has demonstrated a simulation-to-system methodology for hybrid piezo-capacitive MEMS
sensors, integrating FEM-based drift modeling, machine learning compensation, and system-level
validation. By embedding nonlinear material dependencies in FEM, the generated datasets captured
realistic multiphysics drift behavior across wide thermal cycles. These datasets enabled the
development of machine learning compensators, where ridge regression provided a lightweight and
hardware-efficient baseline, SVMs achieved robust nonlinear mapping, and shallow neural networks
offered the highest accuracy. System-level FPGA/ASIC simulations further confirmed the practical
feasibility of deploying these models in real-time embedded environments.

While the present validation is limited to simulation data, the methodology establishes a scalable
foundation for hardware prototyping, advanced deep learning compensation, and adaptation to
alternative MEMS materials such as SiC and GaN. Beyond addressing thermal drift, this work
contributes a generalizable pipeline that links device physics, machine learning, and hardware
feasibility. The results suggest a paradigm shift in MEMS sensor design, where FEM-driven datasets
can replace costly prototype-dependent workflows, accelerating innovation while ensuring robustness
in real-world operation.
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