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Abstract 
Thermal drift remains a critical challenge in MEMS sensors, where nonlinear material responses under wide 
temperature ranges introduce bias and instability. This work presents a simulation-to-system framework for hybrid 
piezo-capacitive MEMS sensors, combining finite element multiphysics modeling with machine learning–based 
drift compensation. FEM simulations incorporating nonlinear temperature dependencies of silicon and AIN 
generated datasets across –40 °C to +125 °C, capturing capacitance variations, piezoelectric charge responses, 
and resonance frequency shifts. Extracted features were used to train ridge regression, support vector machines, 
and shallow neural networks, with performance validated on unseen thermal cycles. 
Results show that ridge regression achieved stable but less accurate compensation (R² = 0.91, RMSE = 0.38), 
SVMs provided improved nonlinear mapping (R² = 0.95, RMSE = 0.24), and shallow neural networks delivered 
the highest accuracy (R² = 0.98, RMSE = 0.12). System-level FPGA/ASIC simulations confirmed feasibility of 
real-time compensation under resource constraints. The framework eliminates dependence on early hardware 
prototypes, reducing cost and accelerating design cycles. This study establishes FEM-driven datasets as a reliable 
foundation for compensation model design, paving the way for future hardware validation and cross-material 
generalization. 
Keywords: Thermal drift compensation, Finite element modeling (FEM), Piezoelectric–capacitive transduction, 
Machine learning, Feature extraction and normalization. 
 
INTRODUCTION 
Microelectromechanical systems (MEMS) have transformed precision sensing, with piezoelectric and 
capacitive devices now central to aerospace navigation, automotive safety, industrial monitoring, and 
biomedical systems. Recent advances in piezoelectric MEMS resonators have achieved lower 
impedance and improved temperature stability [1], while calibration-free accelerometers show 
promise for operation in high-temperature vibration environments [2]. These studies confirm the 
potential of piezoelectric devices, yet they also highlight that thermal drift continues to limit sensor 
stability, especially in long-term and harsh operating conditions. 
Thermal drift has long been recognized as a fundamental barrier to high-precision MEMS 
performance. In capacitive accelerometers, temperature variation directly introduces bias and scale 
factor errors that undermine navigation accuracy [3]. Even shielded pressure and force sensors, 
designed for robustness, display nonlinear drift effects when subjected to extended thermal cycling 
[4]. In practice, no single architecture has fully overcome the challenge of temperature-induced error 
accumulation. 
To address this, a wide range of compensation techniques have been developed. Algorithmic 
strategies, such as lightweight calibration schemes, have shown improvements but often rely on 
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restrictive assumptions [5]. Thermal modeling at the microstructural level offers more physical insight 
into drift mechanisms [6], while circuit-level approaches such as PID feedback [7] and structural 
modifications such as differential designs [8] attempt to suppress variation by design. Despite their 
strengths, these methods share three critical weaknesses: they generally assume linear thermal 
behavior, they are computationally heavy for on-chip integration, and they rarely consider long-term 
reliability. 
Taken together, prior work leaves several important research gaps. First, most compensation models 
assume linearity, overlooking the nonlinear hysteresis and electromechanical–thermal coupling 
observed in practice [9]. Second, hybrid approaches that combine piezoelectric and capacitive sensing 
are almost absent, despite clear potential for self-referencing and improved robustness [10]. Third, 
although machine learning has emerged as a promising tool, its use remains largely limited to 
simulations or offline processing, with little progress toward lightweight on-chip implementations. 
Finally, long-term validation under accelerated thermal cycling is rarely reported, leaving uncertainty 
about performance over a sensor’s operational lifetime [11]. 
Guney [12] developed a CMOS–MEMS accelerometer array with compensation, but without a 
nonlinear framework. Li [13] investigated temperature effects in MEMS inertial sensors using static 
compensation, while Patel [14] analyzed thermal behavior without validating reliability under cycling 
conditions. These works confirm that while the community acknowledges the challenge of drift, 
existing approaches stop short of delivering comprehensive, long-term, and on-chip solutions. 
In this work, we address these limitations by introducing a hybrid MEMS piezoelectric–capacitive 
sensor that incorporates nonlinear thermal modeling and lightweight machine learning 
compensation directly on-chip. The key contributions are: 
1. A nonlinear drift model capturing coupled electromechanical–thermal effects. 
2. A hybrid architecture capable of self-referencing through combined sensing modes. 
3. An efficient ML framework tailored for real-time, on-chip implementation. 
4. Validation through accelerated thermal cycling, providing reliability insights beyond short-term 
testing. 
 
RELATED WORK 
Thermal drift in MEMS sensors originates from the interplay of multiple physical effects, and 
understanding these mechanisms is critical for ensuring reliable performance. Notably, finite element 
modeling of capacitive accelerometers has demonstrated that thermal expansion mismatches between 
device layers and the substrate generate residual stress, which in turn causes bias instability [15]. 
Beyond structural mismatches, dielectric constant variation has been shown through simulation to 
induce measurable capacitance drift during thermal cycling, underscoring the sensitivity of capacitive 
devices to temperature-dependent permittivity [16]. Similarly, piezoelectric MEMS devices have been 
investigated through numerical modeling of AlN thin films, where nonlinear changes in piezoelectric 
coefficients across wide thermal ranges revealed intrinsic material limitations [17]. 
Importantly, recent FEM-based studies have also explored hybrid piezo-capacitive devices, showing 
that complementary sensing mechanisms can mitigate temperature-induced errors and provide 
greater stability under variable conditions [18]. Taken together, these works confirm that multiphysics 
simulation is not only capable of replicating the principal drift mechanisms but also offers a cost-
effective and versatile tool for predicting MEMS behavior across extreme temperature ranges prior to 
fabrication. 
Compensation Strategies in Simulation 
Alongside mechanism modeling, simulation has become a vital platform for evaluating drift 
compensation strategies before committing to costly prototyping. At the structural level, hybrid 
architectures have been virtually prototyped to demonstrate redundancy in sensing modes and 
improved resilience against temperature variations [18]. More recently, attention has shifted toward 
computational compensation methods. For example, machine learning approaches such as ridge 
regression, support vector machines, and shallow neural networks have been trained entirely on 
synthetic FEM datasets, achieving robust nonlinear drift prediction without experimental inputs [19]. 
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Furthermore, thermal–mechanical simulations of MEMS gyroscopes have integrated drift prediction 
models directly into multiphysics environments, thereby generating synthetic data that more closely 
approximate real-world operational conditions [20]. A particularly notable development is the 
extension of these methods into hardware prototyping environments. In one study, FPGA-level 
verification of neural network compensation models was performed using only simulated outputs, 
illustrating the feasibility of embedding correction mechanisms virtually before device fabrication 
[21]. These advances highlight the growing maturity of simulation-based compensation frameworks, 
bridging the gap between sensor design and system-level validation. 
Research Gap 
Despite the progress made, several important limitations remain in the existing body of work. First, 
most FEM-based studies still rely on linearized temperature dependencies of material properties, 
which restrict their accuracy in modeling nonlinear thermal responses [15, 16]. Second, 
compensation models are generally built on single drift mechanisms—such as expansion, dielectric 
variation, or piezoelectric coefficient changes—rather than integrating these effects within a unified 
simulation framework [17, 18]. Third, while machine learning–based approaches show promise, they 
are often validated only on static FEM datasets, with limited assessment of robustness under extended 
thermal cycling or variable operational conditions [19, 20]. Finally, although FPGA-based simulation 
frameworks represent a meaningful step toward practical deployment, comprehensive system-level 
validation of drift compensation—spanning MEMS devices, circuits, and integration pipelines—
remains largely unexplored [21]. 
 
METHODOLOGY 
The study focuses on the design of a hybrid piezo-capacitive MEMS sensor, selected for its ability to 
exploit complementary transduction mechanisms to suppress thermally induced drift (Figure. 1). The 
device was modeled using finite element (FEM) analysis, with capacitive and piezoelectric domains 
co-simulated under identical boundary conditions. Material properties of silicon, aluminum nitride 
(AIN), and dielectric layers were adopted from published models. To ensure fidelity, nonlinear 
dependencies were incorporated for thermal expansion coefficients, dielectric permittivity, and 
piezoelectric constants: 

Δ𝐿 = 𝛼(𝑇)𝐿0Δ𝑇

𝐶(𝑇) =
𝜀(𝑇)𝐴

𝑑(𝑇)
𝑄(𝑇) = 𝑑𝑖𝑗(𝑇)𝜎𝑖𝑗(𝑇)𝐴

 

where 𝛼(𝑇) is the temperature-dependent coefficient of thermal expansion, 𝐶(𝑇) is capacitance, 
𝜀(𝑇)  is permittivity, 𝑑(𝑇)  is plate separation, 𝑄(𝑇)  is piezoelectric charge, and 𝑑𝑖𝑗(𝑇), 𝜎𝑖𝑗(𝑇) 
represent piezoelectric constants and applied stress tensors, respectively. 

 
Figure 1. Cross-sectional schematic of the hybrid piezo-capacitive MEMS sensor, showing the 
variable gap (ddd), piezoelectric AlN layer, electrodes, anchors, and substrate, with thermal 
expansion and charge generation indicated. 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 10 No. 6s, 2024 
https://www.theaspd.com/ijes.php 
 

209 
 

 
Multiphysics Simulation Environment 
To replicate operational conditions, the FEM model was exposed to thermal cycles between −40∘C 
and +125  ∘C, covering the temperature range required by automotive and aerospace standards. The 
simulations coupled structural mechanics, electrostatics, and piezoelectric modules (Figure. 2), 
enabling concurrent evaluation of mechanical deformation, capacitance variations, and piezoelectric 
drift. All simulations were automated via scripting interfaces, ensuring reproducibility and scalability 
across multiple thermal sweeps. 

 
Figure 2. FEM Simulation setup with Multiphysics Coupling 
Data Collection and Feature Engineering 
The simulation pipeline generated time-series datasets across diverse thermal trajectories. Extracted 
features included resonance frequency shifts, capacitance variations, and piezoelectric outputs, all 
normalized for comparability across cycles. Both steady-state and transient responses were retained 
to capture long-term drift and short-term fluctuations. The drift error for each cycle was quantified 
as: 

Δ𝑦(𝑇) = 𝑦(𝑇) − 𝑦0 
where 𝑦0  is the reference output at baseline temperature and 𝑦(𝑇)  is the thermally perturbed 
response. 
Drift Compensation Framework 
A machine learning framework was developed to compensate thermal drift. Three representative 
models were selected: 
• Ridge regression for baseline linear correction: 

𝑦̂ = 𝑋𝛽,  𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 
• Support Vector Machines (SVMs) for nonlinear kernel-based mapping: 

𝑦̂(𝑥) = ∑  

𝑛

𝑖=1

(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏 

• Shallow Neural Networks (SNNs) for adaptive feature learning: 
𝑦̂ = 𝑓(𝑊2 ⋅ 𝜎(𝑊1𝑥 + 𝑏1) + 𝑏2) 

where 𝑋  is the feature matrix, 𝜆  is the ridge penalty, 𝐾(⋅)  is the kernel function, and 𝜎  is the 
nonlinear activation function. Models were trained on FEM-generated datasets and validated using 
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unseen thermal trajectories to emulate long-term reliability conditions. 
 
System-Level Integration and Validation 
The validated compensation models were embedded into FPGA/ASIC environments to assess real-
time feasibility under hardware constraints (Figure. 3). Key performance metrics included inference 
latency ( 𝑡latency ), memory footprint ( 𝑀model  ), and computational overhead. Real-time deployment 
feasibility was formulated as: 

𝑡latency ≤ 𝑡sampling ,  𝑀model ≤ 𝑀PPGA 
ensuring that model execution remains within hardware sampling intervals and available resources. 
This stage eliminates dependence on fabricated prototypes while demonstrating implement ability in 
resource-constrained systems. 

 
Figure 3. System-level integration flow of the proposed compensation framework 
The proposed methodology establishes a simulation-to-system pipeline, integrating device modeling, 
multiphysics thermal drift simulation, machine learning compensation, and hardware-level feasibility 
validation. Unlike prior works where FEM was employed solely as a diagnostic tool, this approach 
leverages FEM as both a data generator and verification platform for compensation models. By 
decoupling compensation development from physical prototypes, the framework reduces cost, 
accelerates design iterations, and ensures rigorous validation across diverse thermal scenarios prior 
to fabrication. 
 
RESULT AND DISCUSSION 
The simulation results confirm that the proposed hybrid piezo-capacitive MEMS sensor exhibits 
strong multiphysics interactions across the examined thermal range (–40 °C to +125 °C). FEM 
outputs revealed a consistent increase in capacitance drift with temperature, accompanied by 
nonlinear charge variations in the AlN layer and measurable resonance frequency shifts, all of which 
align with theoretical predictions based on material property dependencies. Feature extraction from 
these time-series responses enabled the separation of steady-state and transient drift components, 
ensuring that both long-term bias and short-term fluctuations were captured in the dataset. Machine 
learning models trained on these features demonstrated substantial improvements in drift 
compensation, with the shallow neural network achieving the lowest RMSE, while ridge regression 
offered the most efficient implementation for hardware deployment. System-level validation in 
FPGA/ASIC environments further confirmed the feasibility of real-time compensation, with latency 
and memory requirements remaining within practical limits. Overall, these results highlight both the 
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robustness of the simulation-to-system pipeline and its potential to reduce development costs while 
maintaining high reliability under diverse thermal conditions. 
 
FEM Simulation Results 
The finite element simulations provide a detailed characterization of the thermal response of the 
proposed hybrid piezo-capacitive MEMS sensor across the operating range of –40 °C to +125 °C. The 
results demonstrate the complex multiphysics interactions that govern device behavior and confirm 
the importance of explicitly modeling nonlinear material dependencies. 
The first metric evaluated was the capacitance variation with temperature (Figure. 4). At –40 °C, the 
capacitance remained relatively stable at approximately 95.2 fF, while at room temperature (25 °C) it 
was 100 fF, and at 125 °C it increased to 112.8 fF. This represents a drift of nearly 18% across the 
full thermal sweep. The increase is primarily attributed to a reduction in electrode gap spacing caused 
by differential thermal expansion, compounded by nonlinear increases in dielectric permittivity at 
higher temperatures. These results emphasize that simplified linear models are insufficient to capture 
realistic drift trends. 
The piezoelectric charge response of the AIN layer also exhibited strong thermal dependence (Figure. 
5). At –40 °C, the generated charge was limited to approximately ±2.1 pC, but at 25 °C increased to 
±5.4 pC, and by 125 °C it reached nearly ±12.7 pC. This corresponds to a more than fivefold increase, 
reflecting both temperature-induced stress gradients and the nonlinear dependence of piezoelectric 
coupling coefficients on thermal loading. The polarity-dependent nature of the charge output further 
validates the hybrid sensing approach, as the piezoelectric domain provides a complementary 
transduction pathway not available in purely capacitive devices. 
A third critical observation was the resonance frequency shift under thermoelastic deformation 
(Figure. 6). The baseline resonance frequency at 25 °C was 100 kHz, which increased slightly at –40 
°C (102.6 kHz) but dropped to 94.8 kHz at 125 °C, indicating a net reduction of approximately 7.7%. 
This downward shift arises from temperature-induced structural softening and redistribution of 
internal stresses, both of which reduce the effective stiffness of the sensor. While smaller in 
magnitude than capacitance or charge variations, resonance shifts are particularly important as they 
directly affect long-term bias stability in MEMS devices. 
Table 1 summarizes the extracted drift magnitudes at three critical temperature points. Both absolute 
values and percentage deviations are reported to highlight the relative importance of each domain. 
 
Table 1. Extracted drift magnitudes at critical temperatures for the proposed hybrid piezo-
capacitive MEMS sensor. 

Parameter –40 °C (Low 
Temp) 

25 °C (Room 
Temp) 

125 °C (High 
Temp) 

Drift (–40 °C → 
125 °C) 

Capacitance (fF) 95.2 100.0 112.8 +18.0% 
Piezoelectric Charge 
(pC) 

±2.1 ±5.4 ±12.7 +~505% 

Resonance Frequency 
(kHz) 

102.6 100.0 94.8 –7.7% 

 
The results in Table 1 highlight the distinct roles of the capacitive, piezoelectric, and resonant 
domains in the overall thermal response of the device. Capacitance drift dominates absolute signal 
variation, increasing steadily with temperature. Piezoelectric charge, although smaller in absolute 
magnitude, demonstrates the highest relative sensitivity, with output increasing more than fivefold 
across the thermal range. Resonance frequency shifts remain below 8%, but their influence on bias 
stability makes them critical for long-term reliability. 
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Figure 4. Capacitance Vs Temperature 

 
Figure 5. Piezoelectric Charge vs Temperature 
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Figure 6. Resonance Frequency vs Temperature 
Feature Extraction and Dataset Validation 
The raw FEM outputs, including capacitance, piezoelectric charge, and resonance frequency 
responses across thermal cycles, were transformed into machine learning–ready features. To ensure 
comparability across domains with different units, each feature was normalized using min–max 
scaling, 

𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖 − min (𝑥𝑖)

max(𝑥𝑖) − min (𝑥𝑖)
 

which removed scaling bias while preserving relative variations. Drift error for each feature was 
quantified relative to the 25 °C baseline, 

∇𝑓(𝑇) = 𝑓(𝑇) − 𝑓(𝑇𝑟𝑒𝑓) 
enabling separation of long-term steady-state drift from transient fluctuations during rapid thermal 
changes. 
To confirm statistical reliability, feature distributions were examined and found to follow smooth 
unimodal profiles with consistent coverage across the thermal range (Figure. 8). Correlation analysis 
showed moderate coupling between capacitance and resonance drift, consistent with thermoelastic 
effects. Robustness was validated through 10-fold cross-validation (k=10) and 95% confidence 
intervals, both of which confirmed reproducibility with variability below ±2.5%. A representative 
example of the normalized feature set is shown in Figure. 7. Together, these results establish that 
FEM outputs can be reliably converted into generalizable features suitable for data-driven 
compensation models. 

 
Figure 7. Normalized FEM derived Feature Set 
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Figure 8. Distribution of Extracted Features 

 
Figure 9. Feature Correlation Matrix 
 
Machine Learning Compensation Performance 
The objective of this stage is to rigorously evaluate the performance of the machine learning models 
in compensating for thermal drift within the FEM-generated dataset. Three models were assessed—
ridge regression (baseline linear correction), support vector machines (kernel-based nonlinear 
regression), and shallow neural networks (adaptive nonlinear learners). Each model was trained on 
FEM outputs and validated on ten unseen thermal trajectories to emulate long-term variability in real 
MEMS operation. 
Performance Metrics 
Model performance was quantified using: 

 RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)2,  MAE =
1

𝑁
∑  

𝑁

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|, 𝑅2 = 1 −
∑  (𝑦𝑖 − 𝑦̂𝑖)2

∑  (𝑦𝑖 − 𝑦‾)2
 

where 𝑦𝑖  is the true FEM drift and 𝑦̂𝑖  the predicted compensation. Results showed that shallow 
neural networks achieved the best overall accuracy (lowest RMSE, highest 𝑅2 ), while ridge regression 
provided stable correction with minimal variance but could not fully capture nonlinear effects. SVMs 
performed moderately well, balancing accuracy and computational cost. 
Generalization and Robustness 
Overfitting checks were carried out using train-validation learning curves. Ridge regression showed 
no overfitting due to its linear nature. SVMs generalized well but were sensitive to kernel 
hyperparameters. Neural networks exhibited slight overfitting, mitigated by early stopping and 
regularization. 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 10 No. 6s, 2024 
https://www.theaspd.com/ijes.php 
 

215 
 

Robustness was evaluated across 10 unseen FEM trajectories, representing different thermal sweeps. 
Box plot analysis revealed that ridge regression had the narrowest error spread (high stability), while 
neural networks had the lowest median error but with slightly higher variability. 
Quantitative performance comparison of Ridge regression, SVM, and shallow neural networks on 
FEM-simulated thermal drift compensation 

Model RMSE 
(equiv. units) 

MAE (equiv. 
units) 

R² Notes 

Ridge Regression 0.38 0.29 0.91 Stable, low variance, but underfits 
extreme drift 

Support Vector 
Machine (SVM) 

0.24 0.18 0.95 Strong nonlinear mapping, 
sensitive to kernel tuning 

Shallow Neural 
Network (NN) 

0.12 0.09 0.98 Best accuracy, captures 
nonlinearities, slight overfitting risk 

 
Figure 10. Predicted vs True Drift across Thermal Cycles 

 
Figure 11. Drift Error before and after Compensation 
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DISCUSSION 
One of the primary strengths of this framework is its reliance on FEM-generated datasets, which 
eliminate the need for early physical prototyping. This not only reduces design cost and accelerates 
iteration cycles but also enables controlled exploration of individual drift mechanisms. By 
incorporating nonlinear temperature dependencies in material coefficients—thermal expansion, 
dielectric permittivity, and piezoelectric constants—the simulations capture realistic multiphysics 
behavior, going beyond the simplified assumptions seen in earlier studies. Another strength lies in 
the machine learning compensation framework. While ridge regression provides a lightweight, 
hardware-efficient baseline, the support vector machine and shallow neural network models 
demonstrate the ability to capture nonlinearities in thermal drift with higher fidelity. Importantly, 
system-level validation through FPGA/ASIC simulations bridges the often-missed gap between 
algorithm design and hardware feasibility, showing that the proposed methods are implementable 
within practical computational and memory constraints. Collectively, these strengths establish the 
novelty of this work: a unified methodology that connects device physics, machine learning, and 
embedded system integration. 
Limitations 
Despite these contributions, certain limitations must be acknowledged. The reliability of FEM-
generated datasets depends critically on the accuracy of material parameters, and deviations in 
nonlinear coefficients of silicon or AlN may introduce modeling errors. Moreover, validation remains 
limited to data. While the results provide strong evidence of feasibility, fabricated prototypes would 
inevitably expose additional challenges such as process variations, parasitic effects, and long-term 
material degradation. Thus, the absence of experimental validation currently constrains the 
generalizability of the findings, even though the methodology itself remains robust. 
Future Work 
Looking ahead, several research directions emerge naturally from this study. Hardware prototyping 
will be a key step to benchmark the simulation-driven compensation strategies against real sensor 
outputs and confirm their real-world applicability. More advanced machine learning models, such as 
deep neural networks or recurrent architectures, may further enhance compensation by capturing 
higher-order nonlinearities and long-term drift memory effects. Finally, extending this framework to 
other material platforms, including silicon carbide (SiC) and gallium nitride (GaN), would allow 
investigation of cross-material generalization, thereby expanding the impact of this methodology 
across emerging MEMS technologies. 
 
CONCLUSION 
This study has demonstrated a simulation-to-system methodology for hybrid piezo-capacitive MEMS 
sensors, integrating FEM-based drift modeling, machine learning compensation, and system-level 
validation. By embedding nonlinear material dependencies in FEM, the generated datasets captured 
realistic multiphysics drift behavior across wide thermal cycles. These datasets enabled the 
development of machine learning compensators, where ridge regression provided a lightweight and 
hardware-efficient baseline, SVMs achieved robust nonlinear mapping, and shallow neural networks 
offered the highest accuracy. System-level FPGA/ASIC simulations further confirmed the practical 
feasibility of deploying these models in real-time embedded environments. 
While the present validation is limited to simulation data, the methodology establishes a scalable 
foundation for hardware prototyping, advanced deep learning compensation, and adaptation to 
alternative MEMS materials such as SiC and GaN. Beyond addressing thermal drift, this work 
contributes a generalizable pipeline that links device physics, machine learning, and hardware 
feasibility. The results suggest a paradigm shift in MEMS sensor design, where FEM-driven datasets 
can replace costly prototype-dependent workflows, accelerating innovation while ensuring robustness 
in real-world operation. 
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