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Abstract 
In a typical health-care system, various sensor nodes are employed for monitoring different vital parameters of a patient. 
In Internet of Things (IoT) based healthcare systems, data correctness is essential since clinical decisions often depend 
on real-time physiological data collected from sensors and wearable devices. In this paper, an automatic outlier 
detection and data consistency maintenance (AOD-DCM) technique for IoT-WSN is proposed. It consists of data 
outlier detection and data inconsistency checking phases. For data outlier detection, the Principal Component Analysis 
(PCA) algorithm is applied.  For data inconsistency checking from existing data readings, the Deep Auto Encoder 
(DAE) model is designed. To fine tune the parameters of DAE, the bio inspired Brown Bear Optimization (BBO) 
algorithm is applied. Experimental results show that DAE-BBO technique achieves higher detection accuracy and 
correctness of data, when compared to the existing outlier detection techniques. 
Keywords: Internet of Things (IoT) , Healthcare data, Outlier detection, Consistency, Deep Auto Encoder (DAE), 
Brown Bear Optimization (BBO) 
 
1. INTRODUCTION 
During Industry 4.0 revolution, real-world objects are progressively integrated and automated via the 
Internet of Things (IoT). This paradigm allows millions of devices equipped with sensors and actuators 
to connect through wired or wireless communication, enabling seamless data transmission. IoT devices 
produce massive volumes of data with diverse modalities and quality. These devices are anticipated to 
generate around 79.4 zettabytes (ZBs) of real-time data, highlighting the immense scale and potential of 
the IoT ecosystem [1]. In healthcare, IoT is driving transformative variations by allowing remote 
diagnostics, continuous patient monitoring, and personalized treatment. Smart medical devices, like 
glucose meters, wearable ECG monitors, and connected inhalers, gather real-time health metrics and send 
them to cloud-based systems for analysis. This enables clinicians to make timely, data-driven decisions 
and enhance patient outcomes. IoT also supports patient flow optimization, hospital asset tracking, and 
predictive maintenance of medical equipment.  
In spite of these benefits, the security and reliability of the collected data are vital for successful 
deployment. Imprecise or tampered data can compromise treatment and diagnosis. So, ensuring data 
integrity, quality, and privacy is crucial in building trustworthy and efficient IoT-enabled healthcare 
systems [2]. 
In IoT-based healthcare systems, data correctness is essential since clinical decisions often depend on real-
time physiological data collected from sensors and wearable devices. However, ensuring correctness in 
these dynamic and distributed environment is difficult. One major problem is sensor noise and drift, 
which can cause inaccuracies over time because of hardware degradation or environmental factors. 
Moreover, data transmission errors due to unreliable network connectivity may cause packet loss, 
duplication, or corruption. Another significant concern is device heterogeneity, in which different 
vendors use variable standards, sampling rates, and data formats, causing inconsistencies in collected data. 
Temporal misalignment between devices further worsens the problem, particularly in scenarios requiring 
synchronized measurements (like heart rate and oxygen levels).  
Additionally, malfunctioning sensors or unauthorized tampering may cause anomalous values, 
compromising the entire system’s integrity. Incorrect or inconsistent data may cause delayed diagnosis, 
false alarms, or even life-threatening decisions. Consequently, detecting outliers automatically and 
maintaining data consistency are vital for ensuring reliability [3]. 
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IoT devices in healthcare are frequently installed in harsh or dynamic environments, in which establishing 
reliable communication and maintaining data integrity is complex. Originally developed for military 
usage, IoT systems have extended to critical domains like healthcare, disaster monitoring, and smart cities. 
However, the efficiency of these systems heavily based on the quality and reliability of the sensor data they 
collect. IoT sensor nodes are susceptible to internal problems like hardware faults, energy limitations, and 
noise, along with external threats such as denial-of-service or replay attacks [4].  
These factors cause the generation of noisy, missing, or incorrect data—commonly called as outliers. 
Outliers can severely compromise real-time decision-making in healthcare applications, in which timely 
and accurate data is vital for monitoring vital signs, detecting anomalies, and triggering emergency 
responses. Conventional outlier detection methods depending on thresholds or statistical rules fail to 
scale, adapt, and generalize across diverse and high-dimensional IoT data. These approaches often 
impacted due to high false alarm rates and limited detection accuracy. Hence, there is a pressing 
requirement for advanced outlier detection techniques [5].  
In IoT-based healthcare applications, ensuring data consistency is vital for the accuracy, reliability, and 
safety of medical decisions. Working with a consistent dataset creates the foundation for developing 
reliable clinical applications and procedures. Data consistency refers to correct storage formats, valid 
schema structures, the preservation of relationships amongst health records, accurate representation of 
physiological phenomena, and alignment with intended clinical use [6]. Healthcare IoT environments are 
fundamentally heterogeneous, including a wide range of sensors, devices, and standards.  
This diversity often causes transmission delays, inconsistencies in data formats, and semantic mismatches. 
Hence, consistency should be ensured at multiple levels—data characteristics, data quality, and 
information quality. Inconsistent or corrupted data—because of sensor faults, transmission errors, or false 
data injection (FDI) attacks—can cause delayed treatment, misdiagnosis, or system malfunction. Unlike 
model-based systems in which clean data can be simulated, data-driven healthcare applications must 
struggle with real-world noise and anomalies. Therefore, identifying and correcting inconsistencies before 
further analysis is vital. Integrating automated outlier detection and consistency maintenance 
mechanisms confirms that only valid, trustworthy data drives healthcare decisions, ultimately improving 
patient safety and care effectiveness [7]. 
 
2. RELATED WORKS 
A novel method is proposed in [7] to detect errors introduced during software refactoring and improve 
the security and correctness of IoT software. This approach uses both control flow and data flow analyses 
to observe changes in the program structure before and after refactoring. In addition, synchronization 
dependency analysis is utilized to identify modifications in synchronization dependencies that may 
influence software behaviour. Three specialized detection algorithms are developed for verifying the 
correctness of refactoring actions. The method is evaluated using four real-world benchmark IoT 
applications. Simulation results confirm the method’s efficiency in maintaining the integrity and security 
of refactored IoT software systems. 
An advanced maintenance analysis model [8] is proposed to significantly improve fault detection and risk 
evaluation in industrial systems. The model connects machine failure reports with sensor-generated data 
and excels in managing inaccurate and fuzzy data inputs, which are common in real-world industrial 
environments. Conventional failure evaluation models recognized FM10, FM8, and FM7 as the highest 
priority faults. Though, the model re-ranks failures based on weighted risk factors using a fuzzy Failure 
Mode and Effects Analysis (FMEA) approach combined with the MULTIMOORA decision-making 
method. Consequently, FM4, FM10, and FM6 are prioritized for initial corrective action. The study 
proves that applying fuzzy set theory and MULTIMOORA enhances the accuracy of failure ranking and 
helps recognize both root and contributing causes.  
In [9], two strategies are proposed for managing data replication and consistency in fog computing 
environments. These strategies dynamically find the optimal number and placement of data replicas for 
every IoT datum to lessen latency and synchronization costs, ensuring the required consistency levels are 
satisfied. A simulation platform is developed using iFogSim, which enables users to implement and test 
customized replication strategies. These techniques lessen service latency by up to 30% in small-scale fog 
infrastructures and by 13% in large-scale deployments than iFogStor, a baseline strategy without 
replication mechanisms. It highlights the importance of intelligent data management in enhancing the 
performance of distributed IoT systems. 
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An algorithm [10] is proposed for fault diagnosis that utilizes IoT sensor data to diagnose mechanical 
faults such as rotor imbalance, bearing defects, shaft misalignment, and belt looseness. A preprocessing 
step depends on descriptive statistics to reduce the dimensionality of the sensor data, thus improving the 
computational efficiency of the algorithm. Both current and vibration data are utilized for ensuring 
reliable fault classification. Amongst several machine learning models tested, XGBoost version 1.7.6 
produces the highest classification performance. It improves both the accuracy and speed of fault 
detection, providing significant contributions to IIoT safety and operational reliability. 
A novel unsupervised outlier detection framework is introduced in [11] using Autoencoder-based models 
with contrastive loss. This technique integrates the strength of autoencoders for latent feature extraction 
and contrastive learning for improved discriminative capability. The model lessens a total loss function 
that comprises both reconstruction loss and contrastive loss, reassuring compact clustering of normal data 
and separation of anomalies. A statistically driven thresholding method flags outliers depending on 
reconstruction error. The model is assessed on the Statlog dataset through precision, recall, and F1-score, 
and proves high effectiveness in identifying outliers. 
An unsupervised outlier detection approach is proposed in [12] using a deep Variational Autoencoder 
(VAE). The model exploits the VAE’s ability for learning low-dimensional latent representations of input 
data and accurately reconstruct them. The process initiates with standardizing the input data, which is 
followed by encoding and decoding via the VAE. The reconstruction error between the input and output 
is estimated for scoring anomalies. Particularly, the model is exclusively trained on normal data without 
any labelled anomalies, following a fully unsupervised approach. The method attains approximately 90% 
precision and an F1-score of 79%, when tested on the Statlog Landsat Satellite dataset, performing on 
par with leading outlier detection methods. 
2.1 Research Gaps 
In spite of significant development in outlier detection, several problems remain unaddressed in IoT-
based healthcare applications. Communication cost is a major concern—sending raw sensor data to a 
central server consumes significantly more energy when compared to local computation. This is 
unmanageable for healthcare IoT networks that depend on energy-constrained devices. Dynamic network 
topology due to node failures, mobility, and heterogeneous sensing capabilities affects network stability 
and interrupts existing detection models. Resource constraints, like limited memory, power, and 
processing capacity of sensor nodes, restrict the use of traditional, computation-heavy outlier detection 
algorithms. 
Distributed streaming data is difficult as several existing techniques assume static or offline datasets. IoT 
healthcare environments yield real-time, high-velocity data streams that necessitate adaptive, online 
methods capable of handling incomplete and transient information. High-dimensional sensor data, 
common in healthcare such as ECG, temperature, and blood pressure, increases computational burden 
and can worsen model performance because of the curse of dimensionality. 
Additionally, data inconsistency and label scarcity in medical IoT datasets affect the development of 
supervised or semi-supervised models. Privacy-preserving outlier detection needs further improvement, 
especially for sensitive patient data. The absence of robust benchmark datasets for IoT healthcare restricts 
fair evaluation and comparison of detection methods. 
 
3. PROPOSED METHODOLOGY 
3.1 Overview 
In this paper, an automatic outlier detection and data consistency maintenance (AOD-DCM) technique 
for IoT-WSN is proposed. 
It consists of two phases: 

 Data Outlier detection  
 Data inconsistency checking  

 
For data outlier detection, the PCA algorithm is applied.  For data inconsistency checking from existing 
data readings, the Deep Auto Encoder (DAE) model is designed. To fine tune the parameters of DAE, 
the bio inspired Brown Bear Optimization (BBO) algorithm is applied 
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Figure 1 Block diagram of AOD-DCM technique 
3.2 PCA for Dimensionality reduction 
For outlier detection, PCA technique is applied which is an unsupervised non-linear technique.  
PCA is utilized to remove the features with many interrelated variables while maintaining as much of the 
original variance as possible. This is attained by generating a new set of uncorrelated variables called 
principal components (PCs), which are organized so that the first few PCs capture the majority of the 
variance from all the original variables.  
The objective of PCA is to create a d x k transformation matrix P, which maps the dataset vector into a 
new subspace with less dimensions compared to the original one. For instance, when the data contains 
two axes (M1 and M2), the aim is to decrease it to PC1 and PC2 that capture the most variance from the 
dataset. The new dimensions should be less than the original ones. 
𝑥 = [𝑥1, 𝑥2, 𝑥3, … … … … , 𝑥𝑑], 𝑥𝜖RD 
The first step is to determine a linear function 𝛼′1 𝑋 of the samples of the dataset with maximum variance, 
in such a way that 𝛼 is a vector with constants 𝛼11, 𝛼12, 𝛼13, 𝛼14 and ′ indicates the transpose.  
A linear function 𝛼′2𝑥 is considered that is uncorrelated with 𝛼′1𝑥 but has the maximum variance. A 
linear function 𝛼′𝑘𝑥 with the greatest variance is uncorrelated with every preceding functions 𝛼1𝑥, 𝛼′2𝑥, … 
.. 𝛼′𝑘−1𝑥. The kth PC is denoted by the kth derived variable, 𝛼′𝜅𝑥.  
Although it is possible to recognize many principal components, most of the variation in x is usually 
captured by a set of m principal components, where m is much larger than p.  
It is possible to find as many possible principal components, but most of the variation in x is expected to 
be explained by m number of principal components. 
The dataset was standardized through the Standard Scaler method from preprocessing class of Scikit-
Learn, and then converted so that all features have equivalent weights. 
3.3 DAE architecture 
This DAE architecture combines autoencoder-based representation learning with the discriminative 
strength of contrastive loss. The method is developed for effectively differentiating between normal and 
anomalous data points by learning informative latent representations. 
Given an input dataset X = {x1, x2,…, xn}, in which each data point xa ∈ Rd, the autoencoder contains two 
core components: 

• an encoder fθ that projects the input into a latent space, and 
• a decoder gϕ that reconstructs the original input from its latent representation. 

The encoder converts each xi into a latent vector za = fθ (xa) ∈ Rm. Then, the decoder reconstructs the 
input as 𝑥𝑎 = gϕ (za). 
The reconstruction loss measures the difference between the original data and its reconstruction, which 
is given by, 

𝐿𝑟 =
1

𝑚
∑ ‖𝑥𝑎 − 𝑥𝑎‖2𝑚

𝑎=1     (1) 

For ensuring that similar data points are mapped to neighbouring locations in the latent space—while 
dissimilar points contain distinct representations—a contrastive loss is introduced. For a given pair (xa, xb), 
it is given by, 

𝐿𝑐 =
1

𝑚
∑ ∑ 𝑦𝑎𝑏‖𝑧𝑎 − 𝑧𝑏‖

2𝑚
𝑏=1

𝑚
𝑎=1 + (1 − 𝑦𝑎𝑏)max(0, 𝛾 − ‖𝑧𝑎 − 𝑧𝑏‖)2 (2) 

Where yab = 1 when xa and xb form a positive pair (similar), and 0 otherwise. α is the parameter that 
defines the margin between dissimilar pairs. 
The final total loss function combines both reconstruction and contrastive losses: 
LT = Lr + λ * (Lc)     (3) 

Principal Component 

Analysis (PCA) 
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where λ indicates a hyperparameter used for balancing the contribution of the two loss components. 
3.3.1 Training Procedure 
The algorithm starts by initializing the encoder and decoder parameters, which is denoted as θ and ϕ, 
respectively. Training proceeds over multiple epochs, during which the input data is split into mini-
batches. In each mini-batch, pairs of data points—both negative (dissimilar) and positive (similar)—are 
sampled for computing the contrastive loss. 
For each data pair (xa, xb), their related latent representations za and zb are obtained through the encoder 
fθ. The reconstructed outputs 𝑥𝑎 are generated by feeding the latent vectors through the decoder gϕ. The 
reconstruction loss Lr is computed as the mean squared error between the reconstructed and original 
inputs. 
The contrastive loss Lc is calculated to promote clustering of similar data points in the latent space and 
separation of dissimilar ones. The total loss LT is then obtained by integrating the reconstruction and 
contrastive losses, with a weighting factor λ. 
The encoder and decoder parameters (θ and ϕ) are then updated through gradient descent with a learning 
rate η for minimizing the total loss. This optimization is iterated for each mini-batch across all training 
epochs. When training is completed, the optimized encoder fθ and decoder gϕ are returned. 
During training, the objective is to minimize LT, in which the contrastive loss boosts compact 
representations for normal samples and separation for potential outliers. During inference, a test data 
point xa is flagged as an outlier when its reconstruction error ‖𝑥𝑎 − 𝑥𝑎‖ exceeds a predefined threshold. 
Anomalies in IoT data are effectively detected by integrating autoencoder-based reconstruction with 
contrastive representation learning. The inclusion of contrastive loss improves the model’s capability to 
learn discriminative features, thus enhancing overall outlier detection performance. 
The IoT ecosystem creates huge volumes of data from a wide array of interconnected devices. This data 
is vital for applications like anomaly detection, predictive maintenance, and security monitoring. Though, 
the velocity, sheer volume, and diversity of IoT data cause challenges for precise outlier detection. 
Autoencoder-based model is enhanced with Contrastive Loss for detecting outliers in IoT data. 
To identify anomalies, the learned latent representations are used with the help of the trained encoder fθ 
and decoder gϕ obtained during the training phase. During inference, every incoming IoT data point xa 
∈ Rd is fed through the encoder for producing a latent vector za = fθ (xa), which is then reconstructed as 
𝑥𝑎 = gϕ (za). 
The reconstruction error for each data point is given by, 
𝑟𝑎 = ‖𝑥𝑎 − 𝑥𝑎‖    (4) 
For determining if a data point is an outlier, its reconstruction error ra is compared against a predefined 
threshold τ. A point is considered as an outlier when its error is more than this threshold: 

𝑂(𝑥𝑎) = {
1 𝑖𝑓 𝑟𝑎 > τ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (5) 

τ is selected using statistical analysis of reconstruction errors on a validation dataset or adjusted depending 
on the requirements of the specific IoT application. 
Algorithm 1 Training Procedure for DAE  
_________________________________________________________________________ 
Input: Training data X = {x1, x2, . . . , xn}, learning rate η, margin α, balance parameter λ, batch size B  
Ensure: fθ and gϕ  
1: Initialize parameters θ and ϕ 
2: For number of training epochs do  
3:       for each mini-batch {x1, x2, . . . , xB} do  
4:              Sample negative and positive pairs for contrastive loss  
5:              for each pair (xi , xj ) in the mini-batch do  
6:                      Calculate latent representations za and zb 
7:                      Calculate reconstruction: 𝑥𝑎 
8:                      Calculate reconstruction loss Lr  
9:                      Calculate contrastive loss Lc 
10:             end for  
11:             Calculate total loss LT  
12:          Update θ and ϕ using gradient descent  
13:     end for  
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14: end for  
15: return fθ and gϕ = 0 
_________________________________________________________________________ 
 
3.3.2 Outlier Detection 
 Algorithm 2 discussed the detailed algorithm for outlier detection using the trained autoencoder and 
contrastive loss. 
Algorithm 2 Outlier Detection in IoT  
_______________________________________________________________________ 
Input: IoT data Xt = {x1, x2, . . . , xm}, trained encoder fθ, trained decoder gφ, threshold τ Ensure: Outlier 
labels for test data  
1: for each xi do  
2:       Calculate latent representation: za 
3:       Reconstruct data point: 𝑥𝑎  
4:      Calculate reconstruction error: ra 
5:     Determine outlier label 
6:      If ri > τ  
7:             outlier(xa) = 1 
8:      Else  
9:             outlier(xa) = 0 
10: end for  
11: return Outlier labels for Xt = 0 
_______________________________________________________________________ 
3.4 Brown-bear Optimization (BBO) Algorithm 
To fine tune the parameters of DAE, the bio inspired BBO algorithm is applied. 
The proposed optimization algorithm has two primary phases, which is inspired by the pedal scent 
marking and sniffing behaviours found in brown bears. The pedal scent marking phase is classified into 
three subcategories, each happening with equal probability. In this algorithm, every group of brown bears 
within a territory is considered as an individual solution set in the population. The pedal scent marks left 
by every group signify the decision variables in the corresponding solution set. The territory itself 
represents the search space of the problem. Like other population-based optimization approaches, the 
algorithm starts with the initialization of the population. Multiple bear groups are generated randomly 
within the territory, each having a predefined number of pedal scent marks. These marks are unique to 
every group and are distributed within the territory’s bounds, which relate to the defined limits of the 
decision variables in the optimization problem. These groups’ random initialization within the territory 
is mathematically given by,  
𝑃𝑖,𝑗 = 𝑃𝑖,𝑗

𝑚𝑖𝑛 + 𝜆(𝑃𝑖,𝑗
𝑚𝑎𝑥 − 𝑃𝑖,𝑗

𝑚𝑖𝑛)   (6) 

where Pi, j is the ith group’s jth pedal mark of brown-bears. 𝑃𝑖,𝑗
𝑚𝑎𝑥 and 𝑃𝑖,𝑗

𝑚𝑖𝑛 are the maximum and 
minimum range of pedal marks, respectively. λ indicates any random number evenly distributed within 
the range [0,1]. When Npop is the total number of groups in a territory and D is the total number of pedal 
marks in each group, the solution set P is indicated as  

𝑃 =

[
 
 
 

𝑃1,1 𝑃1,2 ⋯ 𝑃1,𝐷

𝑃2,1 𝑃2,2 ⋯ 𝑃2𝐷

⋮ ⋮ ⋱ ⋮
𝑃𝑁𝑝𝑜𝑝,1 𝑃𝑁𝑝𝑜𝑝,2 ⋯ 𝑃𝑁𝑝𝑜𝑝,𝐷]

 
 
 

    (7) 

3.4.1 Pedal Scent Marking Behavior 
The pedal scent marking behaviour showed by brown bears is remarkably unique. It includes a distinct 
walking pattern characterized by a specific gait, deliberate foot placement, and the twisting of feet into 
ground depressions. These three behavioural traits are mathematically modelled for representing the scent 
marking process, with each trait happening with equal probability. Let NI be the total number of 
algorithm iterations. Each characteristic is modelled to occur over one-third of the total iterations. 
Pedal scent marking is displayed mainly by male brown bears. For simplification, each group is presumed 
to comprise one male member. This male bear shows a unique walking gait, leading to distinctly 
recognizable pedal scent marks. It is assumed that this behaviour, depending on the characteristic gait, 
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dominates the first one-third of the total iterations NI. The mathematical model for this behaviour is 
defined by,  
𝑃𝑖,𝑗,𝑘

𝑛 = 𝑃𝑖,𝑗,𝑘
𝑜 − (𝜃𝑘𝛾𝑖,𝑗,𝑘𝑃𝑖,𝑗,𝑘

𝑜 )   (8) 

Where 𝑃𝑖,𝑗,𝑘
𝑛  is the updated position of the jth pedal scent mark for the ith group of brown bears during 

the kth iteration, whereas 𝑃𝑖,𝑗,𝑘
𝑜  is its previous position in the same iteration. The variable 𝛾𝑖,𝑗,𝑘 is a 

random value uniformly distributed in the range of 0 to 1, related to the jth pedal mark of the ith group 
at iteration k. The term θk is the occurrence factor for the kth iteration that increases linearly when the 
iterations progress. It is defined as the proportion of the current iteration number CI to the total number 
of iterations NI, expressed as, 

𝜃𝑘 =
𝐶𝐼

𝑁𝐼
      (9) 

During the second phase—spanning from one-third to two-thirds of the total number of iterations—the 
pedal scent marks are updated depending on the careful stepping behaviour, reflecting the tendency of 
brown bears to repetitively step on their own previous scent marks to improve their visibility and 
recognizability to other members of the group. The aim of this action is to strengthen the scent marks, 
making them more prominent.  

The mathematical formulation for this characteristic is given by: 
𝑃𝑖,𝑗,𝑘

𝑛 = 𝑃𝑖,𝑗,𝑘
𝑜 − 𝐹𝑘(𝑃𝑖,𝑗,𝑘

𝑏 − 𝐿𝑘𝑃𝑖,𝑗,𝑘
𝑤 )   (10) 

where 𝑃𝑖,𝑗,𝑘
𝑏  and 𝑃𝑖,𝑗,𝑘

𝑤  are the best and worst jth pedal scent marks, respectively, among all bear groups in 
the kth iteration. The term Fk is the step factor for the current iteration influenced by the occurrence 
factor θk and is defined as: 

𝐹𝑘 = 𝛽1,𝑘𝜃𝑘      (11) 
Where β1,k is a randomly generated number within the range [0,1] for the kth iteration. The term Lk is 
the step length at iteration k, which plays a vital role in determining how the pedal scent marks are 
adjusted using information from both the worst and best marks in the population. 
The step length Lk can be 1 or 2. Depending on this value, the male brown bear of a given group alters 
its movement carefully—either backward or forward—to leave new pedal scent marks accordingly. The step 
length is given by, 
Lk = round (1 + β2,k)     (12) 
where β2,k indicates a random number, which is uniformly distributed between 0 and 1 for the kth 
iteration. 
The updating of pedal scent marks is governed by the twisting feet behaviour, from the final third of the 
total iterations up to the last iteration. In this phase, the male brown bear from every group twists its feet 
into previously created ground depressions. This behaviour helps strengthen and solidify the pedal scent 
marks, which are later utilized by other group members to construct scent maps. 
The previous marks selected for reinforcement are depending on their proximity to the best and worst 
marks in the population. Bears prefer to strengthen those nearer to the best marks and further from the 
worst. The angular velocity with which a bear accomplishes this twisting motion is given by: 
ωi,k = 2 π⋅ 𝛿i,k θk    (13) 
where ωi,k is the angular velocity of the ith bear during the kth iteration, and 𝛿i,k is a random number 
uniformly distributed in the range [0,1]. 
A brown bear twists its feet onto preceding pedal marks that are nearer to the best-performing marks and 
farther from the worst-performing ones. This behaviour is given by, 
𝑃𝑖,𝑗,𝑘

𝑛 = 𝑃𝑖,𝑗,𝑘
𝑜 + 𝜔𝑖,𝑘(𝑃𝑗,𝑘

𝑏 − |𝑃𝑖,𝑗,𝑘
𝑜 |) − 𝜔𝑖,𝑘(𝑃𝑗,𝑘

𝑤 − |𝑃𝑖,𝑗,𝑘
𝑜 |) (14) 

After this phase, the better-performing groups of bears are chosen to participate in the next stage of the 
algorithm. 
 
3.4.2 Sniffing Behaviour  
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Sniffing behaviour is a common trait showed by all members within a brown bear group. It enables 
communication amongst group members by enabling them to detect and interpret information from 
pedal scent marks. This behaviour plays a vital role in guiding their movement across the territory.  
To navigate, bears initiate by randomly sniffing pedal scent marks situated throughout the territory. They 
are inclined to move toward the marks related to their own group, overlooking those from other groups. 
This behaviour is mathematically modelled by choosing two random candidate solutions and updating 
the bear's movement depending on the following rule: 

𝑃𝑖,𝑗,𝑘
𝑛 = {

𝑃𝑚,𝑗,𝑘
𝑜 + 𝛿𝑗,𝑘(𝑃𝑚,𝑗,𝑘

𝑜 − 𝑃𝑛,𝑗,𝑘
𝑜 ) 𝑖𝑓 𝑓(𝑃𝑚,𝑘

𝑜 ) < 𝑓(𝑃𝑛,𝑘
𝑜 )

𝑃𝑚,𝑗,𝑘
𝑜 + 𝛿𝑗,𝑘(𝑃𝑛,𝑗,𝑘

𝑜 − 𝑃𝑚,𝑗,𝑘
𝑜 ) 𝑖𝑓 𝑓(𝑃𝑛,𝑘

𝑜 ) < 𝑓(𝑃𝑚,𝑘
𝑜 )

   (15) 

where 𝑃𝑚,𝑗,𝑘
𝑛  indicates the updated value of the jth pedal mark for the mth group during the kth iteration. 

𝑃𝑚,𝑗,𝑘
𝑜  and 𝑃𝑚,𝑗,𝑘

𝑜  indicate the corresponding pedal marks for the mth and nth groups (with m ≠ n), 

whereas 𝑓(𝑃𝑚,𝑘
𝑜 ) and 𝑓(𝑃𝑛,𝑘

𝑜 ) indicate their corresponding fitness values. 𝛿𝑗,𝑘 indicates a uniformly 
distributed random number in the range [0,1] for the jth pedal mark in the kth iteration. 
This sniffing phase is implemented across all groups in the population. After the update, the best-
performing groups from both the new and previous populations are reserved and passed on to the next 
iteration. The update and selection process in the previous behaviours continues until a predefined 
termination criterion is satisfied. 
Algorithm 3 Pseudo code of proposed BOA 
____________________________________________________________________  
Inputs: 

• NI = Total number of iterations 
• Npop = Population size  
• D =Number of decision variables 
• Variable boundaries 

Ensure: Fitness function f(P) is defined 
1. Initialize a random population of bear groups  
2. Form the population matrix P 
3. Set the best fitness value fbest = ∞  
4. Initialize iteration counter k = 1 
5. Repeat until k ≤ NI: 
6. For each individual i = 1 to Npop:  
7.          Check and implement boundary constraints on pedal marks 
8.          Evaluate fitness: f(Pi)  
9.          If f(Pi) < fbest:  
10.                Update fbest = f(Pi) 
11.                Set Pkbest = P(i,:) 
12.          End if  
13. End for 
14. // Pedal Scent Marking Behaviour // 
15. Find best and worst performing groups in the current population. 
16. Calculate occurrence factor θk 
17. For each group I = 1 to Npop:  
18.            If 0 < θk ≤ 1/3:  
19.                     Implement Characteristic Gait update 
20.            Else if 1/3 < θk ≤ 2/3:  
21.                     Implement Careful Stepping update  
22.            Else if 2/3 < θk ≤ 1:  
23.                    Apply Twisting Feet update  
24.            End if 
25. End for 
26. Choose the better-performing group of bears from current and preceding populations. 
27. // Sniffing Behaviour // 
28. For each group m = 1 to Npop:  
29.          Randomly choose another group n ≠ m  
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30.          Update Pm,k 
31. End for 
32. Choose the best group of bears from updated population. 
33. Increment iteration counter: k = k + 1 
34. End while 
35. Output: Final best fitness value fbest and corresponding solution Pbest 

 
4. EXPERIMENTAL RESULTS 
The proposed DAE-BBO technique for outlier detection and consistency maintenance has been 
implemented in Python 3.0 with Google Colab environment. The IoT healthcare security dataset [13] has 
been used in the experiments. It contains healthcare normal and malicious traffic dataset. 
4.2 Classification Results 
The performance of the DAE-BBO classifier has been compared with the DRL [1] and VAE [12] 
classifiers.  The classification performance is evaluated in terms of Accuracy and F1-score metrics.  

Accuracy = 
TNTPFNFP

TPTN

+++

+
   (16) 

F1-score = 2x
recallprecision

recallprecisionX

+
   (17) 

Here, 

Where, precision = 
FPTP

TP

+
,   recall = 

FNTP

TP

+
   

 
Table 1 and Figure 2 show the classification results of accuracy and F1-score for these 3 approaches 

 Techniques Accuracy F1-score 
DAE-BBO 98.6 97.3 
DRL 96.5 95.5 
VAE 97.4 96.2 

    Table 1 Classification Results 
 

 
Figure 2 Classification Results 
As seen from Figure 2, the proposed DAE-BBO technique attains highest accuracy of 98.6% and highest 
F1-score of 97.3%, when compared to the other two techniques. 
4.3 Quality of Service (QoS) metrics by varying the IoT devices  
Apart from the classification results, the results of QoS metrics packet delivery ratio (PDR), average 
residual energy, computational cost and correctness of data are measured by varying the IoT devices from 
20 to 100. 
Table 2 and Figure 3 show the results of PDR for varying the devices from 20 to 100. 
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Number 
of devices 

DAE-
BBO  VAE DRL 

20 0.9741 0.9549 0.9357 
40 0.9635 0.9458 0.9278 
60 0.9601 0.9413 0.9215 
80 0.9572 0.9317 0.9152 
100 0.9534 0.9265 0.9085 

Table 2 Results of PDR 

 
Figure 3 Results of PDR  
 
As it can be seen from the figure, the DA-BBO attains 2.2% higher PDR than VAE and 4.1% higher 
PDR than DRL. 
 
Table 3 and Figure 4 show the results of average residual energy for varying the devices from 20 to 100. 
 

Number 
of devices 

DAE-
BBO 
(Joules)  

VAE 
(Joules) 

DRL 
(Joules) 

20 8.14 7.77 7.28 
40 7.76 7.25 6.78 
60 7.38 6.58 6.16 
80 6.89 6.19 5.85 
100 6.52 5.81 5.42 

Table 3 Results of Residual energy 

 
Figure 4 Results of residual energy 
As it can be seen from the figure, the DAE-BBO attains 8.6% higher residual energy than VAE and 14.3% 
higher residual energy than DRL. 
Table 4 and Figure 5 show the results of computational cost (in sec) for varying the devices from 20 to 
100. 
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Number 
of devices 

DAE-
BBO 
(sec) 

VAE 
(sec) 

DRL 
(sec) 

20 22.5 24.5 26.1 
40 24.3 25.7 26.7 
60 24.8 26.3 28.2 
80 25.5 26.8 28.7 
100 26.2 27.6 29.5 

Table 4 Results of Computational cost 

 
 
Figure 5 Results of computational cost 
As it can be seen from the figure, the DAE-BBO attains 6% lesser cost than VAE and 11% lesser cost 
than DRL. 
Table 5 and Figure 6 show the results of correctness of received data for varying the devices from 20 to 
100. 
 

Number 
of devices 

DAE-
BBO (%) VAE (%) DRL (%) 

20 98.4 97.2 95.6 
40 97.5 96.4 95.2 
60 97.3 95.5 94.7 
80 97.1 94.6 94.1 
100 96.8 94.1 93.5 

Table 5 Results of correctness of data 
 

 
Figure 6 Results of correctness of data 
As it can be seen from the figure, the DAE-BBO attains 2% higher correctness than VAE and 3% higher 
correctness than DRL. 
5. CONCLUSION 
In this paper, an automatic outlier detection and data consistency maintenance (AOD-DCM) technique 
using DAE-BBO technique for IoT-WSN has bee proposed. For data outlier detection, the PCA algorithm 
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is applied.  For data inconsistency checking from existing data readings, the DAE model is designed. To 
fine tune the parameters of DAE, the BBO algorithm is applied. The IoT healthcare security dataset  has 
been used in the experiments. The performance of the DAE-BBO technique has been compared with the 
DRL and VAE techniques. Experimental results show that DAE-BBO technique achieves higher 
detection accuracy and correctness of data with reduced computational cost, when compared to the 
existing outlier detection techniques. 
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