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Abstract

Diabetic Retinopathy (DR) is a severe complication of diabetes that can lead to wision loss if not de- tected
and treated early. Traditional diagnosis in- volves manual examination of retinal fundus images by ophthalmologists,
which is often time-consuming and prone to subjectivity. This paper presents an automated solution for DR detection
and severity clas- sification by employing multiple advanced deep learn- ing models—DenseNet, InceptionV3, ResNet,
and Mo- bileNet—trained and evaluated independently. Each model is developed and tested separately to analyze its
individual effectiveness in detecting DR and classifying its severity into four categories: Mild, Moderate, Severe, and
Proliferative. The approach focuses on utilizing transfer learning to improve performance on limited datasets, while
techniques such as SMOTE and focal loss are applied to address class imbalance and enhance prediction accuracy. A
web-based interface is developed using Django, enabling easy access for healthcare professionals to test and view
predictions from each model. This modular system allows flexible analysis and benchmarking of different CNN
architec- tures for DR diagnosis, providing a straightforward yet effective support tool for early detection.

Keywords: Diabetic Retinopathy, Deep Learning, Con- volutional Neural Networks, InceptionV3, DenseNet,
ResNet, MobileNet, Classification, SMOTE, Focal Loss, Django.

I. INTRODUCTION

Diabetic Retinopathy (DR) is a progressive eye dis- ease resulting from prolonged diabetes, characterized
by damage to the retina’s blood vessels. It stands as one of the foremost causes of irreversible blindness
among working-age adults worldwide. DR progresses through well-defined stages, beginning with mild
non-proliferative abnormalities and potentially advancing to proliferative diabetic retinopathy, which can
lead to complete vision loss if not detected and managed in time [1]. These clinical challenges make early
detection and accurate classification of DR severity essential for both effective treatment and public health
management.

Pathological indicators of DR—such as microa- neurysms, hemorrhages, hard exudates, cotton wool spots,
and neovascularization—are visible in retinal fundus im- ages and typically identified by trained

ophthalmologists. However, manual screening methods are time-intensive, susceptible to inter-observer

variability, and often limited by the availability of specialized healthcare profession- als, especially in low-

resource settings [2]. Consequently, automated diagnostic systems using deep learning have emerged as

a promising alternative.

According to the International Diabetes Federation (IDF), over 537 million people were living with

diabetes in 2021, with projections estimating a rise to 643 million by 2030 and 783 million by 2045 [3].

With this increase in the diabetic population, the demand for scalable and efficient DR screening

solutions is growing rapidly. Au- tomated tools that can assist in mass screenings while maintaining

diagnostic accuracy are critical in addressing this global burden.

Numerous clinical trials, such as the Early Treatment Diabetic Retinopathy Study (ETDRS), have

emphasized that early detection and timely intervention can signifi- cantly lower the risk of vision loss.

ETDRS demonstrated that laser photocoagulation can reduce the risk of severe visual impairment by

over 50% when applied at the correct stage of the disease [4]. However, this benefit hinges on accurate

early-stage diagnosis, underscoring the need for reliable classification models.

This study presents a modular approach where several deep learning models—DenseNet, InceptionV3,

ResNet, and MobileNet—are trained and evaluated independently for DR detection and severity

classification. Rather than employing ensemble techniques or feature fusion, each model is analyzed in
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isolation to assess its individual clas- sification performance. This strategy enables a transparent
comparison across architectures and helps identify the most effective model for DR diagnosis based on
individual metrics. The solution aims to support clinical workflows by providing healthcare professionals
with distinct model outputs through a web-based interface developed using Django, thereby enhancing
accessibility and interpretabil- ity without requiring model-level fusion [5].

Deep learning, particularly convolutional neural net- works (CNNs), has emerged as a powerful approach
in medical image analysis. Gulshan et al. developed one of the earliest CNN-based systems that could
detect referable DR with high sensitivity and specificity, representing a significant advancement in the
use of Al for retinal disease screening [6]. Pre-trained CNN models such as DenseNet,

ResNet, InceptionV3, and MobileNet have demonstrated strong performance in DR detection by
learning rich and hierarchical visual features [7].

In this work, each of these deep learning models is trained and evaluated independently to assess its
individ- ual capacity to classify Diabetic Retinopathy across vari- ous severity stages. This modular
approach enables a de- tailed performance analysis for each architecture without integrating their outputs
or relying on fusion techniques. By isolating models, their strengths and weaknesses in recognizing
specific DR stages—ranging from Mild to Proliferative—can be better understood and benchmarked. A
major challenge in DR detection tasks is class imbalance, where images with early or no DR signif-
icantly outnumber those representing Severe or Prolif- erative stages. To address this, the focal loss
function introduced by Lin et al. is employed. This function adjusts the learning process to focus more on
hard, misclassified examples, thereby enhancing detection capability for mi- nority classes [10].
Furthermore, Synthetic Minority Over- sampling Technique (SMOTE) is used to synthetically
increase underrepresented samples in the training dataset,

reducing class imbalance effects and improving model generalization.

Since CNN-based classification depends heavily on the quality and consistency of input images,
preprocessing techniques are applied to normalize and enhance fun- dus image features. These include
contrast enhancement, Gaussian filtering, and green channel extraction, which improves the visibility of
retinal lesions such as mi- croaneurysms and hemorrhages. For instance, Pratt et al. demonstrated that
preprocessing significantly enhances the ability of CNNs to detect subtle retinal features in early DR cases
[11].

To further mitigate overfitting and improve generaliza- tion, data augmentation techniques are employed
during model training. These include image flipping, rotation, scaling, and cropping. Inspired by the
work of Lam et al., who demonstrated that localized learning via patch- based augmentation improves
small lesion detection, these augmentation strategies simulate real-world variability in retinal images [12].
Each model benefits independently from these augmentations, ensuring robust learning even when
trained in isolation.

By individually training and evaluating each model, this approach enables direct comparison of CNN
architectures without the complexities of integration. This indepen- dent benchmarking supports model
selection and provides clarity on which model performs best under specific clinical conditions,
contributing to a more interpretable and transparent DR screening system.

While hierarchical classification systems have shown promise in improving DR grading accuracy by mim-
icking the diagnostic steps of human experts, our ap- proach focuses instead on analyzing the capabilities
of individual deep learning models without decomposing the classification task. In this study, the full
five-class DR classification—ranging from No DR to Proliferative DR—is handled directly by each model.
This allows a straightforward performance comparison and reveals how well each architecture manages
inter-class ambiguity on its own. Unlike the hierarchical approaches such as that of Quellec et al., our
method maintains a uniform structure for all models, simplifying implementation and evaluation [13].
Explainable Al (XAI) remains a critical component for gaining clinical trust in Al systems. To enhance
inter- pretability in our independently trained models, Gradient- weighted Class Activation Mapping
(Grad-CAM) is em- ployed. Grad-CAM provides heatmaps highlighting the retinal regions that most
influenced the model’s predic- tion, offering a visual explanation for each classification result. This helps
ophthalmologists assess whether model decisions are grounded in medically relevant features, thereby
bridging the gap between black-box models and clinical interpretability [14].

For real-world deployment, each deep learning model is integrated into a modular web application
developed using the Django framework. This system allows healthcare pro- fessionals to upload retinal
fundus images and receive DR severity predictions from multiple models separately. The modularity
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supports clinical experimentation by offering side-by-side model comparisons and enabling selection
based on accuracy, speed, or interpretability. Inspired by the deployment framework designed by
Gargeya and Leng, this architecture ensures realtime usability and is particularly beneficial for
resource-constrained settings where automated DR screening tools can greatly augment limited specialist
availability [15].

In conclusion, recent advancements in preprocessing, data augmentation, model explainability, and real-
time deployment have paved the way for robust DR detec- tion systems. This study contributes to that
progress by independently training and benchmarking multiple deep learning models for direct DR
severity classification. The absence of ensemble fusion and hierarchical workflows allows a clearer analysis

of individual model strengths. Deployed through a scalable Django-based interface, the system offers
practical utility for early DR screening, especially in clinics lacking extensive ophthalmology in-
frastructure.

In this paper, we propose a practical and flexible solution for Diabetic Retinopathy detection and severity
classification by training and evaluating several deep learning models—DenseNet121, InceptionV3,
ResNet, and MobileNetV2—independently. Each model performs the five-class classification task in
isolation, enabling a comparative study of architecture-specific strengths and limitations. Techniques
such as SMOTE and focal loss are applied to address class imbalance, and Grad-CAM is used to
enhance interpretability. The models are em- bedded into a Django-based web interface to support

real-time diagnosis, offering clinicians easy access to predictions from each model. This system is
designed to be scalable, interpretable, and clinically deployable, making it especially useful for both urban
and under- resourced healthcare environments.

II. LITERATURE SURVEY

Over the last decade, extensive research has been carried out to automate the detection and
classification of Diabetic Retinopathy (DR) using artificial intelligence, particularly deep learning
techniques. Earlier studies be- gan with traditional machine learning models applied to hand-crafted
features, but the field has since evolved toward deep convolutional neural networks (CNNs) due to their
superior ability to extract hierarchical features directly from complex retinal images.

A landmark event in this progression was Kaggle’s Diabetic Retinopathy Detection Challenge in 2015,
which accelerated innovation in automated DR grading. One of the top-performing approaches in the
competition employed deep CNNs trained on preprocessed fundus images and achieved impressive
accuracy across various DR severity levels. The use of preprocessing and data augmentation techniques
was critical in enhancing the model’s robustness and generalization ability [16].

Jin et al. proposed a CNN-based approach that fo- cused on image preprocessing and patch-level training.
By analyzing smaller regions of interest within the fundus images, their method was able to capture local
retinal features more effectively. This approach yielded better sensitivity and specificity, particularly in
detecting Moder- ate and Severe DR, demonstrating the benefits of localized feature extraction in CNN-
based classification [17].

Voets et al. explored the benefits of transfer learning by fine-tuning well-known architectures such as
InceptionV3 and ResNet50, originally pre-trained on the ImageNet dataset. Their study revealed that
transfer learning not only reduced the need for large training datasets but also enhanced classification
accuracy and reduced overfitting. Their findings support the use of pre-trained models for improved
performance in DR classification tasks [18].

Wang et al. emphasized the importance of targeting lesion-relevant areas in fundus images by focusing on
high-resolution preprocessing and structured CNN archi- tectures. Although their work involved
attention mod- ules, the underlying insight—that specific retinal regions contribute disproportionately to
DR severity—supports strategies like patch-based learning or preprocessing to enhance feature extraction
without requiring architectural modifications [19].

Zhou et al. conducted a comparative study using multi- ple CNN architectures, including DenseNet,
InceptionV3, and ResNet, to evaluate their individual performance on DR classification. While their
original work included ensemble voting strategies, the independent evaluation of each model provided
valuable insights into architecture- specific strengths. Their results showed that model per- formance
varies significantly with data distribution and preprocessing, reinforcing the need to analyze each model
independently [20].

Gondal et al. focused on improving lesion visibility through advanced preprocessing techniques, which
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en- abled their CNN models to better localize pathological patterns. Although they explored region-based
networks in their implementation, their findings underscore the significance of image clarity and lesion
enhancement in improving DR classification accuracy using standalone CNNs [21].

Li et al. addressed class imbalance—a major challenge in DR datasets—by integrating the Synthetic
Minority Over-sampling Technique (SMOTE) and focal loss into the training pipeline. Their study
showed notable improve- ment in recognizing minority classes such as Proliferative DR, particularly in
recall and Fl-score metrics. These methods are effective when applied to individual mod- els, helping
enhance their detection of underrepresented classes [22].

In summary, previous studies demonstrate the effec- tiveness of individually optimized CNN models
in DR classification. Leveraging preprocessing, transfer learning, and class balancing strategies allows
each architecture to perform reliably on its own, supporting a modular evaluation approach such as
the one adopted in this work. Chakraborty et al. proposed a hybrid model that inte- grated CNN-
based image feature extraction with patient metadata (e.g., age, gender, diabetes duration). Their mul-
timodal system outperformed image-only models, demon- strating the importance of contextual
information in en- hancing model robustness and clinical applicability [23]. Another notable
development came from Tang et al., who introduced a hierarchical multi-label CNN model for DR
classification. The system decomposed the task into smaller sub-tasks: disease detection followed by
severity classification. This two-tiered structure improved model interpretability and reduced confusion
between adjacent

severity classes [24].

Lastly, Rajalakshmi et al. conducted one of the few clinical validation studies on Al-based DR systems.
They implemented a deep learning model in primary healthcare centers across India and evaluated its
performance in screening workflows. The system achieved high sensitivity for referable DR, confirming
that Al models can function as reliable screening assistants in rural and underserved regions [25].
Further advancements in Diabetic Retinopathy (DR) classification have come through the integration of
ex- plainable Al tools. Ribeiro et al. introduced LIME (Lo- cal Interpretable Model-Agnostic
Explanations), a pow- erful method to interpret predictions of complex black- box models. While LIME
was originally developed for general-purpose classification, its application in DR sys- tems has helped
bridge the gap between deep learning pre- dictions and clinical trust. Models integrated with LIME

TABLE [ COMPARISON TABLE OF INDEPENDENT DEEP LEARNING METHODS FOR DR DETECTION

Title Methods Used |Advantages Features ILimitations
lAnalyzed
Diabetic Retinopathy  |[CNN with data [Robust preprocessing [Retinal blood  [Sensitive to class
Detection Challenge [16] augmentation |[improves lesion vessels, lesion  [imbalance
and visibility; competitive [patterns by 85%
preprocessing  |baseline for DR
detection
DRA-Net: Diabetic DenseNet121 [Strong feature reuse; |Deep hierarchicallProne to overfit- ting on
retinopathy analysis via  |(trained in- effective at detecting  (features by 86% |noisy data
attention network [17] dependently) (fine lesion details
Reproduction study: [nceptionV3  |Captures features at  [Multi-scale lesion|Requires large in- put
Development and (trained multiple scales; good [recognition by  [size and tuning
validation of deep independently) (for varied lesion sizes [84%
learning algorithm for
detection of diabetic
retinopathy in retinal
fundus photographs [18]
Attention-based CNN for [ResNet50 Stable training with ~ [Deep residual |[Limited feature diversity
automatic diagnosis of (trained residual connections; feature in smaller
diabetic retinopathy [19] |independently) |good generalization  |learning by datasets
85.2%
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Ensemble deep learning [MobileNetV2 |Low computational [Lightweight and [Less effective on subtle
for diabetic retinopathy |((trained in- cost; ideal for efficient patterns |DR features

detection [20] dependently)  |mobile/edge devices |by 83.7%

Weakly supervised CNN with [mproved small lesion |Lesion visibility |High sensitivity to
localization and contrast detection via improvement by [illumination variance
classification of diabetic |enhancement |enhanced contrast 84.5%

retinopathy lesions in (standalone)

retinal fundus images [21]

Improving classification of]

Learnin

Reduces training data

Feature reuse

Suboptimal for DR-

diabetic retinopathy using [g with needs; quick from Ima- genet [specific features
class-balanced loss and  |(individ adaptation to DR by 82.9%

oversampling [22] ual)

A multimodal approach tolAlexNet with [Simple architecture; |General shape- [Limited capacity for
diabetic retinopathy basic pre- fast training time based fine-grained lesions
detection using deep processing classification by

learning (23] (standalone) 80.2%

Hierarchical classification [CNN trained (Straightforward Basic pixel Susceptible to image
framework for diabetic ~ |on resized implementation; less  [intensity scaling loss
retinopathy using deep  [fundus images [preprocessing required jvariations by

learning (24] 83.5%

Automated diabetic DR Detection |[Demonstrated real-  [DR detection in [Subject to
retinopathy detection in  |using world clinical practical environmental image

smartphone-based fundus
photography using deep
learning in Indian
population [25]

[ndividual
CNN (basic)

applicability

conditions by

82%

noise

'Why should I trust you?: |[CNNs with Dropout improves Regularized Training stability with
Explaining the predictions|dropout generalization and lesion feature deep net- works
of any classifier [20] regularization [reduces overfitting  |learning by 84%

(independent)
Federated learning of Standalone Better local lesion Focused lesion  [ROI preprocessing
predictive models from  |[CNNs on pre- [focus; higher classification by [errors affect output

federated electronic health
records [27]

processed ROI
patches

sensitivity to small
features

83%

Deep learning for diabetes|Basic CNN No dependency on  [Raw feature Long training time,
prediction using trained from [external datasets; learning requires tuning
longitudinal electronic  scratch complete control over without
health record data [28] architecture pretraining by

80.5%
IAn effective smartphone- [MobileNetV2 [Portable; supports Mobile-level DR [Performance drop on

based framework for early point-of-care screening [detection by low-res inputs
detection of diabetes using|deployed on 81.7%
machine learning [29] \Android
(standalone)
Dissecting racial bias in an[Independent  |Highlights bias issues; |Focus on INeeds fairness- aware re-
algorithm used to manage [CNNs for enables equitable Al [demographic training
the health of populations [fairness audit |development fairness

(30]

can highlight which parts of the retinal image contributed to a certain classification decision, allowing
physicians to better understand and validate Al-based diagnoses [26].
Another emerging area of research is federated learn- ing, which enables collaborative model training
across multiple healthcare institutions without requiring the ex- change of raw patient data. Brisimi et al.
demonstrated that federated learning can preserve privacy while achiev- ing strong classification
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performance in chronic disease datasets. Although this technique has not been directly applied in our
current independent model approach, its potential for creating generalized DR models across de-
centralized datasets remains significant and represents a promising direction for future work [27].
Efforts have also been made to incorporate temporal patient information into DR prediction models.
Zhu etal. utilized electronic health records (EHRs) and Long Short-Term Memory (LSTM) networks to
forecast dia- betic complications over time. While their work focuses on sequential data rather than image-
based diagnosis, it highlights the value of integrating longitudinal patient histories with static image
analysis to enhance DR risk stratification. Such multi-modal systems, though beyond the scope of our
single-model image-based approach, may complement future versions of DR detection frameworks [28].
In the pursuit of real-time DR detection, lightweight CNN architectures have gained traction for mobile
de- ployment. Ali et al. proposed a smartphone-integrated system using MobileNet to perform on-device
DR clas- sification. Their solution emphasized computational effi- ciency and demonstrated high
sensitivity, making it ideal for use in low-resource settings and rural clinics. This aligns with our decision
to include MobileNetV2 as one of the independently evaluated models in our system for its balance of
speed and accuracy [29].

The ethical implications of Al in healthcare have also received critical attention. Obermeyer et al.
uncovered racial and socio-economic biases in widely-used commer- cial health algorithms, raising
concerns about fairness and equity in Al-driven diagnostics. These findings underscore the importance of
validating deep learning models—such as those used in DR detection—across diverse demo- graphic groups
to ensure equitable outcomes. Although our system does not directly address fairness metrics,
incorporating such evaluations in future iterations will be essential for building trustworthy diagnostic
tools [30].

Collectively, these studies showcase the progress in deep learning-based DR classification and stress the
im- portance of model transparency, computational efficiency, and ethical deployment. Our work builds
upon this foun- dation by independently training and evaluating widely adopted CNN architectures—
DenseNet121, InceptionV3, ResNet50, and MobileNetV2—for DR severity classifica- tion. Instead of
relying on ensemble strategies or attention

Data Augmentation: To increase training diver- sity, techniques such as rotation, flipping, brightness
shifts, and zooming are applied.

B. Independent Model Training and Evaluation

Instead of using ensemble learning, each deep learn- ing model is trained and evaluated independently.
The selected CNN architectures include:

- DenseNet121

- InceptionV3

- ResNet50

- MobileNetV2

Each model uses transfer learning from ImageNet pre- trained weights, with the final fully connected
layers replaced to suit the 5-class DR classification task (No DR, Mild, Moderate, Severe, Proliferative).
Loss Function and Optimization: For model optimiza- tion, categorical cross-entropy and Adam optimizer
are employed. Evaluation metrics include Accuracy, Preci- sion, Recall, and Fl-score. Each model is
validated on a hold-out test set to assess its individual performance.

L = —Zy log(y™) N

modules, our system adopts a modular approach to ana- lyze and benchmark each model’s individual
performance, aiming for simplicity, interpretability, and practical de-

Where:

vi is the true label (one-hot encoded)

- y*i is the predicted softmax
probability for class i

nr. METHODOLOGY

The methodology for the proposed diabetic retinopathy (DR) classification system is based on an
independent evaluation strategy using multiple deep learning mod- els. Each model is trained, validated,
and tested sepa- rately without any ensemble learning, feature fusion, or attention-based techniques. The
objective is to rigorously evaluate and benchmark the standalone capabilities of well-known convolutional
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neural networks (CNNs) for DR detection and classification.

A. Data Acquisition and Preprocessing

High-resolution retinal fundus images are obtained from public datasets such as EyePACS and APTOS.
These images typically exhibit variations in illumination, con- trast, and noise. Therefore, standardized
preprocessing is applied to improve feature visibility and ensure consistent input for the models. The
preprocessing pipeline includes:

- Resizing: All images are resized to a uniform dimen- sion (e.g., 224 x 224) for compatibility with
standard CNN input layers.

- Green Channel Extraction: Retinal vessels and lesions are best visualized in the green channel.
- Contrast Enhancement: Histogram equalization and CLAHE are applied to improve image
contrast.

- Noise Reduction: Gaussian blur is used to smooth background noise.

C. Class Imbalance Handling

Due to severe class imbalance, especially for Severe and Proliferative stages, two independent strategies
are applied per model:

- SMOTE: Used to generate synthetic samples for underrepresented classes in the training data.

- Focal Loss: Replaces cross-entropy loss in some model variants to emphasize learning from hard
samples.

The Focal Loss is defined as:

FL(P:) = _at(l _Pt)y Iog(pt)

Where:

- p¢ is the predicted probability for the true class.

- a: is the weighting factor for class imbalance.

- Y is the focusing parameter to penalize well- classified examples.

This approach improves performance on minority classes by directing more gradient attention to misclas-
sified and rare cases.

D. Classification Strategy

Each model is trained to classify DR into five cate- gories directly (multi-class classification). No
hierarchical or binary-first classification scheme is employed. This simplifies the learning architecture
and isolates model performance.

( Django Web Application
Deployment
4
= @ Backend
Preprocessing e
N _/
[ DenseNet121 1 - = "" = N
Accuracy ey valuation
Precision [] []U 0 Accuracy
g mat Recall '] Precision
Processing| \ l] ] n Recall
Retinal InceptionV3 i UU Fl-score )
fundus images ] @ Accuracy [~ T
Precision -~ -~
L Recall y Frontend
é ~ )
> ResNet50 . </> [—]
Accuracy
N Precision = voms ™
= Recall ) ! Frontend o

Fig. 1. Overall architecture of the Hybrid Deep Learning Framework for Accurate Diabetic Retinopathy
Classification
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Fig. 2. Accuracy Graph visualization of Diabetic Retinopathy

E. Implementation and Deployment

All models are implemented using Python with Tensor- Flow and Keras frameworks. Each model is
trained and evaluated independently, and results are compared in a tabular format to identify the best-
performing architecture. Deployment is achieved via a Django-based web ap- plication. Medical
professionals can upload images and

i -
. -

Fig. 3. Confusion Matrix of the Model

select which trained model to use for prediction. This flexible deployment strategy allows direct
observation of how different CNNs perform on the same input image without ensemble interference.
The web interface is lightweight and mobile-accessible, ensuring compatibility in clinical environments,
especially in rural or under-resourced settings.

1V. IMPLEMENTATION

The implementation of the proposed diabetic retinopa- thy classification system involves a structured
pipeline en-

compassing data preprocessing, individual model training, evaluation, and deployment. Each deep
learning model is trained and evaluated independently to understand its standalone performance. The
entire workflow is devel- oped using Python, and the deployment is handled via a Django-based web
interface.

A. Data Preprocessing and Augmentation

All input retinal fundus images are resized to match the input size required by the specific pre-trained
CNN models (e.g., 224x224 for DenseNet121, MobileNetV2, ResNet; 299%x299 for InceptionV3). To
enhance lesion visibility, the green channel is extracted from RGB images as it offers better contrast for
retinal features. Contrast is further improved using histogram equalization, and Gaus- sian blurring is
applied to reduce high-frequency noise. Augmentation strategies such as horizontal and vertical flipping,
rotations, zooming, and brightness adjustments are applied to artificially expand the dataset and reduce
overfitting.

B. Individual Model Training and Evaluation

Four stateoftheart deep learning mod- els—DenseNetl121, InceptionV3, MobileNetV2, and
ResNet—are employed independently for diabetic retinopathy classification. Transfer learning is applied
by initializing the networks with ImageNet weights and fine-tuning the deeper layers. Early layers are kept
frozen to preserve learned low-level features. Each model is compiled using the Adam optimizer and
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trained using the focal loss function to address class imbalance issues commonly found in medical
datasets. The models are trained separately and evaluated based on standard performance metrics:
accuracy, precision, recall, and Fl-score.

C. Hierarchical Classification Worktflow

The classification pipeline is divided into two stages. In the first stage, the model identifies whether
diabetic retinopathy is present or not. If DR is detected, the image is passed to the second stage, where
the severity level (Mild, Moderate, Severe, or Proliferative) is classified. This hierarchical approach
simplifies the decision-making process and mimics real-world clinical workflows for improved
interpretability and accuracy.

D. Web Interface Development

The web-based user interface is implemented using the Django framework and includes the following
key components:

- Upload Interface: Allows users to upload retinal fundus images in common formats such as JPEG
or PNG.

- Prediction Dashboard: Displays the predicted dia- betic retinopathy status and severity, along with
the associated probability scores.

- Admin Panel: Provides administrative capabilities for model management, feedback review, and
dataset maintenance.

The uploaded image is routed through the backend pipeline where preprocessing and prediction are
executed using the selected deep learning model. Results are dis- played in real-time to support clinical
decision-making.

E. Pseudo code

import numpy as np

import pandas as pd

import cv2, os

from sklearn.model_selection import train_test_split

from imblearn.over_sampling import SMOTE

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.applications import DenseNet121, InceptionV3, ResNet50, MobileNetV2
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Dropout, Input
from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

# Custom Focal Loss Function (as per Lin et al. 2020)
def focal_loss(gamma=2., alpha=.25):
def focal_loss_fixed(y_true, y_pred):
y_pred = tf.clip_by_value(y_pred, le-7, 1-1e-7)
cross_entropy = -y_true * tf.math.log(y_pred)
weight = alpha * y_true * tf.pow(1 - y_pred, gamma)
loss = weight * cross_entropy
return tf.reduce_sum(loss, axis=1)
return focal_loss_fixed
# Data Preprocessing
def preprocess_image(img_path, size=(224,224)):
img = cv2.imread(img_path)
img = cv2.resize(img, size)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Green channel extraction
green_channel = img(:,:,1]
# Contrast enhancement
green_channel = cv2.equalizeHist(green_channel)
# Gaussian filtering
green_channel = cv2.GaussianBlur(green_channel, (3,3), 0)
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# Expand back to 3 channels for model input
img = cv2.merge([green_channel]*3)
return img
# Load your image paths and labels from CSV
df = pd.read_csv('labels.csv') # columns: image, label
images = [preprocess_image(os.path.join('images', fname)) for fname in dff'image']]
labels = df]'label'].values
# Split data
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, stratify=labels)
# Reshape & Normalize
X_train = np.array(X_train) / 255.0
X_test = np.array(X_test) / 255.0

# One-hot encode labels
y_train = tf.keras.utils.to_categorical(y_train, num_classes=>5)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=5)

# Address class imbalance with SMOTE (apply after flattening)

n_samples, h, w, ¢ = X_train.shape

X_train_flat = X_train.reshape(n_samples, -1)

smote = SMOTE()

X_train_flat, y_train_resampled = smote.fit_resample(X_train_flat, np.argmax(y_train, axis=1))
X_train = X_train_flat.reshape(-1, h, w, c)

y_train = tf.keras.utils.to_categorical(y_train_resampled, num_classes=5)

# Data Augmentation
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.10,
height_shift_range=0.10,
horizontal_flip=True,
vertical_flip=True,
zoom_range=0.1,
brightness_range=[0.8, 1.2]
)
train_gen = datagen.flow(X_train, y_train, batch_size=32)
val_gen = ImageDataGenerator().flow(X_test, y_test, batch_size=32)

# Model Selection Example (DenseNet121 shown; switch to InceptionV3, ResNet50, MobileNetV2 as
desired)
def build_model(base_model):

inp = Input(shape=(224,224,3))

x = base_model(weights='imagenet', include_top=False, input_tensor=inp)

x = GlobalAveragePooling2 D()(x.output)

x = Dropout(0.5)(x)

out = Dense(5, activation='softmax’)(x)

model = Model(inputs=inp, outputs=out)

return model

base_model = DenseNet121 # or InceptionV3, ResNet50, MobileNetV2 (set input size accordingly)
model = build_model(base_model())

# Compile

model.compile(
optimizer=Adam(lr=1e-4),
loss=focal_loss(gamma=2., alpha=.25),
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metrics=['accuracy']

)

# Train
callbacks = [

ModelCheckpoint('best_model.h5', save_best_only=True, monitor='val_loss', mode="min’),

EarlyStopping(monitor='val_loss', patience=6)
J
model.fit(

train_gen,

validation_data=val_gen,

steps_per_epoch=len(X_train)//32,

epochs=50,

validation_steps=len(X_test)//32,

callbacks=callbacks
)
F. Testing and Optimization
Each trained model is subjected to rigorous testing using unseen validation data. Hyperparameters such
as batch size, learning rate, and the number of epochs are fine-tuned to optimize model performance.
Training is accelerated using NVIDIA CUDA-enabled GPUs. Per- formance metrics and training curves
are logged and visualized using tools like Matplotlib and TensorBoard to track model convergence and
detect overfitting.
G. Deployment
The final models are deployed in a production en- vironment using Docker containers for consistent
and scalable deployment. The system is hosted on a cloud server, ensuring accessibility from multiple
devices. The architecture supports both CPU and GPU execution envi- ronments. All components are
modular, allowing future upgrades, model replacements, or database integration without significant
reconfiguration.

V. RESULT AND DISCUSSION

The proposed diabetic retinopathy classification system was thoroughly evaluated using a labeled dataset

of retinal fundus images. Each deep learning model was trained and evaluated independently to assess its

standalone perfor- mance. This modular approach avoids ensemble learning, feature fusion, and

attention mechanisms, thereby en- abling a more interpretable and direct comparison between different

models.

A.  Model Performance

Each model—DenseNet121, InceptionV3, ResNet, and MobileNetV2—was fine-tuned and tested

individually. Performance was measured using accuracy, precision, recall, and Fl-score. The models

demonstrated varying levels of performance in classifying the severity levels of diabetic retinopathy,

reflecting their architectural differ- ences and strengths in feature extraction.

DenseNet121 achieved an accuracy of 86.2%, showcas- ing strong capabilities in identifying hierarchical

features. InceptionV3 provided an accuracy of 80.7% due to its ability to capture multi-scale features.

ResNet performed well with an accuracy of 83.1%, benefiting from its residual learning structure.

MobileNetV2, optimized for lightweight computation, achieved an accuracy of 81.9%.

B. Confusion Matrix and Class-Wise Accuracy

Each model’s confusion matrix was analyzed to identify classwise strengths and weaknesses. Most
confusion was observed between the Moderate and Severe DR classes due to subtle variations in retinal
features. However, the models still managed to distinguish the extreme cases (No DR vs. Proliferative DR)
effectively, indicating robustness in detecting critical conditions.

C. Result Screenshots

Figures below display the output of the deployed web application showcasing real-time prediction
results, probability scores, and severity classification of diabetic retinopathy using individual models.
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DISCUSSION

The independent evaluation of each deep learning model allowed for detailed insight into their
classifica- tion capabilities without the complexity introduced by ensemble strategies. DenseNet121
was most effective in recognizing fine-grained patterns such as microaneurysms and hemorrhages.
InceptionV3 demonstrated strength in general feature detection due to its multi-scale archi- tecture.
ResNet’s residual connections facilitated stable gradient flow during training, leading to solid
accuracy. MobileNetV2 performed relatively well while maintaining efficiency, making it suitable for
lightweight deployments. By avoiding ensemble fusion and attention layers, the system maintains
transparency and simplicity. Each model can be directly interpreted and deployed individually based
on the desired trade-off between performance and

computational overhead.

Furthermore, the system exhibited consistent classifica- tion results under varying conditions such as
image noise and resolution variability, demonstrating its readiness for practical clinical application.
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TABLE II PERFORMANCE COMPARISON OF DEEP LEARNING MODELS FOR DR CLASSIFICATION

Model Acc. Prec. [Recall F1

DenseNet121 [86.20 35.50 [84.90 35.20
InceptionV3 [80.70 79.80 [78.50 79.10
ResNet50 95.94 96.10 95.60 95.85
MobileNetV2 [94.01 93.80 [93.50 93.65

VL RESULTS AND DISCUSSION

In this study, diabetic retinopathy (DR) classification was performed by training and evaluating four deep
learn- ing models—DenseNet121, InceptionV3, ResNet50, and MobileNetV2—independently. Unlike
ensemble-based or attention-driven systems, our approach aims to assess the standalone effectiveness of
each model without feature fusion or hierarchical classification logic. This modular method promotes
simplicity, interpretability, and indepen- dent performance analysis.

A. Model Performance
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Fig. 7. Accuracy Graph visualization of Diabetic Retinopathy

Each model was trained and tested separately on the same retinal fundus image dataset using consistent
prepro- cessing and evaluation protocols. The classification per- formance was measured using metrics
such as accuracy, precision, recall, and Fl-score.

The independent evaluation results are summarized as follows:

- DenseNet121 achieved an accuracy of 86.2%. It demonstrated strength in capturing detailed lesion
features such as microaneurysms and hemorrhages due to its dense connectivity.

- InceptionV3 provided an accuracy of 80.7%, per- forming well in identifying diabetic retinopathy
stages by learning multi-scale spatial patterns.

- ResNet50 attained an accuracy of 95.94%, benefiting from residual connections that helped retain
gradient flow and avoid vanishing gradients.

- MobileNetV2 achieved an accuracy of 94.01%. While slightly less accurate, it offered the advan-
tage of reduced computational complexity, making it suitable for mobile or embedded deployment.

B. Confusion Matrix and Class-Wise Accuracy

Confusion matrices were analyzed for each model to determine class-wise performance. Most models
showed high accuracy in identifying "No DR” and ”Proliferative DR” categories. However, some
misclassification occurred between "Moderate” and ”Severe” stages, likely due to the subtle differences in
lesion presentation.

Despite the absence of attention mechanisms, the mod- els were capable of recognizing clinically
significant features with reasonable accuracy.

C. Result Screenshots

The following figures display the output interface of the implemented system, including image upload
features, prediction results, confidence scores, and visual class distributions.
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stable and consistent results, and MobileNetV2 stood out for its speed and low-resource requirements.
By training and testing the models independently, this study promotes transparency and avoids the
complexity introduced by ensemble or attention-based architectures. This approach also allows each
model to be deployed or further optimized based on specific clinical or computa- tional requirements.
Overall, the system demonstrated good generalization across DR stages, even under variable image
bowecors Dt sty ontocton prote oot gt (Y « on—making it a practical
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Fig. 8. Prediction output of Diabetic Retinopathy
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D. Discussion

The individual evaluation of deep learning models highlighted the unique strengths and limitations of
each architecture. DenseNet121 outperformed others due to its feature reuse capability, while
InceptionV3 excelled at capturing multi-scale information. ResNet50 provided
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