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Abstract 
Diabetic Retinopathy (DR) is a severe complication of diabetes that can lead to vision loss if not de- tected 
and treated early. Traditional diagnosis in- volves manual examination of retinal fundus images by ophthalmologists, 
which is often time-consuming and prone to subjectivity. This paper presents an automated solution for DR detection 
and severity clas- sification by employing multiple advanced deep learn- ing models—DenseNet, InceptionV3, ResNet, 
and Mo- bileNet—trained and evaluated independently. Each model is developed and tested separately to analyze its 
individual effectiveness in detecting DR and classifying its severity into four categories: Mild, Moderate, Severe, and 
Proliferative. The approach focuses on utilizing transfer learning to improve performance on limited datasets, while 
techniques such as SMOTE and focal loss are applied to address class imbalance and enhance prediction accuracy. A 
web-based interface is developed using Django, enabling easy access for healthcare professionals to test and view 
predictions from each model. This modular system allows flexible analysis and benchmarking of different CNN 
architec- tures for DR diagnosis, providing a straightforward yet effective support tool for early detection. 
Keywords: Diabetic Retinopathy, Deep Learning, Con- volutional Neural Networks, InceptionV3, DenseNet, 
ResNet, MobileNet, Classification, SMOTE, Focal Loss, Django. 
 
I. INTRODUCTION 
Diabetic Retinopathy (DR) is a progressive eye dis- ease resulting from prolonged diabetes, characterized 
by damage to the retina’s blood vessels. It stands as one of the foremost causes of irreversible blindness 
among working-age adults worldwide. DR progresses through well-defined stages, beginning with mild 
non-proliferative abnormalities and potentially advancing to proliferative diabetic retinopathy, which can 
lead to complete vision loss if not detected and managed in time [1]. These clinical challenges make early 
detection and accurate classification of DR severity essential for both effective treatment and public health 
management. 
Pathological indicators of DR—such as microa- neurysms, hemorrhages, hard exudates, cotton wool spots, 
and neovascularization—are visible in retinal fundus im- ages and typically identified by trained 
ophthalmologists. However, manual screening methods are time-intensive, susceptible to inter-observer 
variability, and often limited by the availability of specialized healthcare profession- als, especially in low-
resource settings [2]. Consequently, automated diagnostic systems using deep learning have emerged as 
a promising alternative. 
According to the International Diabetes Federation (IDF), over 537 million people were living with 
diabetes in 2021, with projections estimating a rise to 643 million by 2030 and 783 million by 2045 [3]. 
With this increase in the diabetic population, the demand for scalable and efficient DR screening 
solutions is growing rapidly. Au- tomated tools that can assist in mass screenings while maintaining 
diagnostic accuracy are critical in addressing this global burden. 
Numerous clinical trials, such as the Early Treatment Diabetic Retinopathy Study (ETDRS), have 
emphasized that early detection and timely intervention can signifi- cantly lower the risk of vision loss. 
ETDRS demonstrated that laser photocoagulation can reduce the risk of severe visual impairment by 
over 50% when applied at the correct stage of the disease [4]. However, this benefit hinges on accurate 
early-stage diagnosis, underscoring the need for reliable classification models. 
This study presents a modular approach where several deep learning models—DenseNet, InceptionV3, 
ResNet, and MobileNet—are trained and evaluated independently for DR detection and severity 
classification. Rather than employing ensemble techniques or feature fusion, each model is analyzed in 
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isolation to assess its individual clas- sification performance. This strategy enables a transparent 
comparison across architectures and helps identify the most effective model for DR diagnosis based on 
individual metrics. The solution aims to support clinical workflows by providing healthcare professionals 
with distinct model outputs through a web-based interface developed using Django, thereby enhancing 
accessibility and interpretabil- ity without requiring model-level fusion [5]. 
Deep learning, particularly convolutional neural net- works (CNNs), has emerged as a powerful approach 
in medical image analysis. Gulshan et al. developed one of the earliest CNN-based systems that could 
detect referable DR with high sensitivity and specificity, representing a significant advancement in the 
use of AI for retinal disease screening [6]. Pre-trained CNN models such as DenseNet, 
ResNet, InceptionV3, and MobileNet have demonstrated strong performance in DR detection by 
learning rich and hierarchical visual features [7]. 
In this work, each of these deep learning models is trained and evaluated independently to assess its 
individ- ual capacity to classify Diabetic Retinopathy across vari- ous severity stages. This modular 
approach enables a de- tailed performance analysis for each architecture without integrating their outputs 
or relying on fusion techniques. By isolating models, their strengths and weaknesses in recognizing 
specific DR stages—ranging from Mild to Proliferative—can be better understood and benchmarked. A 
major challenge in DR detection tasks is class imbalance, where images with early or no DR signif- 
icantly outnumber those representing Severe or Prolif- erative stages. To address this, the focal loss 
function introduced by Lin et al. is employed. This function adjusts the learning process to focus more on 
hard, misclassified examples, thereby enhancing detection capability for mi- nority classes [10]. 
Furthermore, Synthetic Minority Over- sampling Technique (SMOTE) is used to synthetically 
increase underrepresented samples in the training dataset, 
reducing class imbalance effects and improving model generalization. 
Since CNN-based classification depends heavily on the quality and consistency of input images, 
preprocessing techniques are applied to normalize and enhance fun- dus image features. These include 
contrast enhancement, Gaussian filtering, and green channel extraction, which improves the visibility of 
retinal lesions such as mi- croaneurysms and hemorrhages. For instance, Pratt et al. demonstrated that 
preprocessing significantly enhances the ability of CNNs to detect subtle retinal features in early DR cases 
[11]. 
To further mitigate overfitting and improve generaliza- tion, data augmentation techniques are employed 
during model training. These include image flipping, rotation, scaling, and cropping. Inspired by the 
work of Lam et al., who demonstrated that localized learning via patch- based augmentation improves 
small lesion detection, these augmentation strategies simulate real-world variability in retinal images [12]. 
Each model benefits independently from these augmentations, ensuring robust learning even when 
trained in isolation. 
By individually training and evaluating each model, this approach enables direct comparison of CNN 
architectures without the complexities of integration. This indepen- dent benchmarking supports model 
selection and provides clarity on which model performs best under specific clinical conditions, 
contributing to a more interpretable and transparent DR screening system. 
While hierarchical classification systems have shown promise in improving DR grading accuracy by mim- 
icking the diagnostic steps of human experts, our ap- proach focuses instead on analyzing the capabilities 
of individual deep learning models without decomposing the classification task. In this study, the full 
five-class DR classification—ranging from No DR to Proliferative DR—is handled directly by each model. 
This allows a straightforward performance comparison and reveals how well each architecture manages 
inter-class ambiguity on its own. Unlike the hierarchical approaches such as that of Quellec et al., our 
method maintains a uniform structure for all models, simplifying implementation and evaluation [13]. 
Explainable AI (XAI) remains a critical component for gaining clinical trust in AI systems. To enhance 
inter- pretability in our independently trained models, Gradient- weighted Class Activation Mapping 
(Grad-CAM) is em- ployed. Grad-CAM provides heatmaps highlighting the retinal regions that most 
influenced the model’s predic- tion, offering a visual explanation for each classification result. This helps 
ophthalmologists assess whether model decisions are grounded in medically relevant features, thereby 
bridging the gap between black-box models and clinical interpretability [14]. 
For real-world deployment, each deep learning model is integrated into a modular web application 
developed using the Django framework. This system allows healthcare pro- fessionals to upload retinal 
fundus images and receive DR severity predictions from multiple models separately. The modularity 
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supports clinical experimentation by offering side-by-side model comparisons and enabling selection 
based on accuracy, speed, or interpretability. Inspired by the deployment framework designed by 
Gargeya and Leng, this architecture ensures real-time usability and is particularly beneficial for 
resource-constrained settings where automated DR screening tools can greatly augment limited specialist 
availability [15]. 
In conclusion, recent advancements in preprocessing, data augmentation, model explainability, and real-
time deployment have paved the way for robust DR detec- tion systems. This study contributes to that 
progress by independently training and benchmarking multiple deep learning models for direct DR 
severity classification. The absence of ensemble fusion and hierarchical workflows allows a clearer analysis 
of individual model strengths. Deployed through a scalable Django-based interface, the system offers 
practical utility for early DR screening, especially in clinics lacking extensive ophthalmology in- 
frastructure. 
In this paper, we propose a practical and flexible solution for Diabetic Retinopathy detection and severity 
classification by training and evaluating several deep learning models—DenseNet121, InceptionV3, 
ResNet, and MobileNetV2—independently. Each model performs the five-class classification task in 
isolation, enabling a comparative study of architecture-specific strengths and limitations. Techniques 
such as SMOTE and focal loss are applied to address class imbalance, and Grad-CAM is used to 
enhance interpretability. The models are em- bedded into a Django-based web interface to support 
real-time diagnosis, offering clinicians easy access to predictions from each model. This system is 
designed to be scalable, interpretable, and clinically deployable, making it especially useful for both urban 
and under- resourced healthcare environments. 
 
II. LITERATURE SURVEY 
Over the last decade, extensive research has been carried out to automate the detection and 
classification of Diabetic Retinopathy (DR) using artificial intelligence, particularly deep learning 
techniques. Earlier studies be- gan with traditional machine learning models applied to hand-crafted 
features, but the field has since evolved toward deep convolutional neural networks (CNNs) due to their 
superior ability to extract hierarchical features directly from complex retinal images. 
A landmark event in this progression was Kaggle’s Diabetic Retinopathy Detection Challenge in 2015, 
which accelerated innovation in automated DR grading. One of the top-performing approaches in the 
competition employed deep CNNs trained on preprocessed fundus images and achieved impressive 
accuracy across various DR severity levels. The use of preprocessing and data augmentation techniques 
was critical in enhancing the model’s robustness and generalization ability [16]. 
Jin et al. proposed a CNN-based approach that fo- cused on image preprocessing and patch-level training. 
By analyzing smaller regions of interest within the fundus images, their method was able to capture local 
retinal features more effectively. This approach yielded better sensitivity and specificity, particularly in 
detecting Moder- ate and Severe DR, demonstrating the benefits of localized feature extraction in CNN-
based classification [17]. 
Voets et al. explored the benefits of transfer learning by fine-tuning well-known architectures such as 
InceptionV3 and ResNet50, originally pre-trained on the ImageNet dataset. Their study revealed that 
transfer learning not only reduced the need for large training datasets but also enhanced classification 
accuracy and reduced overfitting. Their findings support the use of pre-trained models for improved 
performance in DR classification tasks [18]. 
Wang et al. emphasized the importance of targeting lesion-relevant areas in fundus images by focusing on 
high-resolution preprocessing and structured CNN archi- tectures. Although their work involved 
attention mod- ules, the underlying insight—that specific retinal regions contribute disproportionately to 
DR severity—supports strategies like patch-based learning or preprocessing to enhance feature extraction 
without requiring architectural modifications [19]. 
Zhou et al. conducted a comparative study using multi- ple CNN architectures, including DenseNet, 
InceptionV3, and ResNet, to evaluate their individual performance on DR classification. While their 
original work included ensemble voting strategies, the independent evaluation of each model provided 
valuable insights into architecture- specific strengths. Their results showed that model per- formance 
varies significantly with data distribution and preprocessing, reinforcing the need to analyze each model 
independently [20]. 
Gondal et al. focused on improving lesion visibility through advanced preprocessing techniques, which 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025  
https://theaspd.com/index.php 

3929 

 

en- abled their CNN models to better localize pathological patterns. Although they explored region-based 
networks in their implementation, their findings underscore the significance of image clarity and lesion 
enhancement in improving DR classification accuracy using standalone CNNs [21]. 
Li et al. addressed class imbalance—a major challenge in DR datasets—by integrating the Synthetic 
Minority Over-sampling Technique (SMOTE) and focal loss into the training pipeline. Their study 
showed notable improve- ment in recognizing minority classes such as Proliferative DR, particularly in 
recall and F1-score metrics. These methods are effective when applied to individual mod- els, helping 
enhance their detection of underrepresented classes [22]. 
In summary, previous studies demonstrate the effec- tiveness of individually optimized CNN models 
in DR classification. Leveraging preprocessing, transfer learning, and class balancing strategies allows 
each architecture to perform reliably on its own, supporting a modular evaluation approach such as 
the one adopted in this work. Chakraborty et al. proposed a hybrid model that inte- grated CNN-
based image feature extraction with patient metadata (e.g., age, gender, diabetes duration). Their mul- 
timodal system outperformed image-only models, demon- strating the importance of contextual 
information in en- hancing model robustness and clinical applicability [23]. Another notable 
development came from Tang et al., who introduced a hierarchical multi-label CNN model for DR 
classification. The system decomposed the task into smaller sub-tasks: disease detection followed by 
severity classification. This two-tiered structure improved model interpretability and reduced confusion 
between adjacent 
severity classes [24]. 
Lastly, Rajalakshmi et al. conducted one of the few clinical validation studies on AI-based DR systems. 
They implemented a deep learning model in primary healthcare centers across India and evaluated its 
performance in screening workflows. The system achieved high sensitivity for referable DR, confirming 
that AI models can function as reliable screening assistants in rural and underserved regions [25]. 
Further advancements in Diabetic Retinopathy (DR) classification have come through the integration of 
ex- plainable AI tools. Ribeiro et al. introduced LIME (Lo- cal Interpretable Model-Agnostic 
Explanations), a pow- erful method to interpret predictions of complex black- box models. While LIME 
was originally developed for general-purpose classification, its application in DR sys- tems has helped 
bridge the gap between deep learning pre- dictions and clinical trust. Models integrated with LIME 
 
TABLE I COMPARISON TABLE OF INDEPENDENT DEEP LEARNING METHODS FOR DR DETECTION 
 

Title Methods Used Advantages Features 
Analyzed 

Limitations 

Diabetic Retinopathy 
Detection Challenge [16] 

CNN with data 
augmentation 
and 
preprocessing 

Robust preprocessing 
improves lesion 
visibility; competitive 
baseline for DR 
detection 

Retinal blood 
vessels, lesion 
patterns by 85% 

Sensitive to class 
imbalance 

DRA-Net: Diabetic 
retinopathy analysis via 
attention network [17] 

DenseNet121 
(trained in- 
dependently) 

Strong feature reuse; 
effective at detecting 
fine lesion details 

Deep hierarchical 
features by 86% 

Prone to overfit- ting on 
noisy data 

Reproduction study: 
Development and 
validation of deep 
learning algorithm for 
detection of diabetic 
retinopathy in retinal 
fundus photographs [18] 

InceptionV3 
(trained 
independently) 

Captures features at 
multiple scales; good 
for varied lesion sizes 

Multi-scale lesion 
recognition by 
84% 

Requires large in- put 
size and tuning 

Attention-based CNN for 
automatic diagnosis of 
diabetic retinopathy [19] 

ResNet50 
(trained 
independently) 

Stable training with 
residual connections; 
good generalization 

Deep residual
 feature 
learning by 
85.2% 

Limited feature diversity
 in smaller 
datasets 
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Ensemble deep learning 
for diabetic retinopathy 
detection [20] 

MobileNetV2 
(trained in- 
dependently) 

Low computational 
cost; ideal for 
mobile/edge devices 

Lightweight and 
efficient patterns 
by 83.7% 

Less effective on subtle 
DR features 

Weakly supervised 
localization and 
classification of diabetic 
retinopathy lesions in 
retinal fundus images [21] 

CNN with 
contrast 
enhancement 
(standalone) 

Improved small lesion 
detection via 
enhanced contrast 

Lesion visibility 
improvement by 
84.5% 

High sensitivity to 
illumination variance 

Improving classification of 
diabetic retinopathy using 
class-balanced loss and 
oversampling [22] 

Learnin
g with 
(individ
ual) 

Reduces training data 
needs; quick 
adaptation to DR 

Feature reuse 
from Ima- genet 
by 82.9% 

Suboptimal for DR-
specific features 

A multimodal approach to 
diabetic retinopathy 
detection using deep 
learning [23] 

AlexNet with 
basic pre- 
processing 
(standalone) 

Simple architecture; 
fast training time 

General shape-
based 
classification by 
80.2% 

Limited capacity for 
fine-grained lesions 

Hierarchical classification 
framework for diabetic 
retinopathy using deep 
learning [24] 

CNN trained 
on resized 
fundus images 

Straightforward 
implementation; less 
preprocessing required 

Basic pixel 
intensity 
variations by 
83.5% 

Susceptible to image 
scaling loss 

Automated diabetic 
retinopathy detection in 
smartphone-based fundus 
photography using deep 
learning in Indian 
population [25] 

DR Detection 
using 
Individual 
CNN (basic) 

Demonstrated real-
world clinical 
applicability 

DR detection in 
practical 
conditions by 
82% 

Subject to 
environmental image 
noise 

Why should I trust you?: 
Explaining the predictions 
of any classifier [26] 

CNNs with 
dropout 
regularization 
(independent) 

Dropout improves 
generalization and 
reduces overfitting 

Regularized 
lesion feature 
learning by 84% 

Training stability with 
deep net- works 

Federated learning of 
predictive models from 
federated electronic health 
records [27] 

Standalone 
CNNs on pre- 
processed ROI 
patches 

Better local lesion 
focus; higher 
sensitivity to small 
features 

Focused lesion 
classification by 
83% 

ROI preprocessing 
errors affect output 

Deep learning for diabetes 
prediction using 
longitudinal electronic 
health record data [28] 

Basic CNN 
trained from 
scratch 

No dependency on 
external datasets; 
complete control over 
architecture 

Raw feature 
learning 
without 
pretraining by 
80.5% 

Long training time, 
requires tuning 

An effective smartphone-
based framework for early 
detection of diabetes using 
machine learning [29] 

MobileNetV2
 
deployed on 
Android 
(standalone) 

Portable; supports 
point-of-care screening 

Mobile-level DR 
detection by 
81.7% 

Performance drop on 
low-res inputs 

Dissecting racial bias in an 
algorithm used to manage 
the health of populations 
[30] 

Independent 
CNNs for 
fairness audit 

Highlights bias issues; 
enables equitable AI 
development 

Focus on 
demographic 
fairness 

Needs fairness- aware re-
training 

 
can highlight which parts of the retinal image contributed to a certain classification decision, allowing 
physicians to better understand and validate AI-based diagnoses [26]. 
Another emerging area of research is federated learn- ing, which enables collaborative model training 
across multiple healthcare institutions without requiring the ex- change of raw patient data. Brisimi et al. 
demonstrated that federated learning can preserve privacy while achiev- ing strong classification 
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performance in chronic disease datasets. Although this technique has not been directly applied in our 
current independent model approach, its potential for creating generalized DR models across de- 
centralized datasets remains significant and represents a promising direction for future work [27]. 
Efforts have also been made to incorporate temporal patient information into DR prediction models. 
Zhu etal. utilized electronic health records (EHRs) and Long Short-Term Memory (LSTM) networks to 
forecast dia- betic complications over time. While their work focuses on sequential data rather than image-
based diagnosis, it highlights the value of integrating longitudinal patient histories with static image 
analysis to enhance DR risk stratification. Such multi-modal systems, though beyond the scope of our 
single-model image-based approach, may complement future versions of DR detection frameworks [28]. 
In the pursuit of real-time DR detection, lightweight CNN architectures have gained traction for mobile 
de- ployment. Ali et al. proposed a smartphone-integrated system using MobileNet to perform on-device 
DR clas- sification. Their solution emphasized computational effi- ciency and demonstrated high 
sensitivity, making it ideal for use in low-resource settings and rural clinics. This aligns with our decision 
to include MobileNetV2 as one of the independently evaluated models in our system for its balance of 
speed and accuracy [29]. 
The ethical implications of AI in healthcare have also received critical attention. Obermeyer et al. 
uncovered racial and socio-economic biases in widely-used commer- cial health algorithms, raising 
concerns about fairness and equity in AI-driven diagnostics. These findings underscore the importance of 
validating deep learning models—such as those used in DR detection—across diverse demo- graphic groups 
to ensure equitable outcomes. Although our system does not directly address fairness metrics, 
incorporating such evaluations in future iterations will be essential for building trustworthy diagnostic 
tools [30]. 
Collectively, these studies showcase the progress in deep learning-based DR classification and stress the 
im- portance of model transparency, computational efficiency, and ethical deployment. Our work builds 
upon this foun- dation by independently training and evaluating widely adopted CNN architectures—
DenseNet121, InceptionV3, ResNet50, and MobileNetV2—for DR severity classifica- tion. Instead of 
relying on ensemble strategies or attention 
Data Augmentation: To increase training diver- sity, techniques such as rotation, flipping, brightness 
shifts, and zooming are applied. 
B. Independent Model Training and Evaluation 
Instead of using ensemble learning, each deep learn- ing model is trained and evaluated independently. 
The selected CNN architectures include: 
• DenseNet121 
• InceptionV3 
• ResNet50 
• MobileNetV2 
Each model uses transfer learning from ImageNet pre- trained weights, with the final fully connected 
layers replaced to suit the 5-class DR classification task (No DR, Mild, Moderate, Severe, Proliferative). 
Loss Function and Optimization: For model optimiza- tion, categorical cross-entropy and Adam optimizer 
are employed. Evaluation metrics include Accuracy, Preci- sion, Recall, and F1-score. Each model is 
validated on a hold-out test set to assess its individual performance. 

L = − 
Σ 

y log(yˆ ) 
modules, our system adopts a modular approach to ana- lyze and benchmark each model’s individual 
performance, aiming for simplicity, interpretability, and practical de- 
Where: 
yi is the true label (one-hot encoded) 
• yˆi is the predicted softmax 
probability for class i 
 
III. METHODOLOGY 
The methodology for the proposed diabetic retinopathy (DR) classification system is based on an 
independent evaluation strategy using multiple deep learning mod- els. Each model is trained, validated, 
and tested sepa- rately without any ensemble learning, feature fusion, or attention-based techniques. The 
objective is to rigorously evaluate and benchmark the standalone capabilities of well-known convolutional 
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neural networks (CNNs) for DR detection and classification. 
 
A. Data Acquisition and Preprocessing 
High-resolution retinal fundus images are obtained from public datasets such as EyePACS and APTOS. 
These images typically exhibit variations in illumination, con- trast, and noise. Therefore, standardized 
preprocessing is applied to improve feature visibility and ensure consistent input for the models. The 
preprocessing pipeline includes: 
• Resizing: All images are resized to a uniform dimen- sion (e.g., 224 × 224) for compatibility with 
standard CNN input layers. 
• Green Channel Extraction: Retinal vessels and lesions are best visualized in the green channel. 
• Contrast Enhancement: Histogram equalization and CLAHE are applied to improve image 
contrast. 
• Noise Reduction: Gaussian blur is used to smooth background noise. 
C. Class Imbalance Handling 
Due to severe class imbalance, especially for Severe and Proliferative stages, two independent strategies 
are applied per model: 
• SMOTE: Used to generate synthetic samples for underrepresented classes in the training data. 
• Focal Loss: Replaces cross-entropy loss in some model variants to emphasize learning from hard 
samples. 
The Focal Loss is defined as: 
 
FL(pt) = −αt(1 − pt)γ log(pt) 
Where: 
• pt is the predicted probability for the true class. 
• αt is the weighting factor for class imbalance. 
• γ is the focusing parameter to penalize well- classified examples. 
This approach improves performance on minority classes by directing more gradient attention to misclas- 
sified and rare cases. 
D. Classification Strategy 
Each model is trained to classify DR into five cate- gories directly (multi-class classification). No 
hierarchical or binary-first classification scheme is employed. This simplifies the learning architecture 
and isolates model performance. 

 
Fig. 1. Overall architecture of the Hybrid Deep Learning Framework for Accurate Diabetic Retinopathy 
Classification 
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Fig. 2. Accuracy Graph visualization of Diabetic Retinopathy 
 
E. Implementation and Deployment 
All models are implemented using Python with Tensor- Flow and Keras frameworks. Each model is 
trained and evaluated independently, and results are compared in a tabular format to identify the best-
performing architecture. Deployment is achieved via a Django-based web ap- plication. Medical 
professionals can upload images and 
 

Fig. 3. Confusion Matrix of the Model 
select which trained model to use for prediction. This flexible deployment strategy allows direct 
observation of how different CNNs perform on the same input image without ensemble interference. 
The web interface is lightweight and mobile-accessible, ensuring compatibility in clinical environments, 
especially in rural or under-resourced settings. 
IV. IMPLEMENTATION 
The implementation of the proposed diabetic retinopa- thy classification system involves a structured 
pipeline en- 
compassing data preprocessing, individual model training, evaluation, and deployment. Each deep 
learning model is trained and evaluated independently to understand its standalone performance. The 
entire workflow is devel- oped using Python, and the deployment is handled via a Django-based web 
interface. 
A. Data Preprocessing and Augmentation 
All input retinal fundus images are resized to match the input size required by the specific pre-trained 
CNN models (e.g., 224×224 for DenseNet121, MobileNetV2, ResNet; 299×299 for InceptionV3). To 
enhance lesion visibility, the green channel is extracted from RGB images as it offers better contrast for 
retinal features. Contrast is further improved using histogram equalization, and Gaus- sian blurring is 
applied to reduce high-frequency noise. Augmentation strategies such as horizontal and vertical flipping, 
rotations, zooming, and brightness adjustments are applied to artificially expand the dataset and reduce 
overfitting. 
B. Individual Model Training and Evaluation 
Four  state-of-the-art  deep  learning  mod- els—DenseNet121, InceptionV3, MobileNetV2, and 
ResNet—are employed independently for diabetic retinopathy classification. Transfer learning is applied 
by initializing the networks with ImageNet weights and fine-tuning the deeper layers. Early layers are kept 
frozen to preserve learned low-level features. Each model is compiled using the Adam optimizer and 
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trained using the focal loss function to address class imbalance issues commonly found in medical 
datasets. The models are trained separately and evaluated based on standard performance metrics: 
accuracy, precision, recall, and F1-score. 
C. Hierarchical Classification Workflow 
The classification pipeline is divided into two stages. In the first stage, the model identifies whether 
diabetic retinopathy is present or not. If DR is detected, the image is passed to the second stage, where 
the severity level (Mild, Moderate, Severe, or Proliferative) is classified. This hierarchical approach 
simplifies the decision-making process and mimics real-world clinical workflows for improved 
interpretability and accuracy. 
D. Web Interface Development 
The web-based user interface is implemented using the Django framework and includes the following 
key components: 
• Upload Interface: Allows users to upload retinal fundus images in common formats such as JPEG 
or PNG. 
• Prediction Dashboard: Displays the predicted dia- betic retinopathy status and severity, along with 
the associated probability scores. 
• Admin Panel: Provides administrative capabilities for model management, feedback review, and 
dataset maintenance. 
The uploaded image is routed through the backend pipeline where preprocessing and prediction are 
executed using the selected deep learning model. Results are dis- played in real-time to support clinical 
decision-making. 
 
E. Pseudo code 
import numpy as np 
import pandas as pd 
import cv2, os 
from sklearn.model_selection import train_test_split 
from imblearn.over_sampling import SMOTE 
import tensorflow as tf 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.applications import DenseNet121, InceptionV3, ResNet50, MobileNetV2 
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Dropout, Input 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam 
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping 
 
# Custom Focal Loss Function (as per Lin et al. 2020) 
def focal_loss(gamma=2., alpha=.25): 
    def focal_loss_fixed(y_true, y_pred): 
        y_pred = tf.clip_by_value(y_pred, 1e-7, 1-1e-7) 
        cross_entropy = -y_true * tf.math.log(y_pred) 
        weight = alpha * y_true * tf.pow(1 - y_pred, gamma) 
        loss = weight * cross_entropy 
        return tf.reduce_sum(loss, axis=1) 
    return focal_loss_fixed 
# Data Preprocessing 
def preprocess_image(img_path, size=(224,224)): 
    img = cv2.imread(img_path) 
    img = cv2.resize(img, size) 
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
    # Green channel extraction 
    green_channel = img[:,:,1] 
    # Contrast enhancement 
    green_channel = cv2.equalizeHist(green_channel) 
    # Gaussian filtering 
    green_channel = cv2.GaussianBlur(green_channel, (3,3), 0) 
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    # Expand back to 3 channels for model input 
    img = cv2.merge([green_channel]*3) 
    return img 
# Load your image paths and labels from CSV 
df = pd.read_csv('labels.csv') # columns: image, label 
images = [preprocess_image(os.path.join('images', fname)) for fname in df['image']] 
labels = df['label'].values 
# Split data 
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, stratify=labels) 
# Reshape & Normalize 
X_train = np.array(X_train) / 255.0 
X_test = np.array(X_test) / 255.0 
 
# One-hot encode labels 
y_train = tf.keras.utils.to_categorical(y_train, num_classes=5) 
y_test = tf.keras.utils.to_categorical(y_test, num_classes=5) 
 
# Address class imbalance with SMOTE (apply after flattening) 
n_samples, h, w, c = X_train.shape 
X_train_flat = X_train.reshape(n_samples, -1) 
smote = SMOTE() 
X_train_flat, y_train_resampled = smote.fit_resample(X_train_flat, np.argmax(y_train, axis=1)) 
X_train = X_train_flat.reshape(-1, h, w, c) 
y_train = tf.keras.utils.to_categorical(y_train_resampled, num_classes=5) 
 
# Data Augmentation 
datagen = ImageDataGenerator( 
    rotation_range=20, 
    width_shift_range=0.10, 
    height_shift_range=0.10, 
    horizontal_flip=True, 
    vertical_flip=True, 
    zoom_range=0.1, 
    brightness_range=[0.8, 1.2] 
) 
train_gen = datagen.flow(X_train, y_train, batch_size=32) 
val_gen = ImageDataGenerator().flow(X_test, y_test, batch_size=32) 
 
# Model Selection Example (DenseNet121 shown; switch to InceptionV3, ResNet50, MobileNetV2 as 
desired) 
def build_model(base_model): 
    inp = Input(shape=(224,224,3)) 
    x = base_model(weights='imagenet', include_top=False, input_tensor=inp) 
    x = GlobalAveragePooling2D()(x.output) 
    x = Dropout(0.5)(x) 
    out = Dense(5, activation='softmax')(x) 
    model = Model(inputs=inp, outputs=out) 
    return model 
 
base_model = DenseNet121 # or InceptionV3, ResNet50, MobileNetV2 (set input size accordingly) 
model = build_model(base_model()) 
 
# Compile 
model.compile( 
    optimizer=Adam(lr=1e-4), 
    loss=focal_loss(gamma=2., alpha=.25), 
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    metrics=['accuracy'] 
) 
 
# Train 
callbacks = [ 
    ModelCheckpoint('best_model.h5', save_best_only=True, monitor='val_loss', mode='min'), 
    EarlyStopping(monitor='val_loss', patience=6) 
] 
model.fit( 
    train_gen, 
    validation_data=val_gen, 
    steps_per_epoch=len(X_train)//32, 
    epochs=50, 
    validation_steps=len(X_test)//32, 
    callbacks=callbacks 
) 
F. Testing and Optimization 
Each trained model is subjected to rigorous testing using unseen validation data. Hyperparameters such 
as batch size, learning rate, and the number of epochs are fine-tuned to optimize model performance. 
Training is accelerated using NVIDIA CUDA-enabled GPUs. Per- formance metrics and training curves 
are logged and visualized using tools like Matplotlib and TensorBoard to track model convergence and 
detect overfitting. 
G. Deployment 
The final models are deployed in a production en- vironment using Docker containers for consistent 
and scalable deployment. The system is hosted on a cloud server, ensuring accessibility from multiple 
devices. The architecture supports both CPU and GPU execution envi- ronments. All components are 
modular, allowing future upgrades, model replacements, or database integration without significant 
reconfiguration. 
 
V. RESULT AND DISCUSSION 
The proposed diabetic retinopathy classification system was thoroughly evaluated using a labeled dataset 
of retinal fundus images. Each deep learning model was trained and evaluated independently to assess its 
standalone perfor- mance. This modular approach avoids ensemble learning, feature fusion, and 
attention mechanisms, thereby en- abling a more interpretable and direct comparison between different 
models. 
A. Model Performance 
Each model—DenseNet121, InceptionV3, ResNet, and MobileNetV2—was fine-tuned and tested 
individually. Performance was measured using accuracy, precision, recall, and F1-score. The models 
demonstrated varying levels of performance in classifying the severity levels of diabetic retinopathy, 
reflecting their architectural differ- ences and strengths in feature extraction. 
DenseNet121 achieved an accuracy of 86.2%, showcas- ing strong capabilities in identifying hierarchical 
features. InceptionV3 provided an accuracy of 80.7% due to its ability to capture multi-scale features. 
ResNet performed well with an accuracy of 83.1%, benefiting from its residual learning structure. 
MobileNetV2, optimized for lightweight computation, achieved an accuracy of 81.9%. 
B. Confusion Matrix and Class-Wise Accuracy 
Each model’s confusion matrix was analyzed to identify class-wise strengths and weaknesses. Most 
confusion was observed between the Moderate and Severe DR classes due to subtle variations in retinal 
features. However, the models still managed to distinguish the extreme cases (No DR vs. Proliferative DR) 
effectively, indicating robustness in detecting critical conditions. 
C. Result Screenshots 
Figures below display the output of the deployed web application showcasing real-time prediction 
results, probability scores, and severity classification of diabetic retinopathy using individual models. 
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Fig. 4. Prediction output of Diabetic Retinopathy 
 

Fig. 5. Visualization of Diabetic Classes Graph 
 

Fig. 6. Visualization of Diabetic Retinopathy 
 
DISCUSSION 
The independent evaluation of each deep learning model allowed for detailed insight into their 
classifica- tion capabilities without the complexity introduced by ensemble strategies. DenseNet121 
was most effective in recognizing fine-grained patterns such as microaneurysms and hemorrhages. 
InceptionV3 demonstrated strength in general feature detection due to its multi-scale archi- tecture. 
ResNet’s residual connections facilitated stable gradient flow during training, leading to solid 
accuracy. MobileNetV2 performed relatively well while maintaining efficiency, making it suitable for 
lightweight deployments. By avoiding ensemble fusion and attention layers, the system maintains 
transparency and simplicity. Each model can be directly interpreted and deployed individually based 
on the desired trade-off between performance and 
computational overhead. 
Furthermore, the system exhibited consistent classifica- tion results under varying conditions such as 
image noise and resolution variability, demonstrating its readiness for practical clinical application. 
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TABLE II PERFORMANCE COMPARISON OF DEEP LEARNING MODELS FOR DR CLASSIFICATION 
 

Model Acc. Prec. Recall F1 
DenseNet121 86.20 85.50 84.90 85.20 
InceptionV3 80.70 79.80 78.50 79.10 
ResNet50 95.94 96.10 95.60 95.85 
MobileNetV2 94.01 93.80 93.50 93.65 

 
 
VI. RESULTS AND DISCUSSION 
In this study, diabetic retinopathy (DR) classification was performed by training and evaluating four deep 
learn- ing models—DenseNet121, InceptionV3, ResNet50, and MobileNetV2—independently. Unlike 
ensemble-based or attention-driven systems, our approach aims to assess the standalone effectiveness of 
each model without feature fusion or hierarchical classification logic. This modular method promotes 
simplicity, interpretability, and indepen- dent performance analysis. 
A. Model Performance 
 

 
Fig. 7. Accuracy Graph visualization of Diabetic Retinopathy 
Each model was trained and tested separately on the same retinal fundus image dataset using consistent 
prepro- cessing and evaluation protocols. The classification per- formance was measured using metrics 
such as accuracy, precision, recall, and F1-score. 
The independent evaluation results are summarized as follows: 
• DenseNet121 achieved an accuracy of 86.2%. It demonstrated strength in capturing detailed lesion 
features such as microaneurysms and hemorrhages due to its dense connectivity. 
• InceptionV3 provided an accuracy of 80.7%, per- forming well in identifying diabetic retinopathy 
stages by learning multi-scale spatial patterns. 
• ResNet50 attained an accuracy of 95.94%, benefiting from residual connections that helped retain 
gradient flow and avoid vanishing gradients. 
• MobileNetV2 achieved an accuracy of 94.01%. While slightly less accurate, it offered the advan- 
tage of reduced computational complexity, making it suitable for mobile or embedded deployment. 
B. Confusion Matrix and Class-Wise Accuracy 
Confusion matrices were analyzed for each model to determine class-wise performance. Most models 
showed high accuracy in identifying ”No DR” and ”Proliferative DR” categories. However, some 
misclassification occurred between ”Moderate” and ”Severe” stages, likely due to the subtle differences in 
lesion presentation. 
Despite the absence of attention mechanisms, the mod- els were capable of recognizing clinically 
significant features with reasonable accuracy. 
C. Result Screenshots 
The following figures display the output interface of the implemented system, including image upload 
features, prediction results, confidence scores, and visual class distributions. 
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Fig. 9. Visualization of Diabetic Classes Graph 
 
 

Fig. 10. Visualization of Diabetic Retinopathy 
 
 
stable and consistent results, and MobileNetV2 stood out for its speed and low-resource requirements. 
By training and testing the models independently, this study promotes transparency and avoids the 
complexity introduced by ensemble or attention-based architectures. This approach also allows each 
model to be deployed or further optimized based on specific clinical or computa- tional requirements. 
Overall, the system demonstrated good generalization across DR stages, even under variable image 
quality, without relying on advanced mechanisms like feature fusion or attention—making it a practical 
solution for scalable deployment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Prediction output of Diabetic Retinopathy 
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D. Discussion 
The individual evaluation of deep learning models highlighted the unique strengths and limitations of 
each architecture. DenseNet121 outperformed others due to its feature reuse capability, while 
InceptionV3 excelled at capturing multi-scale information. ResNet50 provided 
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