
 
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 24s, 2025  
https://theaspd.com/index.php 
 

4794 

 

 

 

Integrated Context-Aware Duty Cycling And Clustering For 
Sustainable Wireless Sensor Networks In Environmental 
Monitoring Applicatrions 
 
Eman K. Elqassas1*, Osama Imam1, Hossam Eldein Shamardan1 
1 Faculty of computers and artificial intelligence, Helwan university, Helwan, Egypt 
 
Abstract   
Wireless Sensor Networks (WSNs) face a critical trade-off between data fidelity and network lifetime. Conventional duty 
cycling protocols, which rely on fixed schedules or residual energy alone, often cause premature node depletion and network 
instability. This paper introduces a novel, lightweight, context-aware duty cycling (CA-DC) mechanism that significantly 
extends network lifetime by dynamically adjusting sleep-wake schedules. Our primary innovation is the integration of three 
parameters: residual energy, local traffic load, and data entropy. Using data entropy as a control parameter allows nodes 
to remain active when sensing high value information, thereby maximizing the intelligence gathered per unit of energy. Unlike 
computationally intensive machine learning or optimization-based solutions, our mechanism employs a simple adaptive rule 
to balance energy conservation with data quality and traffic management. This prevents premature node death, mitigates 
congestion, and prioritizes the collection of meaningful data. Simulations validate that our proposed CA-DC protocol 
demonstrates significant improvements in both stability and lifetime. In terms of stability, CA-DC achieves gains of 45.1% 
over LEACH, 18.1% over VDC, and 6.9% over TDC-MAC, while in terms of lifetime (Last Node Dead) (LND), it 
outperforms LEACH, VDC, and TDC-MAC by 51.8%, 33.1%, and 24.1%, respectively. These results confirm the 
effectiveness of CA-DC in enhancing energy efficiency, stability, and overall network sustainability. By achieving enhanced 
network longevity with minimal computational overhead, our proposed mechanism offers a practical and effective solution 
for resource-constrained WSN deployments, ensuring both stability and efficiency. 
Keywords:  Cluster Head Selection, Duty Cycling, Energy Efficiency, Sleep Nodes, WSN Lifetime. 
 
I. INTRODUCTION  
Sustainable environmental monitoring is a cornerstone for addressing today’s global challenges such as 
climate change, water scarcity, soil degradation, and urban air pollution. These monitoring systems depend 
heavily on WSNs to provide reliable, long-term data for environmental decision making. However, in practice, 
many large-scale WSN deployments suffer from early node failures and short lifetimes, which compromise the 
continuity and reliability of environmental datasets. Such disruptions can reduce the accuracy of climate 
models, impair pollution tracking, and weaken the effectiveness of environmental management strategies. 
Empirical studies show that in conventional clustering protocols, a large fraction of nodes deplete their energy 
shortly after the first node death (FND), resulting in a sharp decline in sensing coverage and monitoring 
stability. Hence, designing energy-efficient communication and scheduling mechanisms remains a critical 
research challenge for sustainable environmental sensing. Clustering has been widely recognized as an effective 
strategy for prolonging WSN lifetime, where Cluster Head (CH) nodes are responsible for data aggregation 
and transmission to the base station. Classical protocols such as Low Energy Adaptive Clustering Hierarchy 
(LEACH) [1] and LEACH-C [2] employed probabilistic or centralized CH selection but often neglected spatial 
density and node centrality, leading to uneven energy consumption. Subsequent enhancements, such as 
energy aware clustering [3] and fuzzy-based CH selection [4], incorporated residual energy and network 
topology but still struggled with balancing stability and adaptability. More recent studies (2020 2024) have 
introduced hybrid approaches—such as entropy-aware clustering that integrates hesitant fuzzy logic and data 
fusion [7], deep reinforcement learning-based duty cycling [8], and soft-k-means clustering aimed at energy-
balanced CH rotation [9]. While these demonstrate improvements, they often incur high computational 
complexity or require global knowledge, limiting their practicality in resource-constrained WSNs deployed for 
environmental monitoring. In parallel, duty-cycling mechanisms, including TDC-MAC [5] and Variable Duty 
Cycle (VDC) [6], focused on reducing idle listening and overhearing by adjusting node activity according to 
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traffic load or energy levels. While effective in reducing communication overhead, these schemes often treated 
CH selection and duty-cycling as separate processes, thereby limiting their synergy and their ability to adapt 
to the spatiotemporal dynamics of environmental data streams. To overcome these limitations, this work 
introduces the Context-Aware Duty Cycling (CA-DC) protocol, which integrates both clustering and adaptive 
duty-cycling into a unified framework. In CA-DC, CH selection is performed using residual energy, node 
concentration, and node centrality, ensuring well-distributed and energy-efficient cluster formation suitable 
for monitoring large scale environmental systems. Subsequently, nodes adjust their duty cycles by jointly 
considering residual energy, sensed data entropy, and traffic load, thereby reducing redundant transmissions 
and balancing energy consumption across the network. In particular, entropy serves as a lightweight indicator 
of data redundancy common in environmental sensing (e.g., repeated temperature or soil readings), ensuring 
that nodes remain active only when their sensed readings add informational value. Simulation results 
demonstrate that CA-DC achieves superior performance compared with LEACH, TDC-MAC, and VDC, 
particularly by achieving a higher FND, an extended stable region, and improved overall lifetime—making it 
highly suitable for long-term environmental monitoring applications. 
 
2. RELATED WORK 
The extension of network lifetime remains a fundamental challenge in WSNs, as energy constraints directly 
limit the stability and performance of such systems. Numerous re- search efforts have focused on designing 
energy-efficient clustering and duty-cycling strategies, with varying levels of success. This section reviews 
representative approaches and highlights the research gap that motivates the development of the proposed 
CA-DC protocol. 
2.1 CLUSTERING-BASED PROTOCOLS 
Clustering has been widely recognized as a key mechanism to enhance energy efficiency in WSNs by reducing 
long- distance transmissions and balancing the load among nodes. The seminal LEACH protocol [1] 
introduced randomized cluster-head (CH) rotation to distribute energy consumption. However, its random 
selection often produced uneven CH placement, leading to unstable clusters and reduced lifetime. Several 
variants were developed to address these short- comings. DE-LEACH [10] improved stability by incorporating 
both residual energy and distance to the base station into CH selection, while HEED (Hybrid Energy-Efficient 
Distributed Clustering) [3] introduced a hybrid strategy combining residual energy with intra-cluster 
communication cost to avoid randomness and create balanced clusters. Later enhancements, such as H-HEED 
[11], adopted fuzzy logic and heterogeneity awareness to further improve adaptability 
under variable energy distributions. 
More recent protocols emphasize heterogeneity. Enhanced Distributed Energy-Efficient Clustering (EDEEC) 
[12] ac- counts for normal, advanced, and super nodes, distributing load more fairly across heterogeneous 
environments. In parallel, machine learning–enhanced clustering, reinforcement learning–based clustering 
algorithms (e.g., RLDCSSA- CDG)[13] have emerged to dynamically integrate clustering and duty-cycling, 
adapting to network conditions in real time 
2.2 DUTY-CYCLING MECHANISMS 
While clustering reduces transmission energy, idle listening and overhearing also contribute significantly to 
energy waste. To mitigate this, duty-cycling protocols have been extensively investigated. Schemes such as 
SPAN [14] and GAF [15] selectively activate a subset of nodes to preserve connectivity while others remain in 
sleep mode, effectively reducing energy consumption at the MAC layer. Moreover, protocols like TDMA-
based scheduling scheme [16] that strikes a balance between energy-saving and end-to-end de- lay. This balance 
is achieved by scheduling the wakeup intervals appropriately, so that data packets are delayed by at most one 
sleep interval for the end-to-end transmission from the sensors to the gateway. More advanced duty-cycling 
protocols such as TDC-MAC [5] and VDC [6] adjusted node activity based on traffic load and residual energy, 
effectively mitigating overhearing and channel contention. However, these mechanisms were typically 
designed independently of clustering, limiting their impact on overall network stability. 
2.3 ENTROPY AND CONTEXT-AWARE APPROACHES 
Entropy has recently gained traction as a lightweight indica- tor of information redundancy in sensor readings. 
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Entropy- based duty cycling [17] allows nodes with low-variance data to remain in sleep mode, suppressing 
redundant trans- missions and conserving energy. Similarly, hesitant fuzzy entropy clustering [18] integrates 
entropy into cluster forma- tion, ensuring that only information-rich nodes contribute to CH roles. 
In [19], entropy was applied at the MAC layer to ad- just sleep schedules according to redundancy levels, while 
in [20], entropy was combined with traffic awareness to balance load distribution and avoid overburdening 
nodes in high-traffic regions. Despite these advances, entropy-based strategies are often implemented in 
isolation—either at the clustering or duty-cycling layer—without full cross-layer integration, limiting their 
potential to maximize stability. 
2.4 HYBRID CLUSTERINGDUTY CYCLING APPROACHES 
Recognizing the limitations of separate clustering and duty- cycling strategies, several hybrid approaches have 
been pro- posed. such as HADC [21], which integrates adaptive duty cycling into clustering, represents 
promising steps toward combining the two mechanisms into one unified protocol. Another recent example 
is the work by Anees and Zhang [17], which integrates thermal entropy, cluster formation, and asynchronous 
sleep–awake decisions to suppress redundant traffic. These schemes demonstrate that combining clustering 
and duty cycling can yield longer stable periods. However, many still rely on synchronous scheduling or assume 
global knowledge of traffic, making them less feasible for highly constrained WSN environments. 
These hybrid solutions demonstrate promising improvements by aligning clustering with duty-cycling 
decisions. However, many rely on computationally heavy optimization or centralized coordination, making 
them unsuitable for large-scale or highly resource-constrained WSN deployments. 
2.5 RESEARCH GAP AND MOTIVATION 
Although clustering-based protocols such as LEACH and HEED improve network scalability and energy 
distribution, they fail to incorporate temporal data redundancy or node- level traffic variations in their energy 
management. Conversely, duty-cycling mechanisms effectively reduce idle energy waste but often ignore 
higher-level cluster dynamics. This separation leads to suboptimal performance when net- works face high 
data redundancy or uneven load distribution. To bridge this gap, the proposed CA-DC protocol intro- duces 
a context-aware duty-cycling mechanism integrated with clustering. By jointly considering residual energy, 
entropy of sensed data, and traffic forwarding load, CA-DC ensures that nodes dynamically adjust their duty 
cycles according to both network state and data relevance. This unified approach enhances stability periods 
while preserving overall energy efficiency, thereby outperforming traditional clustering-only or duty-cycling-
only solutions. 
 
3. SYSTEM MODEL 
This section examines sensor nodes according to the network model, analyzing their energy consumption 
using a radio- based energy framework. 
3.1 NETWORK MODEL 
Assume that sensor nodes are distributed randomly inside a square-shaped two-dimensional region. These 
sensors continuously gather data within this region. The collected data must be received, aggregated, and 
forwarded to BS. The CH has multiple responsibilities depending on its energy levels. Communication 
between CMs, CHs, and the BS adheres to standard multi-hop protocols. The network model is char acterized 
by the following: 1) The sensor network is static, meaning nodes cannot be relocated once deployed. 2) Each 
CM is equipped with a GPS device to store its location. 3) After deployment, the position of the BS is 
stationary and known to all CMs and it has an unlimited energy supply. 
3.2 ENERGY MODEL 
Unlike the routing algorithms used in wired networks, which focus primarily on optimizing data transmission, 
wireless network routing algorithms emphasize minimizing overall energy consumption. In this work, we 
adopt a simple energy model where the transmitter consumes energy for radio electronics, power 
amplification, and signal transmission, while the receiver expends energy for the radio electronics operation. 
The wireless energy transfer model utilized in this research is referenced in the power attenuation in wire- less 
communication relies on the (d) distance between the transmitter and receiver. For relatively short distances, 
signal loss follows an inverse-square relationship (d2), whereas for longer distances, it follows an inverse-quartic 
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relationship (d4). Power regulation can mitigate these losses by adjusting the amplifier power at the receiver to 
maintain a required signal strength. Consequently, the radio system transmits a k-bit message over a distance 
(d). This energy dissipation model for wireless communication is illustrated in Fig.1.before transmission, The 
electronic energy consumption (Eelec) is influenced by several factors, including modulation, digital coding and 
signal filtering. To ensure the received signal strength remains above a predefined threshold (Pr-thresh), the 
parameters Efs and Emp are determined based on receiver sensitivity and noise levels. The minimum necessary 
trans- mission power can be determined by tracing back from this power threshold. Given a radio bit rate Rb, 
the transmission power (Pt) is expressed as: 

                                                               𝑃𝑡  =  𝐸𝑇𝑥 − amp (1, d) 𝑅𝑏
 (1)                                  

 
The energy consumed to transmit a k-bit across a distance d is defined by:  

                              𝐸Tx(𝑘 ,  d)  = {
𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘  +  𝐸𝑓𝑠  ⋅ 𝑘    ⋅ 𝑑2, 𝑥 < 0

     𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘  +  𝐸𝑚𝑝  ⋅ 𝑘  ⋅ 𝑑4 , 𝑥 ≥ 0
 

 
(2)                                     

Similarly, the receiver’s energy consumption for receiving a k-bit message is: 

                                                               ERx (𝑘) = Eelec · 𝑘                  (3)                                  
 
Where 𝐸𝑇𝑥 (k, d) represents the energy consumed by the transmitter to send a k-bit message over distance d, 
ERx denotes the energy consumed by the receiver to process the k-bit message, and 𝐸𝑇𝑥 includes the energy 
used by the wireless transceiver circuit. The parameters 𝐸𝑚𝑝 and 𝐸𝑓𝑠 refer to the amplification energy required 
under the multi-path and free-space propagation models, respectively. d0 is the threshold distance which 
determines the point at which the energy model transitions from free-space to multi-path propagation, and is 
computed as: 

                𝑑0 = √
𝐸𝑚𝑝

𝐸𝑓𝑠
               

(4)                                  

 
The radio energy depletion model 
Figure 1  
 
3.2.1 Transition Energy Costs 
In duty-cycled WSNs, nodes frequently switch between sleep and active states. Each transition incurs overhead 
in powering up oscillators and stabilizing the radio chain. We model this as: 

𝐸Transition =  𝛼 .   𝐸elec                                                               (5)                                  
where α is a protocol-dependent factor (0.1–0.2 in typical low-power radios). This cost is added whenever a 
node transitions between sleep and active states. 
3.2.2 Synchronization Overhead 
Time synchronization is necessary to align duty cycles across nodes. The cost per synchronization event is 
modeled as: 
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𝐸𝑠𝑦𝑛𝑐 =  𝛽 .   𝐸elec  . 𝐾𝑠𝑦𝑛𝑐
                                                              (6)                                  

where β represents protocol efficiency, and 𝐾𝑠𝑦𝑛𝑐 is the size (in bits) of synchronization beacons. This 
overhead is incurred periodically, typically every frame or super frame. 
3.2.3 Cluster Head (CH) Selection and Responsibilities 
In the proposed CA-DC framework, CHs are selected based on a composite metric that considers residual 
energy, node concentration, and centrality: 

               𝐶𝐻𝑠𝑐𝑜𝑟𝑒(𝑖) =  𝑤1 .   𝐸0

𝐸𝑖

+ 𝑤2 .   𝑁𝑚𝑎𝑥

𝑁𝑖

+ 𝑤3 .   𝑑i
                                         (7) 

where:  

𝐸𝑖: is the residual energy of node i,  

𝑁𝑖: is the number of neighbors (density factor), 
 𝑑𝑖

: is the average distance to neighbors (centrality factor),  

𝑤1
, 𝑤2

, 𝑤3: are normalized weights.  
The node with the highest 𝐶𝐻𝑠𝑐𝑜𝑟𝑒 in its local neighborhood becomes the CH. 
Responsibilities of CHs include: 

A. Collecting and aggregating intra-cluster data.  
B. Scheduling sleep–wake cycles of member nodes to minimize redundancy.  
C. Transmitting aggregated data to the BS. D. Managing synchronization overhead within the 
cluster. 

Thus, the total energy cost of a CH in one round is: 

𝐸𝐶𝐻 =  ∑𝑗∈𝑐   𝐸𝑅𝑋( 𝐾𝑗
) +    𝐸𝑎𝑔𝑔( 𝐾𝑡𝑜𝑡

) +  𝐸𝑇𝑥( 𝐾𝑎𝑔𝑔 + 𝑑𝐵𝑆
) +  𝐸𝑠𝑦𝑛𝑐

+  𝑛𝑡𝑟𝑎𝑛𝑠
 .  𝐸Transition

                                                                                                                           
(8) 
where:  

𝐸𝑎𝑔𝑔
:  is the per-bit aggregation cost,  

𝐾𝑎𝑔𝑔
:  is the aggregated packet size, and 

 𝑛𝑡𝑟𝑎𝑛𝑠
: is the number of state transitions. 

 
4. PROPOSED PROTOCOL (CONTEXTAWARE DUTY 
CYCLING (CA-DC)) 
4.1 Algorithm 

 
Algorithm 1: Context-Aware Duty Cycling (CA-DC)  
Input: Number of nodes N , max rounds Rmax  
Output: Lifetime metrics: FND, (Half Node Death) HND, LND 
foreach node i ∈ {1, . . . , N } do 

Ei ← E0; Di ← Dmin; 
Initialize entropy window Xi ← ∅ of size B; Mark node as alive; 

for r ← 1 to Rmax do 
    // CH Selection: Complexity O(N 2) 
                foreach alive node i do 

             En(i) ← Ei/E0; 
              density(i) ← |neighbors(i)|/N ; 
              centrality(i) ← 
            1/(avg. distance to neighbors); 

              Normalize density(i), centrality(i) ∈ [0, 1]; 
            CHscore(i) ← 
          w1. En(i)+w2 . density(i)+ w3 . centrality(i); 

Select top-scoring nodes as CHs;  
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Each non-CH node joins nearest CH; 
// Duty Cycle Decision: 

Complexity O(N ) 
 

                foreach alive node i do 
                   Update entropy window Xi every ∆ rounds; 
               H(i) ← entropy(Xi, B)/ log B; En(i) ← Ei/E0; 
               Tn(i) ← (generated + forwarded)/Tmax; S(i) ← βE(1 − En(i)) + βHH(i) + 
             βT Tn(i) + βC(1 − Cnorm(i)); 

               D∗(i) ← clamp(1 − S(i), Dmin, Dmax); Di ← (1 − η)Di + ηD∗(i); 
// Data Transmission and Energy 

               foreach alive node i do 
                         if i is CH then 

               Receive from members;  
               Aggregate data; 
               Transmit aggregated packet to BS; 
         else 

            Transmit to CH with probability Di;  
             Deduct energy 
             ETx, ERx, Eagg, Esync, ntrans · Etransition; 

              
            if Ei ≤ 0 then 
          Mark node as dead; 

             Update alive nodes, residual energy; 
     Record FND, HND, LND if thresholds reached 

 
4.2 Overview 
The proposed CA-DC protocol is designed to extend the life- time of WSNs by combining energy-aware CH 
selection with an adaptive duty cycling mechanism. Unlike conventional clustering protocols that rely solely 
on residual energy or random selection, CA-DC integrates residual energy, node concentration, and centrality 
to elect stable CHs. After cluster formation, a duty cycle mechanism is applied, where each node dynamically 
adjusts its active and sleep schedules based on residual energy, sensed data entropy, and traffic load. This dual-
stage approach ensures both balanced energy consumption and reduced redundancy in transmissions, leading 
to prolonged network stability and lifetime. 
4.3 CLUSTER HEAD(CH) SELECTION PHASE 
At the beginning of each round, the protocol evaluates all alive nodes to determine suitable CHs. The decision 
process considers three factors: 
Residual Energy (En): Ensures that nodes with higher remaining energy are prioritized for CH roles, 
preventing pre- mature death of weaker nodes. 
Node Concentration (Density): Nodes with a higher density of neighbors are favored, as they can form well-
balanced clusters with reduced communication overhead. 
Node Centrality (centrality): Computed as the inverse of the average distance to neighboring nodes, centrality 
guarantees that selected CHs are topologically well-positioned, minimizing intra-cluster communication costs. 
Each node calculates a CH score as a weighted combination of these factors. Nodes with the highest scores 
are selected as CHs, and all other nodes join the nearest CH to form clusters. 
4.3 DUTY CYCLE DECISION PHASE 
Once clusters are established, each node decides its duty cycle, i.e., the proportion of time spent in active or 
sleep states. The decision is based on four inputs: 
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Residual Energy (En): Nodes with depleted energy are allowed more sleep time to preserve longevity. 
Entropy (H): Measures the information content of recently sensed data. If consecutive readings are redundant 
(low entropy), the node reduces activity. 
Traffic Load (Tn): Nodes forwarding a high number of packets (either self-generated or relayed) require longer 
active periods, while nodes with low traffic can remain asleep longer. 
The sleep tendency score S(i): is derived from a weighted combination of these parameters, and the new duty 
cycle is updated using a smoothing factor to avoid abrupt state changes. This ensures a balance between energy 
efficiency and reliable data delivery. 
4.4 DATA TRANSMISSION AND ENERGY UPDATE 
During transmission, only active nodes participate in communication. CMs forward their sensed data to their 
respective CHs based on their duty cycle probability. CHs then aggregate the received data and forward it to 
the BS. The energy of each node is updated according to the radio energy model. Dead nodes with energy < 
0 are excluded from subsequent rounds. 

4.5 LIFETIME METRICS 
The protocol evaluates performance using the following key indicators: 
FND: Indicates the start of instability. 
HND: Represents the point when 50% of nodes are depleted. 
LND: Marks the complete depletion of the network. 
CA-DC is expected to achieve higher FND, HND and LND values due to balanced energy distribution. 

4.6 COMPLEXITY ANALYSIS 
This section analyzes the computational, communication, and memory complexity of the proposed CA-DC 
protocol. 
4.6.1 Computational Complexity 
The CH selection phase requires each node to compute its score based on residual energy, concentration, and 
centrality, followed by a comparison among all nodes. This leads to a complexity of O(N2) per round, where 
N is the number of sensor nodes. In contrast, the duty cycle computation involves only local parameters 
(residual energy, entropy, and traffic load), resulting in a linear cost of O(N). Therefore, the overall per-round 
computational complexity of CA-DC is: 
                                     O(N 2 + N ) ≈ O(N 2)                                                                (9)                                  

4.6.2 Communication Complexity 
During the setup phase, nodes broadcast their status and metrics to facilitate CH selection, which incurs 
O(N2) message exchanges. In the steady-state phase, each member node transmits data to its CH, and each 
CH forwards aggregated data to the base station, leading to O(N) message transmissions per round. Thus, the 
communication complexity is dominated by the setup phase but remains efficient during data transmission. 
4.6.3 Memory Requirements 
Each node maintains a neighbor list and an entropy calculation window. The neighbor information requires 
O(log N) storage per node under standard adjacency-list representations, while the entropy window requires 
a fixed buffer size B. Consequently, the per-node storage requirement is O(log N), leading to a total network 
memory requirement of O(N log N). 
 
5. SIMULATION RESULTS 
In this study, simulations were conducted for two different network scenarios using MATLAB 2018 to 
evaluate the performance of the LEACH, TDC-MAC, VDC, and the proposed CA-DC protocols. The 
comparison was divided into three categories: alive nodes versus rounds, energy consumption versus rounds, 
and network stability versus rounds. Each category included two scenarios. In the first scenario, 100 nodes 
were deployed in a 50 × 50 m² area with the base station located at (25, 100). In the second scenario, 100 
nodes were deployed in a 100 × 100 m² area with the base station located at (50, 125). The simulation 
parameters are summarized in Table 1. 
Parameter Name  Parameter Value 



 
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 24s, 2025  
https://theaspd.com/index.php 
 

4801 

 

Number of Nodes 
Network Size 
BS’s Location  
Initial Energy 
Size of The data 
Radio Electronics Energy 
Radio Amplifier Energy (free space model) 
Radio Amplifier Energy (multi-path model) 
do 
Data Aggregation Energy 

100 
(50 x 50) m2  ,  (100 x 100)  m2 

(25,100)   ,   (50,125) 
0.5 J 
4000 bits 
50 nJ/bit 
10 pJ/bit/m2 

0.0013 pJ/bit/m4  

87.7 
50 nJ/bit 
 

TABLE 1. the simulation parameters 

 5.1 SIMULATION RESULTS OF SCENARIO 1 
According to the proposed protocol, the findings demonstrate a substantial enhancement in network lifetime. 
As illustrated in Fig. 2, CA-DC is evaluated against LEACH and TDC- MAC, and VDC. The results reveal 
that the proposed protocol achieves superior performance in terms of network lifetime, defined as the period 
until the network becomes inoperative. 
From Fig. 3 and Table 2, it is evident that the LND in the proposed CA-DC protocol occurs after 2,356 
rounds, compared to 1,552 rounds for LEACH, 1,898 rounds for TDC-MAC, and 1,770 rounds for VDC. 
Moreover, the CA- DC protocol achieves the highest HND value, surpassing that of the other protocols. These 
outcomes clearly demonstrate that CA-DC sustains network operation for a longer duration, thereby 
improving stability and extending overall network functionality. The higher HND reflects that nodes in CA-
DC remain active for a longer period, ensuring more balanced energy consumption, while the superior LND 
indicates that the protocol maintains functionality until later stages of the network’s lifetime. Collectively, 
these results confirm the reliability and robustness of the proposed protocol in com- parison with conventional 
approaches. Figure 4 illustrates the residual energy per round for the proposed CA-DC protocol in 
comparison with LEACH, TDC-MAC, and VDC. As expected, the overall energy consumption of nodes 
increases with the number of rounds; however, CA-DC demonstrates superior energy conservation, resulting 
in higher efficiency and an extended network lifetime. Specifically, CA-DC re- quired 2,356 rounds to 
consume 50 J, whereas LEACH, TDC-MAC, and VDC reached the same consumption level at 1,552, 1,898, 
and 1,770 rounds, respectively. These results highlight the ability of CA-DC to balance energy usage more 
effectively across nodes, thereby delaying energy depletion and enhancing network stability. From a practical 
perspective, such efficient energy utilization makes CA-DC particularly advantageous for energy-constrained 
Wireless Sensor Network applications, including environmental monitoring, precision agriculture, and 
healthcare systems, where pro- longed operation and reliable data transmission are critical. 
Finally, Table 3 presents the energy consumption in each round for each protocol. 

FIGURE 2. Number of alive nodes versus the round number of the network for scenario 1 
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FIGURE 3. FND, HND, and LND for scenario 1 
 

Protocol FND HND LND 
LEACH 876 1153 1552 
VDC 1076 1329 1770 
TDC-MAC 1189 1647 1898 
CA-DC 1271 1955 2356 

TABLE 2. Comparison of FND, HND, and LND for Different Protocols in scenario 1 

FIGURE 4. Remaining Energy Comparison for scenario 1. 

 
Rounds LEACH VDC TDC-MAC CA-DC 

100 4.32 4.12 3.32 4.33 

200 8.63 8.21 6.27 8.33 

300 12.93 12.25 9.40 11.99 

400 17.24 16.26 12.53 15.43 
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500 21.55 20.21 15.62 18.59 

600 25.85 24.12 18.75 21.59 

700 30.15 27.97 21.85 24.34 

800 34.45 31.78 24.98 26.91 

900 38.72 35.53 28.13 29.39 

1000 42.79 39.24 31.28 31.77 

1300 49.43 48.43 40.45 38.38 

1600  49.95 47.63 44.06 

1800   49.81 47.01 

2000    49.16 

2200    49.93 

2350    49.99 

TABLE 3. Energy consumption of LEACH, VDC, TDC-MAC, and CA-DC over various rounds for 
Scenario 1. 

5.2 SIMULATION RESULTS OF SCENARIO 2 
As depicted in Figure 5, the proposed CA-DC protocol is compared with LEACH, TDC-MAC, and VDC. 
The results clearly demonstrate that CA-DC achieves the highest LND, with the final node depleting after 
4,429 rounds. In contrast, the LND values for LEACH, TDC-MAC, and VDC occur at 1,256, 2,081, and 
1,509 rounds, respectively, as summarized in Table 4 and illustrated in Figure 6. Similarly, Figure 7 presents 
the energy consumption patterns of the protocols. The proposed CA-DC protocol consumes its full initial 
energy budget of 50 J only after 4,429 rounds, whereas LEACH, TDC-MAC, and VDC exhaust their energy 
much earlier, at 1,256, 2,081, and 1,509 rounds, respectively. Table 5 provides a detailed comparison of 
residual energy across different rounds. These findings confirm that CA-DC achieves superior energy 
efficiency and significantly extends network stability compared to the benchmark protocols. By delaying both 
complete energy depletion and the last node death, CA-DC ensures more balanced energy distribution among 
nodes, prolonged operational lifetime, and more reliable data delivery in energy-constrained WSN 
applications. 

FIGURE 5. Number of alive nodes versus round number of network for scenario 2. 
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FIGURE 6. FND, HND, and LND for scenario 2. 
Protocol FND HND LND 
LEACH 810 1031 1256 
VDC 1003 1204 1509 
TDC-MAC 670 1532 2081 
CA-DC 1035 2510 4429 

TABLE 4. Comparison of FND, HND, and LND for Different Protocols in scenario 2. 

FIGURE 7. Residual Energy Comparison for scenario 2. 

 
Rounds LEACH VDC TDC-MAC CA-DC 
100 4.75 4.48 3.95 5.09 
200 9.56 8.90 7.89 9.54 
300 14.36 13.27 11.86 13.48 



 
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 24s, 2025  
https://theaspd.com/index.php 
 

4805 

 

400 19.10 17.56 15.74 17.03 
500 23.87 21.79 19.64 20.32 
600 28.60 25.99 23.59 23.30 
700 33.43 30.14 27.47 26.02 
800 38.16 34.29 31.08 28.49 
900 42.38 38.47 33.97 30.83 
1000 46.75 42.64 36.50 32.94 
1250 49.99 49.43 41.72 37.44 
1500   47.63 40.72 
1750   48.90 43.21 
2000   49.95 45.07 
2500    47.90 
3000    49.41 
3500    49.88 
4000    49.97 
4400    49.99 

TABLE 5. Energy consumption of LEACH, VDC, TDC-MAC, and CA-DC over various rounds for 
Scenario 2. 

 
6. DISCUSSION 
6.1 PROTOCOL ADVANTAGES AND PRACTICAL IMPLICATIONS The CA-DC protocol provides 
several advantages over traditional clustering-based WSN protocols. By incorporating entropy alongside fuzzy 
logic metrics such as residual energy, concentration, and centrality, the protocol ensures more balanced CH 
selection. This results in reduced energy dissipation, improved load balancing, and extended network lifetime. 
Furthermore, the integration of a dynamic duty cycle mechanism allows nodes to conserve energy during low-
traffic periods without sacrificing overall connectivity. Together, these design choices enable CA-DC to 
achieve superior stability and reliability compared to classical protocols such as LEACH, TDC-MAC, and 
VDC. Beyond its technical efficiency, CA-DC has direct implications for environmental sustainability. By 
conserving node energy and prolonging the lifetime of WSNs, the protocol ensures continuous collection of 
high-quality environmental data, which is critical for applications such as long-term climate observation, soil 
moisture monitoring, water resource management, and air quality assessment. Extending the operational 
lifespan of sensor deployments reduces maintenance costs, minimizes the carbon footprint of sensor 
redeployment, and ensures uninterrupted datasets for environmental decision-making.  
6.2 LIMITATIONS AND CONSTRAINTS 
 Although the CA-DC protocol demonstrates significant improvements in energy efficiency and stability, it is 
not with- out limitations. The computational overhead associated with entropy evaluation and fuzzy logic-
based CH selection is higher compared to lightweight clustering protocols. While the complexity remains 
polynomial O(N2) for CH selection and O(N) for duty cycle updates), this may become a bottleneck in very 
large-scale WSNs with thousands of nodes. Additionally, the protocol requires synchronization during duty 
cycle transitions, which introduces coordination overhead that may affect latency in time-critical applications. 
Another constraint lies in the assumption of static deployment with uniform initial energy among nodes. 
While CA-DC is effective for static networks, variations in energy heterogeneity can influence fairness in CH 
selection and potentially lead to unbalanced energy consumption across the network. Furthermore, the 
entropy-based mechanism requires nodes to maintain a history of sensed data, which increases memory usage. 
In resource-constrained devices, this may limit scalability unless storage efficiency techniques are applied. 
These constraints highlight that while CA-DC performs well in static WSN scenarios, careful consideration 
is needed when deploying in extremely resource-limited or large-scale environments.  
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6.3 FUTURE WORK AND EXTENSIONS  
There are several directions in which CA-DC can be extended and refined. First, mobility-aware 
enhancements could be incorporated, enabling adaptive CH selection in scenarios where nodes or sinks are 
mobile. This would broaden the applicability of the protocol to vehicular networks, disaster recovery, and 
mobile healthcare monitoring. Second, the incorporation of machine learning techniques could further 
optimize duty cycle decisions and CH selection by learning from network traffic patterns, thereby reducing 
dependency on manually tuned fuzzy parameters. Future research will focus on applying CA-DC to real-world 
environmental datasets and exploring integration with energy-harvesting sensors, thereby enabling self-
sustaining monitoring infrastructures that support next-generation environmental management and climate 
resilience strategies. 
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