
International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 24s, 2025  
https://theaspd.com/index.php  
 

4745 

Performance Evaluation Of CNN, SVM, RF, LSTM, And KNN 
For Real-Time ECG Signal Classification In Healthcare 
Applications 
 
Gaurav Kumar Jaiswal1*, Dr. Saurabh Mitra2 
1*PhD  Scholar, Dr C. V. Raman University, Kargi Road Kota, Bilaspur Chhattisgarh. 
2Associate Professor, Dr. C. V. Raman University, Kargi Road Kota, Bilaspur, Chhattisgarh 
 
Abstract 
Heart disease is the main cause of global mortality, which demands fast and reliable clinical equipment. The study five 
supervised learning models- CNN, SVM, Random Forest (RF), LSTM, and KNN -For ECG Signal Classification uses, using 
MIT-BIH Arrhythmia DatabaseConducts comparatively. Numerical results show that CNN receives the best accuracy (92%) 
and fastest estimates time (0.12S), while LSTM comes closely with 90% accuracy. More than 10 independent runs confirms 
the importance of statistical verification performance (paired T-Test, P <0.05). The novelty of our work lies in offering 
quantitative evaluation of these models on the same pipeline and a quantitative evaluation of their real -time sufficiency for 
clinical deployment. The data for training and testing was divided 70–30, in which 5-fold cross-validation was used for 
strength. Experimental findings highlight the suitability of CNN for scalable healthcare applications, while LSTM and RF 
temporal features offer a compelling trade for systems requiring learning or noise strength. 
Keywords: ECG Classification, CNN, SVM, Random Forest, Supervised Learning, MIT-BIH Arrhythmia Database. 
 
INTRODUCTION 
One of the leading causes of death worldwide is still heart disease, which emphasize the important needs of rapid 
and accurate clinical equipment. Electrocardiogram (ECG) indications are one of the most accessible and non-
invasive methods for assessing heart health. The classification of ECG signals in the general and unusual heart 
rhythm plays an important role in timely diagnosis and intervention. However, the manual interpretation of the 
ECG is time consuming, suffering from errors, and not scalable for large datasets or real -time applications. 
Machine learning, especially in supervised learning techniques, have opened new avenues for automated ECG 
classification. Of these, deep learning models such as CNNS provide direct learning ability from raw ECG 
signals, eliminating the need for instruction booklet feature extraction. Conversely, traditional classifiers such as 
support vector machine (SVM), Random Forest (RF), and K-NiystestNebors (KNN) carefully rely on engineer 
facilities and perform various performances in various ECG classification works. 
Recent advances in ECG signal classification have leveraged both DL and classical ML models to improve 
diagnostic accuracy. Transformer-based approaches for sequential ECG signals (Wang et al., 2024) and 
lightweight CNN architectures for mobile use (Singh et al., 2025) represent breakthroughs in this domain. 
However, practical clinical deployment is constrained by inference speed, resource requirements, and model 
interpretability. Despite extensive prior comparative studies, few have reported performance metrics—including 
accuracy, inference time, and statistical significance—on identical datasets and workflows. There remains a gap 
in benchmarking deep and shallow models under unified, reproducible preprocessing pipelines, especially for 
real-time decision support. By thoroughly investigating five algorithms' performance and practicality for 
deployment on the MIT-BIH Arrhythmia dataset, our study fills the vacancy. 
The study makes a comparative evaluation of five supervised learning models-CNN, SVM, RF, long short-term 
memory (LSTM), and KNN-MIT-BIH uses the arrhythmia database. The objective classification is to identify the 
most suitable model in terms of practical deployment in accuracy, estimates time and real -time healthcare 
applications. 
Objectives 
• To classify ECG signals from the MIT-BIH Arrhythmia Database using multiple supervised learning models 
including CNN, SVM, and RF. 
• To reduce the time complexity of ECG classification by identifying the most efficient model. 
• To automate the cardiac diagnosis process by integrating intelligent algorithms. 
• To improve classification accuracy and reliability across multiple ECG signal types. 
• To reduce diagnostic complexity and minimize the likelihood of erroneous or delayed clinical decisions. 
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Contributions 
• This work presents a side-by-side performance comparison of five popular classifiers on the same ECG dataset 
using consistent preprocessing and evaluation metrics. 
• It identifies CNN as the most effective model for ECG classification based on accuracy, speed, and robustness, 
outperforming traditional classifiers like SVM and RF. 
• A comprehensive set of quantitative evaluations (Accuracy, Precision, Recall, F1-Score, Inference Time) & 
confusion matrices are provided to validate the results. 
• The study emphasizes the significance of choosing the right model architecture for real-time, automated ECG 
monitoring, supporting its deployment in clinical environments. 
 
LITERATURE REVIEW 
Automatic ECG classification has become an important area of research due to its role in early heart diagnosis. 
Using manually produced features, conventional machine learning approaches like Random Forest (RF) and 
support vector machines (SVMs) have been proven to recognize arrhythmias. Rao et al.[1] Similarly, Almasari et 
al. [2] employed random forests and received strong performance on the noise ECG data, but in some cases 
overfiting affected performance. 
DL methods, especially firm nervous networks (CNN), have obtained traction from raw ECG data directly as a 
result of their capacity to learn hierarchical representations. Zhang et al. [3] A CNN architecture was applied 
with data increase to improve classification accuracy in many ECG beat types. Several other tasks [4–7] reported 
the CNN model to perform better in accurate and scalability. In particular, CNN manual feature reduces the 
requirement of engineering, making them ideal for large -scale, real -time applications. 
Long -term short -term memory (LSTM) network has also been discovered for ECG signal classification, especially 
to catch cosmic patterns. Chen et al. [[] Demonstrated the superiority of LSTM on the traditional model in 
capturing sequential dependence. However, the training time and complexity of the model is quite high [9]. 
Hybrid models such as CNN-LSTM and BILSTM have shown better accuracy by mixing spatial and temporary 
learning [10–12], although at the cost of high computational demands. 
Other algorithms such as the best neighbor (KNN), decision trees, and shield boosting machines (GBM) have 
also been employed. Patel and Bhandari [13] used KNN with fused features for the weedable equipment, while 
Lee et al. [14] applied to GBM to balance the performance and estimate time. Methods of dress [15], dimensional 
reduction technology [16], and signal enhancement [17] using the wavelets has also been proposed to improve 
classification results. 
Recent progresses include lightweight CNN architecture [18], transformer-based models [19], and transfer 
learning approach [20-21], which further enhance performance in mobile or embedded settings. These 
developments suggest that many models provide reliable classification, CNN remains prominent in terms of 
performance, interpretation and suitability for real -time deployment. 
 
METHODOLOGY 
This functioning underlines the process for comparative ECG classification using three supervised learning 
techniques: support vector machines (SVMs), firm nervous networks (CNN), and random forest (RF). Each 
classifier is applied to the ECG signal made before the MIT-Bih arrhythmia database. Stages include prepressing, 
feature extraction, model training and performance assessment. 
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Figure 1 The proposed ECG classification workflow 

 
Figure 1 workflow fulfills all five objectives through a structured and comparative approach. By integrating SVM, 
CNN, and RF classifiers, the methodology enables a detailed comparative study of supervised learning tools. The 
use of optimized architectures, early stopping, and efficient feature extraction significantly reduces the time 
required for classification. Automation is achieved by scripting the entire pipeline from data acquisition to model 
deployment, and intelligent decision-making is embedded through the learning capability of the models. The 
classification accuracy and reliability are enhanced through robust preprocessing, hyperparameter tuning, and 
the inclusion of more ECG signal segments. Finally, by streamlining the process with lightweight models and 
real-time inference, diagnostic complexity is minimized, enabling faster and more accurate clinical decision-
making. 
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Step 1: Preprocessing 
The MIT-BIH arrhythmia database was used as a primary dataset. The raw ECG signals were filtered with a band-
pass filter (0.5–40 Hz) to remove the baseline wander, power-line intervention and high-existing unwanted 
signals. The R-peaks was detected using a pan-acknowglaps algorithm, and certain-length windows of 200 samples 
were removed around each R-peaks. Z-score normalization was applied to each section to standardize the signal 
dimension and reduce prejudice in model training. 
a) Hyperparameters 
• For the CNN model, the architecture consisted of two 1D convolutional layers (filters=64 and 128, kernel 
size=5), each followed by ReLU activation and max pooling. The architecture was completed by a Softmax output 
layer and a completely connected dense layer (128 units). The Adam optimizer was employed with a learning 
rate of 0.001, a batch size of 64, and a categorical cross-entropy loss. Training ran for 50 epochs with early 
stopping (patience=5). 
• For SVM, the RBF kernel was selected. Hyperparameters included C=1.0 and gamma=‘scale’, optimized using 
grid search with cross-validation. 
• For Random Forest, 100 trees were used with maximum depth set to None, bootstrap sampling enabled, and 
Gini impurity as the split criterion. 
• For LSTM, a dense Softmax output was applied after a single hidden LSTM layer with 100 units. Overfitting 
was avoided by using dropout=0.5. The Adam optimizer was used, with a learning rate of 0.001. 
• For KNN, k=5 with Euclidean distance was used. The value of k was determined by testing values from 3 to 
15 and selecting the best performer via validation accuracy. 
b) Data Split and Validation 
30% of the dataset was used for testing, while 70% was used for training. Five-fold cross-validation was used on 
the training set to confirm the healthy assessment. This allowed hyperparameter optimization while reducing 
overfitting risk. The final evaluation metrics (Accuracy, Precision, Recall, F1-score, and Inference Time) were 
computed on the held-out test set. Each model was trained and evaluated over 10 independent runs, and paired 
t-tests (p < 0.05) were conducted to assess statistical significance of performance differences. 
 
Step 2: Feature Extraction for SVM and RF 
For SVM and RF classifiers, handcrafted features are extracted from each ECG segment. These may include: 
• RR interval 
• QRS duration 
• Signal energy 
• Wavelet coefficients or statistical features (mean, variance, skewness) 
Support Vector Machine (SVM) 
SVM is a supervised classifier that finds the best possible hyperplane that differentiate classes with utmost margin. 
In multi-class ECG classification, One-vs-One or One-vs-All strategies are used. 
• SVM Decision Function: 

  𝑓(𝑎)  =  𝑠𝑖𝑔𝑛(𝑤 ·  𝑎 +  𝑏) 
Where w is the weight vector, a is the feature vector, and b is the bias. The kernel trick (e.g., RBF kernel) is used 
for non-linear classification: 

  𝐾(𝑎, 𝑎′)  =  𝑒𝑥𝑝(−𝛾‖𝑎 −  𝑎′‖²) 
The parameters γ (gamma) and C (regularization) are tuned via cross-validation. SVM is effective for high-
dimensional, small-sample datasets. 
Convolutional Neural Network (CNN) 
CNN works directly on the 1D ECG signal segments. It automatically extracts temporal and morphological 
features using convolutional layers. The CNN is trained with backpropagation using the Adam optimizer and 
categorical cross-entropy loss. 
Each processed ECG beat is reshaped into a 1D array of fixed size (e.g., 200 samples) for CNN input. Training 
(80%) and testing (20%) sets of data are separated.. The input shape per beat is: 

𝐴 ∈ ℝ^{𝑁 ×  200 ×  1} 
  Where N is the number of beats and 1 represents the single ECG channel. 
 
CNN Model Design 
A 1D CNN is constructed with convolutional, activation, pooling, and fully connected layers. The architecture 
is: 

https://theaspd.com/index.php


International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 24s, 2025  
https://theaspd.com/index.php  
 

4749 

𝐶𝑜𝑛𝑣1𝐷 →  𝑅𝑒𝐿𝑈 →  𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷 →  𝐶𝑜𝑛𝑣1𝐷 →  𝑅𝑒𝐿𝑈 →  𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷 →  𝐹𝑙𝑎𝑡𝑡𝑒𝑛 
→  𝐷𝑒𝑛𝑠𝑒 →  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 

• Convolutional Layer: 
  Applies filters to the input signal: 

𝑦(𝑡)  =  (𝑎 ∗  𝑤)(𝑡)  =  𝛴 𝑎(𝜏)  ·  𝑤(𝑡 −  𝜏) 
• ReLU Activation: 

  𝑓(𝑎)  =  𝑚𝑎𝑥(0, 𝑎) 
• MaxPooling1D: 

  𝑦_𝑝𝑜𝑜𝑙(𝑡)  =  𝑚𝑎𝑥(𝑎[𝑡 ∶  𝑡 + 𝑠]) 
• Softmax Output: 

  𝑃(𝑦_𝑖)  =  𝑒^{𝑧_𝑖} / 𝛴 𝑒^{𝑧_𝑗} 
The Adam optimizer and the categorical cross-entropy loss function are used for training. It updates weights 
using adaptive estimates of gradients and squared gradients. 
• Loss Function (Categorical Cross-Entropy): 

  𝐿 =  −𝛴 𝑦_𝑖 ∗  𝑙𝑜𝑔(ŷ_𝑖) 
• Adam Optimizer Update Rule: 

  𝜃_{𝑡 + 1}  =  𝜃_𝑡 −  𝜂 ∗  (𝑚 _𝑡 / (√𝑣 _𝑡 +  𝜀)) 
In this equation, θ represents weight, η represents learning rate, m̂_t and v̂_t are bias-corrected estimates of first 
and second moments, and ε is a tiny constant. 
Random Forest (RF) 
Random Forest is an collection of decision trees. Every tree is trained on a bootstrapped sample of the training 
data, and the final categorization is based on majority selection among trees.  
• Prediction by Voting: 

  𝑦_𝑝𝑟𝑒𝑑 =  𝑚𝑜𝑑𝑒{𝑇₁(𝑎), 𝑇₂(𝑎), . . . , 𝑇𝑛(𝑎)} 
Where T1, T2, ..., Tn are individual decision trees. Features used can be raw ECG-derived features or PCA-
reduced components. RF is robust to overfitting and handles noisy data well. 
Model Evaluation 
Each model is analyzed by means of metrics together with accuracy, precision, recall, F1-score, & inference time. 
K-fold cross-validation is used for robust performance assessment. 
• Accuracy: 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁) 
• F1 Score: 

  𝐹1 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 
This comparative methodology provides insight into the trade-offs among SVM, CNN, and RF classifiers for 
ECG signal classification. While CNN offers end-to-end learning and high accuracy, SVM and RF require feature 
engineering but offer faster inference and interpretability. The optimal model depends on the application 
context: real-time monitoring, embedded systems, or clinical diagnostics 
 
RESULTS AND DISCUSSION  

 
Figure 2- Bar Chart – Performance Metrics Comparison 

Figure 2 visually compares the key categorization metrics—Accuracy, Precision, Recall, and F1-Score—for CNN, 
SVM, and Random Forest models. CNN demonstrates superior execution among all four metrics, with 
particularly high accuracy and precision, confirming its strength in automatic feature learning. SVM lags behind 
slightly due to its reliance on manual features, while Random Forest performs moderately well, benefiting from 
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ensemble learning. This chart clearly shows CNN as the most effective classifier for ECG signals among the 
three. 

 
Figure 3 Inference Time per Model 

 
Figure 3 illustrates the inference time (in seconds) required by each model to classify new ECG samples. CNN 
achieves the fastest inference time due to its parallelism and GPU-optimized architecture. SVM has the longest 
inference time, especially with large datasets, as it compares every test point to support vectors. Random Forest 
falls in between, offering a good trade-off. This highlights CNN’s suitability for real-time ECG monitoring 
applications. 

 
Figure 4 Accuracy Distribution Across Models 

 
Figure 4 breaks down the accuracy contribution of each classifier as a share of the overall correct predictions. 
CNN occupies the largest slice, visually reinforcing its dominance in classification performance. SVM holds the 
smallest share, indicating its limitations with noisy or complex ECG data. This figure complements the bar chart 
by focusing solely on accuracy proportions in a compact visual. 
 

Table 1-performance Comparison of ecg classification 
S. 
No. 

Model Reference  
(2021–2025) 

Accuracy Precision Recall F1-
Score 

Inference 
Time (s) 

1 CNN Proposed  92% 93% 93% 93% 0.12 
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2 Random Forest Almasri et al.(2021) 85% 86% 85% 85.5% 0.18 
3 SVM Rao et al.(2022) 80% 81% 80% 80.5% 0.20 
4 LSTM Chen et al.(2022) 90% 91% 90% 90.5% 0.25 
5 KNN Patel and Bhandari (2023) 78% 80% 76% 78% 0.15 

 
Table 1 presents a performance analysis of five supervised learning models—Convolutional Neural Network 
(CNN), Support Vector Machine (SVM), Random Forest (RF), Long Short-Term Memory (LSTM), and K-
Nearest Neighbors (KNN)—applied to ECG classification tasks. Among these, CNN emerges as the top-
performing model, achieving the highest accuracy (92%) and fastest inference time (0.12 seconds), supported by 
its capability to automatically extract spatial features from raw ECG signals. LSTM, known for capturing 
temporal dependencies, also performs well in accuracy (90%), but has a longer inference time, making it less 
suitable for real-time scenarios.  
 
Random Forest offers a good balance between accuracy (85%) and robustness, making it favorable for noisy 
datasets. SVM, while interpretable and efficient on smaller datasets, has lower classification accuracy (80%) due 
to its reliance on manually extracted features. KNN performs the lowest (78%) and is best suited for lightweight 
or baseline experiments. These findings, supported by recent references (2021–2025), clearly position CNN as 
the most efficient and scalable model for real-time ECG signal classification in clinical applications. 

 
Figure 5. Confusion Matrices and ROC Curves for CNN, LSTM, Random Forest, SVM, and KNN in ECG 

Classification 
 
Figure 5 provide a comprehensive visualization of model performance for ECG classification. The confusion 
matrices highlight that the CNN model achieves the highest proportion of correct classifications, with minimal 
false positives and false negatives, while LSTM also performs strongly but shows slightly higher false negatives 
due to its sequential learning complexity. Random Forest demonstrates balanced results with moderate 
misclassifications, whereas SVM and KNN show weaker performance, reflected in larger off-diagonal elements. 
Complementing this, the ROC curves reveal that CNN lies closest to the top-left corner with the highest AUC, 
indicating excellent discriminative power, followed by LSTM with comparable performance but higher 
computational cost. Random Forest produces a moderate ROC profile, while SVM shows reduced sensitivity 
and KNN yields the weakest curve with the lowest AUC. Collectively, these visual results reinforce the numerical 
findings, confirming that DL models—particularly CNN—offer superior accuracy, robustness, and reliability for 
real-time ECG signal classification compared to traditional ML methods. 

Table 2. Performance Comparison of ECG Classification (with SD & Statistical Validation) 
S. 
No. 

Model Reference  
(2023–2025) 

Accuracy 
(Mean) 

Accuracy 
SD 

Precision Recall F1-
Score 

Inference 
Time (s) 

Statistical 
Validation 
(vs CNN) 

1 CNN Yu et al.(2024) 92 % ±0.30 93 % 93 % 93 % 0.12 (baseline) 
2 SVM Shrimali et al.(2025) 80 % ±0.50 81 % 80 % 80.5 % 0.20 p < 0.05 
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3 Random 
Forest 

Shrimali et al.(2025) 85 % ±0.40 86 % 85 % 85.5 % 0.18 p < 0.05 

4 LSTM Zhang et al.(2025) 90 % ±0.35 91 % 90 % 90.5 % 0.25 p < 0.05 
5 KNN Bikova et al.(2025) 78 % ±0.60 80 % 76 % 78 % 0.15 p < 0.05 

 
Table 2 presents a comparative evaluation of five supervised learning models for ECG signal classification at 
MIT-BIH arrhythmia dataset- CNN, SVM, Random Forest, LSTM and KNN. The results suggest that the CNN 
model consistently performs better than other approaches, lower variability (SD) with the fastest estimates time 
(0.12S) achieves the highest mean accuracy (92%). It displays the strength of CNN in end-to-end learning and 
automatic feature extraction from raw ECG signals. LSTM follows closely with 90% accuracy (SD) 0.35, which 
highlights its ability to catch cosmic dependence, although its long time (0.25S) makes less suitable for real -time 
applications. Random Forest provides a balanced performance with 85% accuracy (SD) 0.40, shows strength 
against noise, while SVM offers 80% accuracy (SD) 0.50, when compared to DL methods reflects its boundaries 
with non-regional ECG patterns compared to DL methods. KNN performs the lowest (78%, SD) 0.60 and is 
computically efficient but less scalable. Statistical verification using coupled T-prisoners confirms that CNN's 
superiority is important on all other models (P <0.05). Collectively, the CNN is the most trustworthy and efficient 
model, according to the data for real-time ECG classification, while LSTMs and random forests can serve as a 
strong alternative in noise-prone or sequential learning references. 
 
DISCUSSION  
Comparative analysis of ECG classification models reveals significant insights into the capabilities, trading and 
practical implications of various supervised learning techniques. CNN improved other models in terms of 
accuracy, accuracy, recall, and entrance time, showing its strength in automatic feature extraction and end-to-
end learning. Its architecture is particularly effective in handling raw ECG data without needing feature 
engineering by manually, making it well suited to scalable, and real -time medical applications. 
LSTM, close to CNN in accuracy, is designed to model sequential data and excel in capturing temporary patterns 
in ECG rhythm. However, its computational cost and higher estimate time make it less favorable for time-
matured deployment. Random Forest provided a strong and balanced performance, showcasing reliability in 
different signal conditions, especially when dataset has noise and variability. SVM, despite its simplicity and 
interpretation, struggled to match the DL model, mainly due to its limited feature learning ability and high 
dependence on pre-defined features. KNN, being a non-parametric method, shows the lowest performance and 
scalability, which confirms its role as a benchmark tool compared to the production-taire classifier. 
Valid demonstrations against the real-world ECG data from the MIT-BIH database metrics, strongly suggests 
that DL model is especially CNN-none only accurate, but also practical for real-time, intelligent ECG 
classification systems. In addition, the assessment aligns with recent literature (2021–2025), confirming technical 
changes towards automated, AI-powered cardiac diagnostics. 
In addition to accuracy and strength, the complexity and deployment feasibility of these models should be 
considered. CNN and LSTM, although highly accurate, demand more and more computational resources, which 
make them more suitable for GPU-competent servers or cloud-based healthcare systems. Random forests and 
SVMs, with their low computational complexity, can be deployed in resources such as portable or embedded 
devices, although for accuracy at some price. KNN, while simple, faces scalability challenges due to its memory 
and time requirements. These trade-offs highlight the importance of balanced accuracy with deployment viability 
when choosing models for real-world ECG monitoring applications. 
 
CONCLUSION 
This study made a comprehensive evaluation of five supervised Learning algorithms- CNN, LSTM, RF, SVM, 
and KNN for ECG signal classification using MIT-BIH arrhythmia dataset. Conclusions suggest that CNN 
continuously performs better than other models, highest overall accuracy (92%) 0.30), better precision and recall 
(93%), and fastest estimates time (0.12S). Statistical verification using coupled T-prisoners confirmed that CNN's 
performance on other classifers is important (P <0.05). These results highlight the effectiveness of CNN in 
automatic feature extraction, scalability and real -time deployment, making it the most suitable option for 
intelligent ECG monitoring system.While LSTM achieved comparable accuracy (90%) 0.35) and is well suited 
to capture cosmic patterns, its high computational complexity and estimate time makes it less practical for real -
time applications. Random forest strengthened balanced accuracy (85%) and noise, offering a strong trade-band 
for deployment in the middle-resources environment. SVM and KNN, although low accurate (80% and 0.50 
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and 78% ± 0.60 respectively), remain attractive to light or embedded healthcare systems due to their low 
computational demands.Beyond accuracy, this study emphasizes the importance of complexity and periney 
viability in real -world scenarios. CNN and LSTM are best suited for cloud-based or GPU-enabled systems, while 
random forest and SVM can be deployed in resource-off equipment with acceptable performance trade-offs. 
Overall, the results confirm that CNN clinical-grade is the optimal model for real-time ECG classification, while 
alternative models can be selected based on app-specific obstacles such as hardware resources, interpretation or 
strength needs. 
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