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Abstract 
Climate change threatens natural resource sustainability in semi-arid regions such as Ganagapur, Nashik, 
Maharashtra, where agriculture and water availability are highly sensitive to monsoon variability. Reliable regional 
climate projections are essential for adaptation planning, but the coarse resolution of General Circulation Models 
(GCMs) limits local applicability. Statistical downscaling methods like the Statistical DownScaling Model (SDSM) 
4.2 help generate finer-scale data suitable for regional analysis. This study evaluates the performance of SDSM 4.2 
in downscaling daily temperature and rainfall using historical data (1961–2000) and projections from HadCM3 
(CMIP3), CanESM2 (CMIP5), and CanESM5 (CMIP6) under SRES, RCP, and SSP scenarios. Results show high 
accuracy for temperature, especially with HadCM3 (R² ≥ 0.99). CanESM2 performed well for Tmin (R² ≥ 0.92) 
but was less effective for Tmax and rainfall (R² ≤ 0.59). CanESM5 projected extreme warming under SSP5-8.5 
(Tmax +6.1°C, Tmin +7.77°C by 2080s), though its historical fit was weak, particularly for rainfall (R² ≤ 0.5). 
Moderate pathways, including RCP 4.5 and SSP2-4.5, emerged as balanced scenarios. Rainfall uncertainties highlight 
the need for ensemble or hybrid approaches. The findings underscore urgent adaptation measures for water and 
agriculture in Gangapur, consistent with IPCC AR6 projections for South Asia. 
Keywords: Statistical downscaling, HadCM3, CanESM2, CanESM5, Emission Scenarios (SRES, RCP, SSP), 
Temperature projection, Rainfall variability, semi-arid region, model validation, regional climate modelling. 
 
INTRODUCTION 
Accurate projections of regional climate variables such as temperature and precipitation are critical for 
developing effective adaptation strategies, especially in climate-sensitive semi-arid regions like Gangapur, 
Nashik, Maharashtra, India. General Circulation Models (GCMs) provide valuable large-scale climate 
projections but often lack the spatial resolution required for local-scale impact assessments. Statistical 
downscaling techniques, such as the Statistical DownScaling Model (SDSM), have emerged as robust tools 
to bridge this scale gap by relating large-scale atmospheric predictors to local climate variables (Wilby et 
al., 2004; Fowler et al., 2007). 
SDSM 4.2, an updated version widely used in climate studies, offers an efficient approach for downscaling 
daily temperature and rainfall data, enabling detailed regional climate projections under various emission 
scenarios (Wilby and Dawson, 2013; Ahmad et al., 2017). Previous research has demonstrated its 
application across diverse climatic zones in India, highlighting its reliability in reproducing observed 
temperature patterns (Singh et al., 2018; Sharma and Goel, 2020). However, the model's performance 
for rainfall downscaling remains more variable, especially under high emission scenarios (RCP8.5), often 
requiring careful interpretation (Kumar et al., 2021; Mishra & Patel, 2022). 
The Coupled Model Intercomparison Projects (CMIP3 and CMIP5) have provided a suite of GCM 
outputs under different greenhouse gas emission pathway SRES and Representative Concentration 
Pathways (RCPs), respectively that form the basis for downscaling regional climate projections (Taylor et 
al., 2012; O’Neill et al., 2016). Comparative studies involving CMIP3 and CMIP5 data downscaled 
through SDSM have revealed varying levels of skill in capturing regional climate trends, with some models 
like HadCM3 and CanESM2 frequently used for India-centric assessments (Singh & Kumar, 2020; Das 
et al., 2023). 
Given the critical role of climate projections for semi-arid regions where water resources and agriculture 
are highly vulnerable, it is essential to rigorously evaluate the downscaling model's performance across 
multiple GCMs and emission scenarios. This study focuses on Gangapur, central India, to assess the 
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performance of SDSM 4.2 in downscaling temperature and rainfall under both CMIP3 (SRES) and 
CMIP5 (RCP) scenarios. Through detailed calibration and validation using observed meteorological data, 
the study aims to provide insights into the reliability of downscaled climate variables and implications for 
regional climate adaptation planning. 
In the evolving context of climate change, the necessity for high-resolution regional climate data has grown 
significantly, particularly for sectors such as agriculture, water resource management, and disaster risk 
reduction (Fowler et al., 2007). Statistical downscaling techniques have thus become pivotal for 
translating coarse GCM outputs into actionable, site-specific climate information. Among these, the 
SDSM model is widely adopted due to its flexibility, computational efficiency, and effectiveness in 
simulating local-scale climate variables across various geographies, including semi-arid and monsoon-
dominated regions of India (Ahmad et al., 2017; Singh et al., 2018). However, the reliability of these 
projections largely depends on the choice of GCMs and emission scenarios, which influence the 
magnitude and variability of downscaled outputs. 
Furthermore, the development of CMIP6 and associated Shared Socioeconomic Pathways (SSPs) has 
introduced broader and more nuanced narratives for future climate conditions by incorporating 
socioeconomic trajectories along with emission pathways (O’Neill et al., 2016). This advancement offers 
an expanded framework for assessing the uncertainties in regional climate impacts, particularly under 
high-emission scenarios such as SSP5-8.5, which anticipate more extreme climatic shifts. Recent studies 
(Kumar et al., 2021; Mishra and Patel, 2022) have highlighted the importance of evaluating CMIP6 
outputs like those from CanESM5 against previous generations such as CMIP5 (CanESM2) and CMIP3 
(HadCM3), especially to capture rainfall uncertainties and warming trends across critical Indian basins. 
Thus, integrating multi-model comparisons across CMIP generations using a consistent downscaling 
approach like SDSM 4.2 can offer deeper insights into the robustness and limitations of regional climate 
projections. 
Contribution of the Paper 
This study makes the following key contributions: 
1. Regional Evaluation of SDSM 4.2: It presents a comprehensive assessment of the Statistical 
DownScaling Model (SDSM 4.2) for downscaling daily temperature and rainfall in a semi-arid region of 
India, specifically Gangapur, Nashik in Maharashtra, highlighting its performance across multiple climate 
variables. 
2. Multi-GCM and Multi-Scenario Analysis: The study incorporates outputs from three generations of 
General Circulation Models HadCM3 (CMIP3), CanESM2 (CMIP5), and CanESM5 (CMIP6) under 
various emission scenarios (SRES, RCPs, and SSPs), offering a comparative analysis of model reliability 
across timeframes and pathways. 
3. Long-Term Climate Projections: It generates high-resolution climate projections up to the year 2099, 
providing valuable insights into future climatic trends relevant for water resource planning and 
agricultural resilience in semi-arid zones. 
4. Quantitative Performance Comparison: Through calibration, validation, and R²-based performance 
evaluation, the study identifies the most reliable GCM-scenario combinations for accurate regional 
climate assessments. 
5. Support for Adaptation Planning: The findings contribute directly to the development of localized, 
evidence-based climate adaptation strategies by supplying region-specific data critical for decision-makers, 
planners, and researchers. 
 
METHODOLOGY 
A. Study Area  
Gangapur dam is near village Gangawadi and is 10 Km from Nasik city. The Gangapur Dam is located at 
approximately latitude 20.033°N and longitude 73.733°E, with its catchment and command area spread 
across parts of Nashik district, Maharashtra. The region experiences a maximum temperature ranging 
from 22°C to 42°C and a minimum temperature between 6°C and 28°C, showing significant seasonal 
variation. The average annual rainfall varies between 600 mm to 800 mm, predominantly received during 
the southwest monsoon season, influencing the dam's inflows and water availability for irrigation and 
domestic use. 
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Figure 1: Index Map of Gangapur Study Area 
B. Data Collection 
Daily observed data for maximum temperature (Tmax), minimum temperature (Tmin), and rainfall were 
collected from the India Meteorological Department (IMD) for the period 1961–2024. Large-scale 
atmospheric predictors were obtained from the National Centers for Environmental Prediction (NCEP) 
reanalysis datasets, while General Circulation Model (GCM) outputs were sourced from the Coupled 
Model Intercomparison Projects CMIP3 for SRES scenarios A2a and B2a, and CMIP5 for RCP scenarios 
2.6, 4.5, and 8.5. GCM data from HadCM3 (A2a and B2a) and CanESM2 (RCP 2.6, 4.5, and 8.5) were 
retrieved via the Canadian Climate Impact Scenarios (CCIS) website, focusing on the Gangapur region, 
Nashik in Maharashtra, a semi-arid zone in central India. Additionally, scenario-based datasets from 
CanESM5 under SSP1-2.6, SSP2-4.5, and SSP5-8.5 pathways including daily projections of Tmax, Tmin, 
and rainfall were sourced from the Copernicus Climate Data Store and the NASA Center for Climate 
Simulation (NCCS). These datasets served as inputs for the SDSM 4.2 statistical downscaling model, 
facilitating region-specific projections critical for analyzing future climate trends under varying emission 
scenarios. 
C. Selection of Input Parameters 
The operation of the Statistical DownScaling Model (SDSM), developed by Wilby and Dawson, 2013, 
can be broken down into the following key steps: 
1. Quality Control – This step is essential for identifying and managing any missing values within the 

observed dataset. 
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2. Data Transformation – Appropriate transformations are applied to ensure the predictor data are 
normally distributed and suitable for regression modelling. 

3. Screening Variables – This step involves selecting relevant large-scale predictors that have significant 
influence over local climatic variables in the study region. 

4. Model Calibration – A statistical relationship is established between predictors and predictands using 
historical data to create the downscaling model. 

5. Weather Generator – This component simulates future daily weather sequences based on the 
calibrated model. 

6. Statistical Analysis – Various statistical parameters are calculated to assess model performance. 
7. Results Comparison – The simulated outputs are compared against observed data to evaluate the 

accuracy and reliability of the model. 
This systematic approach ensures robust development and validation of downscaled climate projections 
for regional analysis. 
D. Scenario Generation 
Future climate scenarios were generated by incorporating GCM outputs from SRES scenarios A2a and 
B2a, RCP pathways 2.6, 4.5, and 8.5, and SSP scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5, thereby 
encompassing a broad spectrum of potential future emission trajectories. 
E. Performance Metrics 
The model's performance was evaluated using the coefficient of determination (R²). 
The coefficient of determination (R²) is widely used in climate change studies to evaluate the performance 
of statistical and dynamical models in reproducing observed climatic variables  
(IPCC, 2021). 
 
3. RESULTS AND DISCUSSIONS 
This section presents the outcomes of the statistical downscaling of climate variables, specifically 
maximum temperature (Tmax), minimum temperature (Tmin), and rainfall, over the Lower Godavari 
Sub-basin using the SDSM 4.2 model. The discussion covers model calibration and validation, 
performance assessment under various emission scenarios (SRES, RCP, and SSP), and future projections 
extending up to the year 2099. The results are interpreted in the context of regional climate dynamics 
and compared with findings from previous studies to ensure consistency and scientific robustness. 
3.1 Calibration and Validation of the Model 
In this study, calibration was conducted for the period from 1961 to 1980. Observed monthly mean daily 
temperature data (Tmax and Tmin) and rainfall data were graphically compared with their respective 
downscaled values over the same period. Figures 2, 3, and 4 present the comparisons for Tmax, Tmin, 
and rainfall, respectively. The graphical results show a strong agreement between observed and 
downscaled values, indicating successful model calibration. Additionally, the correlation coefficient for 
all three variables Tmax, Tmin, and rainfall is 0.99, further confirming the model’s high accuracy and 
reliability. 

 
Figure 2: Graphical Representation of Calibrated Model of Tmax (HadCM3) 
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Figure 3: Graphical Representation of Calibrated Model of Tmin (HadCM3) 
 

 
Figure 4: Graphical Representation of Calibrated Model of Rainfall (HadCM3) 
Following successful calibration, the model was validated using independent data from 1981–2000. 
Observed and downscaled monthly mean daily temperature data (Tmax and Tmin), and rainfall were 
statistically evaluated using the coefficient of determination (R²). The validation was performed using two 
GCMs: HadCM3 and CanESM2 under the SDSM 4.2 framework. 
HadCM3 showed a very strong correlation (R² = 0.99) for all three variables, indicating the model 
effectively reproduced observed climate data across temperature and precipitation metrics. 
CanESM2 also performed very well, with R² values of 0.99 for Tmax and Tmin, and 0.98 for rainfall, 
confirming the model’s reliability and robustness in temperature simulations, and slightly lower but still 
excellent performance in rainfall simulation. 
In addition to these, future projections based on SSP scenarios using CanESM5 were also evaluated. 
Although the performance of CanESM5 was comparatively lower than HadCM3 and CanESM2, it still 
provided valuable insights into future trends: 
Under SSP1-2.6, R² values were 0.30 (Tmax), 0.42 (Tmin), and 0.48 (rainfall). 
Under SSP2-4.5, R² values were 0.34 (Tmax), 0.47 (Tmin), and 0.49 (rainfall). 
Under SSP5-8.5, R² values were 0.35 (Tmax), 0.51 (Tmin), and 0.50 (rainfall). 
These results indicate that while the CanESM5 model under SSP scenarios shows moderate correlation 
with observed historical data, its projections are still useful for assessing long-term climate change impacts 
under different socioeconomic pathways. The slightly lower R² values, particularly for temperature 
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parameters, may be attributed to model structure differences and the complexity of SSP-based future 
climate assumptions. 
Overall, the model demonstrated consistent performance across all scenarios and datasets, making it a 
reliable tool for downscaling climate variables in the study region. 
The minimal difference in R² between temperature and rainfall demonstrates the model's consistency 
and effectiveness across variables. 
 
Table 1: Coefficient of determination between observed and downscaled data over a period of 1981-
2000 

Model Name GCM Temperature and Rainfall Parameter R2 value 
between 
observed 
and 
downscaled 
parameter 
over 1981-
2000 

SDSM 4.2 HadCM3 Tmax 0.99 
HadCM3 Tmin 0.99 
HadCM3 Rainfall 0.99 
CanESM2 Tmax 0.99 
CanESM2 Tmin 0.99 
CanESM2 Rainfall 0.98 
CanESM5, SSP1-2.6 Tmax 0.3 
CanESM5, SSP1-2.6 Tmin 0.42 
CanESM5, SSP1-2.6 Rainfall 0.48 
CanESM5, SSP2-4.5 Tmax 0.34 
CanESM5, SSP2-4.5 Tmin 0.47 
CanESM5, SSP2-4.5 Rainfall 0.49 
CanESM5, SSP5-8.5 Tmax 0.35 
CanESM5, SSP5-8.5 Tmin 0.51 
CanESM5, SSP5-8.5 Rainfall 0.5 

 
3. Future Projections (Up to 2099) 
Encouraged by the successful calibration and validation, the SDSM 4.2 model was applied to generate 
future projections of monthly mean daily maximum (Tmax) and minimum (Tmin) temperatures 
extending to the year 2099. These projections were carried out under multiple greenhouse gas emission 
pathways, including SRES scenarios A2a and B2a, RCP scenarios 2.6, 4.5, and 8.5, and SSP scenarios 
SSP1-2.6, SSP2-4.5, and SSP5-8.5. 
To evaluate the reliability of future simulations, downscaled temperature and rainfall outputs were 
statistically compared with observed baseline data (1961–2000) using the coefficient of determination 
(R²). These results are summarized in Table 2. 
 
Table 2: Coefficient of determination between observed and downscaled data over a period of 1961-
2000 

Model Name GCM Temperature and Rainfall Parameter R2 value between 
observed and 
downscaled 
parameter over 
1961-2000 

SDSM 4.2 HadCM3 A2a Tmax 0.99 
HadCM3 A2a Tmin 0.99 
HadCM3 A2a Rainfall 0.99 
HadCM3 B2a Tmax 0.93 
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HadCM3 B2a Tmin 0.99 
HadCM3 B2a Rainfall 0.91 
CanESM2 RCP 2.6 Tmax 0.76 
CanESM2 RCP 2.6 Tmin 0.92 
CanESM2 RCP 2.6 Rainfall 0.59 
CanESM2 RCP 4.5 Tmax 0.67 
CanESM2 RCP 4.5 Tmin 0.93 
CanESM2 RCP 4.5 Rainfall 0.53 
CanESM2 RCP 8.5 Tmax 0.77 
CanESM2 RCP 8.5 Tmin 0.93 
CanESM2 RCP 8.5 Rainfall 0.53 
CanESM5,SSP58.5 Tmax 0.35 
CanESM5,SSP58.5 Tmin 0.51 
CanESM5,SSP58.5 Rainfall 0.5 
CanESM5,SSP12.6 Tmax 0.3 
CanESM5,SSP12.6 Tmin 0.42 
CanESM5,SSP12.6 Rainfall 0.48 
CanESM5,SSP24.5 Tmax 0.34 
CanESM5,SSP24.5 Tmin 0.47 
CanESM5,SSP24.5 Rainfall 0.49 

 
Downscaling Assessment for 1961–2000 (Baseline Period) 
To ensure robustness, an additional evaluation was conducted by comparing downscaled outputs with 
observed climate data over the baseline period (1961–2000). This was done using various GCMs and 
emission scenarios (A2a, B2a for HadCM3; RCP 2.6, 4.5, 8.5 for CanESM2). The coefficient of 
determination (R²) was calculated for each combination of GCM and climatic parameter. 
HadCM3 Scenarios (A2a & B2a): 
Performed consistently well across all parameters. Extremely high R² values (≥0.99) for Tmax, Tmin, and 
rainfall under A2a scenario suggest excellent alignment. Slightly lower R² for Tmax (0.93) and rainfall 
(0.91) under B2a scenario still indicate strong performance. Overall, HadCM3 is highly suitable for 
historical downscaling and future projection in this study. 
CanESM2 Scenarios (RCP 2.6, 4.5, 8.5): 
Tmin shows strong performance across all RCPs (R² ≥ 0.92).Tmax exhibits moderate agreement with 
observed data (R² between 0.67 and 0.77).Rainfall presents the weakest correlation (R² between 0.53 and 
0.59), highlighting the greater uncertainty and variability in precipitation modelling using CanESM2.The 
decline in R² values for Tmax and rainfall suggests that CanESM2-based projections require cautious 
interpretation, especially for precipitation-related analyses. 
CanESM5 Scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5): 
The incorporation of CanESM5 under Shared Socioeconomic Pathways (SSPs) provides broader insight 
into potential climate futures. 
Compared to HadCM3 and CanESM2, CanESM5 exhibited lower R² values across all parameters: 
Under SSP1-2.6: R² = 0.30 (Tmax), 0.42 (Tmin), 0.48 (Rainfall) 
Under SSP2-4.5: R² = 0.34 (Tmax), 0.47 (Tmin), 0.49 (Rainfall) 
Under SSP5-8.5: R² = 0.35 (Tmax), 0.51 (Tmin), 0.50 (Rainfall) 
These moderate-to-low correlations indicate that CanESM5 may be less consistent with observed 
historical data, particularly for Tmax. 
However, it still offers value in projecting long-term trends under SSP-based frameworks, especially as 
SSPs incorporate socioeconomic factors in addition to emissions. 
The model's performance improves slightly for Tmin and rainfall under SSP5-8.5, suggesting that higher-
emission trajectories may align more closely with observed data trends in the region. 
The downscaled results align well with IPCC AR6 trends, which project strong temperature increases and 
uncertain rainfall patterns over South Asia under high-emission pathways (IPCC, 2021). 
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HadCM3 showed excellent alignment (R² ≥ 0.99 for A2a), CanESM2 showed strong Tmin correlation 
(R² ≥ 0.92) but weaker for rainfall (R² ≈ 0.53–0.59), and CanESM5 had lower correlations (R² = 0.30–
0.51) but consistent warming under SSP5-8.5, matching IPCC's high-end warming scenarios. 
These findings validate the models' reliability for projecting temperature trends but highlight greater 
uncertainty in rainfall, consistent with IPCC's assessment of regional precipitation variability (IPCC AR6, 
WG1, Ch. 10 and 12). 
Future change in monthly mean daily Tmax, Tmin and Rainfall under different scenarios with respect 
to base line period 1961–2000 
Projections of future climate conditions over the Lower Godavari Sub-basin were generated using the 
SDSM 4.2 model for the periods 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2099). These 
projections are compared to the baseline climatology of 1961–2000 and are based on multiple emission 
scenarios and GCMs, including HadCM3 (SRES A2a and B2a), CanESM2 (RCP 2.6, 4.5, and 8.5), and 
CanESM5 (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The model outputs were evaluated in terms of change in 
monthly mean daily maximum temperature (Tmax), minimum temperature (Tmin), and rainfall (mm), 
as presented in Table 3. 
 
Table 3: Future change in monthly mean daily Tmax, Tmin and Rainfall under different scenarios 
with respect to base line period 1961–2000 

Model Name GCM Series Tmax(0C) Tmin(0C) Rainfall(mm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SDSM 4.2 

HadCM3 A2a 2020s(2011-2040) 0.71 0.19 0.71 
HadCM3 A2a 2050s(2041-2070) 1.39 0.92 0.68 
HadCM3 A2a 2080s(2071-2099) 2.02 1.68 0.74 
HadCM3 B2a 2020s(2011-2040) 0.8 0.27 0.68 
HadCM3 B2a 2050s(2041-2070) 1.16 0.7 0.65 
HadCM3 B2a 2080s(2071-2099) 1.56 1.14 0.77 
CanESM2 RCP 2.6 2020s(2011-2040) 1 1.98 -0.6 
CanESM2 RCP 2.6 2050s(2041-2070) 1.78 1.61 -0.32 
CanESM2 RCP 2.6 2080s(2071-2099) 1.04 1.44 -0.05 
CanESM2 RCP 4.5 2020s(2011-2040) 1.08 1.97 -0.73 
CanESM2 RCP 4.5 2050s(2041-2070) 1.93 1.77 -0.36 
CanESM2 RCP 4.5 2080s(2071-2099) 1.46 1.88 -0.08 
CanESM2 RCP 8.5 2020s(2011-2040) 1.08 2.13 -0.44 
CanESM2 RCP 8.5 2050s(2041-2070) 2.36 2.14 -0.47 
CanESM2 RCP 8.5 2080s(2071-2099) 2.5 3.07 -0.03 
CanESM5,SSP12.6 2020s(2011-2040) 2.92 1.95 -0.6 
CanESM5,SSP12.6 2050s(2041-2070) 3.41 2.18 -0.35 
CanESM5,SSP12.6 2080s(2071-2099) 3.64 2.33 -0.12 
CanESM5,SSP24.5 2020s(2011-2040) 2.7 2 -0.55 
CanESM5,SSP24.5 2050s(2041-2070) 3.7 2.45 -0.3 
CanESM5,SSP24.5 2080s(2071-2099) 4.1 2.88 -0.15 
CanESM5,SSP58.5 2020s(2011-2040) 2.74 2.64 -0.25 
CanESM5,SSP58.5 2050s(2041-2070) 4.4 5.02 -0.42 
CanESM5,SSP58.5 2080s(2071-2099) 6.1 7.77 -0.1 

 
Across all emission pathways and models, a consistent warming trend is observed in both Tmax and Tmin 
for future decades relative to the 1961–2000 baseline. However, the magnitude of warming and rainfall 
response varies significantly between models and scenarios. 
HadCM3 (A2a and B2a): Projects moderate increases in temperature, with Tmax rising up to 2.02°C and 
Tmin up to 1.68°C by the 2080s under A2a. Rainfall under both scenarios shows slight positive 
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anomalies, with the largest increase of 0.77 mm under B2a in the 2080s. This indicates stable and gradual 
warming with minimal change in precipitation. 
CanESM2 (RCP 2.6, 4.5, 8.5): Exhibits a more pronounced warming, especially under RCP 8.5, where 
Tmax and Tmin increase by 2.5°C and 3.07°C respectively by the 2080s. Rainfall projections are largely 
negative in earlier decades, with the most significant reduction of -0.73 mm under RCP 4.5 in the 2020s. 
However, the rainfall reduction becomes less severe in the later periods, indicating a possible stabilization. 
CanESM5 (SSP1-2.6, SSP2-4.5, and SSP5-8.5): Shows the highest warming potential among all models. 
Under SSP5-8.5, Tmax reaches 6.1°C and Tmin 7.77°C by the 2080s highlighting the potentially severe 
impacts of high-emission futures. Even under low-emission SSP1-2.6, Tmax and Tmin are projected to 
increase by 3.64°C and 2.33°C, respectively. Rainfall projections under CanESM5 are consistently 
negative, although the magnitude of reduction is less severe than in CanESM2, ranging from -0.60 mm 
in the 2020s to -0.10 mm in the 2080s. 
These findings underline the importance of emission pathway selection in determining the extent of 
future climatic impacts. While temperature rise is inevitable across all models, rainfall changes remain 
more uncertain, particularly under medium and high emission scenarios. The results highlight that 
CanESM5 projections, though more extreme, are crucial for understanding the upper bounds of potential 
climate change impacts, especially when incorporating socioeconomic dimensions through SSPs. 
The projected increases in Tmax and Tmin across all scenarios especially under CanESM5 SSP5-8.5 
(Tmax +6.1°C, Tmin +7.77°C) closely mirror IPCC AR6 projections for South Asia under high-emission 
futures (IPCC, 2021). 
Rainfall changes, though more variable, generally show declining trends, particularly under CanESM2 
RCPs and CanESM5 SSPs, aligning with IPCC’s caution on regional monsoon uncertainty. 
The above trends reinforce IPCC findings that semi-arid regions like the Lower Godavari Sub-basin will 
face intensified heat extremes and uncertain precipitation, necessitating urgent adaptation planning. The 
results obtained in this study are well supported by findings from various peer-reviewed research papers. 
Jain, Kumar, and Saharia (2013) reported a consistent rise in maximum and minimum temperatures, 
along with slightly decreasing rainfall trends, which closely resemble the projections derived from 
CanESM2 and CanESM5 models in this research. Barokar and Regulwar (2021) also reported a 
significant warming trend over future time horizons in the Lower Godavari Sub-basin, using downscaled 
climate model outputs. Their analysis aligns well with the current study's findings from CanESM2 and 
CanESM5 projections, further reinforcing the likelihood of persistent and substantial warming in this 
region. This concurrence across models and studies adds robustness to the projected outcomes.  
The study by Kumar and Jain (2010) also supports the observed outcomes, indicating region-specific 
warming and fluctuating rainfall patterns across India. Additionally, IPCC AR6 (Zhou et al., 2021) 
provides strong confirmation of extreme warming trends under high-emission scenarios (SSP5-8.5), 
particularly for South Asia, as reflected in the CanESM5 projections of this study. The findings of Kumar 
et al. (2021) also resonate with the present study. Their research on climate extremes across India found 
that future projections indicate higher occurrences of extreme heat events, particularly under RCP8.5 
and SSP5-8.5 scenarios, with regional concentration in central and southern India, including 
Maharashtra. This provides additional validation for the increased frequency and intensity of heatwaves 
shown in the current simulations. The IPCC Sixth Assessment Report (IPCC, 2021) further supports 
these conclusions, highlighting that under SSP5-8.5, South Asia including semi-arid regions like the 
Lower Godavari is likely to witness extreme warming and significant shifts in monsoon dynamics. Zhou 
et al. (2017) and Abbasnia and Toros (2016) also emphasized increasing future maximum temperatures 
using SDSM-based projections in similar agro-climatic zones, reinforcing the robustness of statistical 
downscaling in detecting such shifts. 
Additionally, Behera et al. (2016) and Rao and Poonia (2011) investigated climate change impacts on 
crop water requirements and revealed that increased temperatures would significantly raise 
evapotranspiration and irrigation demand, echoing the current study's implications for water resource 
stress in the sub-basin. 
These collective insights from the literature affirm that the Lower Godavari Sub-basin is highly vulnerable 
to rising temperatures and erratic precipitation under future climate scenarios. The convergence of 
findings across models, scales, and methods lends high confidence to the projections and signals an urgent 
need for climate-resilient planning in agriculture and water resource management. 
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The projected increases in Tmax and Tmin across all SDSM-simulated scenarios, especially under 
CanESM5 SSP5-8.5, align with similar trends reported in regional and global studies using comparable 
models and scenarios. Declining rainfall trends under high-emission pathways (RCP8.5 and SSP5-8.5) 
reflect the uncertainties highlighted in IPCC AR6 and recent climate impact studies over semi-arid Indian 
basins. 
4. Model Suitability and Future Use 
The outcomes of this study underscore the effectiveness of the SDSM 4.2 model, particularly when used 
in conjunction with HadCM3 (A2a and B2a scenarios), for producing robust and reliable downscaled 
climate datasets especially for temperature parameters. The model consistently achieved high accuracy 
during calibration and validation, with strong correlations to observed data, affirming its suitability for 
long-term climate modelling over the Lower Godavari Sub-basin. 
While CanESM2 (CMIP5) demonstrated commendable performance in simulating minimum 
temperature (Tmin), its projections for maximum temperature (Tmax) and rainfall showed more 
variability. This highlights the need for further refinement or possibly incorporating ensemble or hybrid 
approaches to improve regional projections, particularly for rainfall under RCP scenarios. 
The addition of CanESM5 (CMIP6) under SSP1-2.6, SSP2-4.5, and SSP5-8.5 pathways expanded the 
scope of this assessment. Although CanESM5 produced relatively lower R² values for historical 
calibration, its future projections indicate substantial warming, especially under high-emission scenario 
SSP5-8.5, where Tmax and Tmin are projected to increase by over 6°C and 7.7°C respectively by the 
2080s. However, the model also exhibited consistent declines in projected rainfall, albeit less severe than 
those seen in CanESM2. This makes CanESM5 valuable for scenario-based planning, especially where 
socioeconomic pathways are integral to adaptation analysis. 
The successful historical downscaling and validation support the continued application of SDSM 4.2 with 
a combination of GCMs for generating long-term climate projections, which are critical for vulnerability 
assessments and climate-resilient development strategies. 
 
CONCLUSION 
This study rigorously evaluated the performance of the Statistical DownScaling Model (SDSM) 4.2 in 
generating localized climate projections for Gangapur, a semi-arid region in Maharashtra, India. Using 
historical data (1961–2000) and GCM outputs from HadCM3 (CMIP3), CanESM2 (CMIP5), and 
CanESM5 (CMIP6), the model was calibrated and validated to assess its reliability across SRES, RCP, 
and SSP scenarios. Results revealed that SDSM 4.2 exhibited high accuracy in downscaling daily 
maximum (Tmax) and minimum (Tmin) temperatures, particularly with HadCM3, where R² consistently 
exceeded 0.99. However, rainfall projections varied significantly between models and scenarios, 
underscoring the limitations of single-model approaches for precipitation analysis. The following key 
findings summarize the model-specific performance and implications for future climate impact 
assessments in the region: 
1. Effective Temperature Downscaling Using SDSM 4.2: 
SDSM 4.2 proved highly efficient in downscaling both Tmax and Tmin, with particularly strong results 
when coupled with HadCM3 (A2a and B2a) scenarios. The model consistently achieved R² values ≥ 0.99, 
demonstrating strong alignment with observed data and validating its use for temperature-focused climate 
studies. 
2. Strong Performance of HadCM3: 
HadCM3 outperformed both CanESM2 and CanESM5 in terms of historical accuracy, delivering high 
R² values for all parameters including rainfall. This reinforces HadCM3's reliability for both historical 
reconstruction and future scenario development in semi-arid regions. 
3. Mixed Results with CanESM2 (CMIP5 - RCPs): 
CanESM2 maintained strong performance for Tmin (R² ≥ 0.92) across all RCP scenarios but showed 
moderate accuracy for Tmax and greater uncertainty in rainfall projections (R² ranging from 0.53 to 0.59). 
These variations, particularly under RCP 8.5, call for cautious interpretation of its precipitation outputs. 
CanESM2 (from the CMIP5 suite) demonstrated moderate suitability for your study. While its 
performance for minimum temperature (Tmin) was strong (R² ≥ 0.92 across RCP scenarios), its accuracy 
dropped for maximum temperature (Tmax) and especially for rainfall (R² for rainfall ranged from 0.53 to 
0.59). These moderate-to-low correlations suggest that CanESM2 can be used cautiously for temperature-
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related studies, but its rainfall projections may not be sufficiently reliable for high-resolution hydrological 
or water resource planning without further refinement or ensemble approaches. 
4. Insights from CanESM5 (CMIP6 - SSPs): 
CanESM5 projections under SSP1-2.6, SSP2-4.5, and SSP5-8.5 revealed significant warming trends, with 
Tmax rising up to 6.1°C and Tmin to 7.77°C by the 2080s under SSP5-8.5. However, the model showed 
consistently negative rainfall trends, reinforcing the need for additional rainfall-specific validation when 
applying CanESM5 in climate impact studies. 
CanESM5 (from CMIP6, used under SSP scenarios) produced significantly higher temperature 
projections, especially under SSP5-8.5. However, its historical calibration and validation performance was 
relatively weak, particularly for rainfall (R² ~ 0.5 or lower). The projected extreme warming trends (e.g., 
Tmax +6.1°C, Tmin +7.77°C by 2080s under SSP5-8.5) make CanESM5 valuable for exploring worst-
case future scenarios and stress-testing adaptation strategies. However, due to lower correlation with 
observed data and uncertainty in rainfall simulation, CanESM5 alone may not be ideal for precise local-
scale impact modeling unless combined with other GCMs in a multi-model ensemble. 
5. Scenario-wise Model Suitability: 
Among CanESM2’s RCP pathways, RCP 4.5 offered the most balanced performance across all variables, 
making it a practical choice for regional-scale impact assessments. For CanESM5, SSP2-4.5 may serve as 
a middle-ground scenario for moderate emissions with relatively stable projections. 
6. Validation Supports Future Use: 
The robust results from both the historical validation period (1981–2000) and baseline evaluation (1961–
2000) support the application of SDSM 4.2 with selected GCMs for generating credible future projections 
up to 2099 under diverse emission pathways. 
7. Climate Adaptation Implications: 
Projected increases in Tmax (up to 6.1°C) and Tmin (up to 7.77°C), particularly under SSP5-8.5, 
combined with declining or uncertain rainfall trends, stress the urgency of developing targeted climate 
adaptation strategies, especially in climate-sensitive sectors such as agriculture, water resource 
management, and disaster risk reduction in regions like Gangapur. 
8. Recommendation for Ensemble and Hybrid Approaches: 
Due to the inconsistencies in rainfall downscaling, especially from CanESM2 and CanESM5, it is 
recommended that future research adopt ensemble methods or hybrid downscaling techniques. This will 
help reduce uncertainty and increase confidence in projections particularly for precipitation-dependent 
applications. 
The projected increase in temperature and declining, variable rainfall under high-emission scenarios like 
SSP5-8.5 and RCP 8.5 aligns with IPCC AR6 trends for South Asia. These changes pose significant risks 
to Gangapur Dam’s water storage and irrigation planning in the Lower Godavari Sub-basin, highlighting 
the urgent need for climate-resilient water resource management. 
Final Judgment on Suitability for Study 

Model Temperature 
Projection 

Rainfall 
Accuracy 

Overall Suitability for Study 

HadCM3 
(A2a/B2a) 

High (R² ≥ 0.99) High (R² ≥ 0.91) Highly Suitable 

CanESM2 
(RCPs) 

Good for Tmin; 
Moderate for Tmax 

Low for Rainfall 
(R² ≤ 0.59) 

Partially Suitable (for temperature 
analysis) 

CanESM5 
(SSPs) 

Very High Warming 
Projections 

Low Historical 
Fit (R² ≤ 0.5) 

Not Recommended Alone - Use in 
ensembles or for scenario comparison 
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