ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

Directed Power Graphs Of Non-Coprime Cyclic Group Products

Jimly Manuel^{1*}, Bindhu K Thomas², Bijumon R¹, Aneesh Kumar K³, Silja C²

¹Department of Mathematics, Mahatma Gandhi College, Iritty.

²Research Department of Mathematics, Mary Matha Arts and Science College, Mananthavady.

Abstract

In this paper, we investigate the directed power graph of the direct product of cyclic groups, Z_m and Z_n where m and n are not relatively prime. We conduct a detailed structural analysis of the graphs $G(Z_{p \times p})$, $G(Z_{p \times 2p})$ and $G(Z_{p \times p})$. Here we are utilizing the algebraic properties of Z_n and Z_m , where m and n are coprime. The study focuses on how the lack of coprimality influences the connectivity and hierarchical structure of these directed power graphs.

Keywords: Cyclic group, Direct product, Coprime, Degree, Centre of attraction, Petals.

1 INTRODUCTION

In this paper, we discussed the directed power graph of the direct product of cyclic groups [3], Z_m and Z_n , where m and n are not relatively prime [4]. Here, we focused on studying the structural properties of certain classes of these digraphs [1] [2] using the properties of Z_m and Z_n .

Let m and n be two positive integers that are not relatively prime. Consider the direct product $Z_m \times Z_n$ of Z_m and Z_n . Since m and n are not relatively prime, $Z_m \times Z_n$ is not a cyclic group [3]. Here, we discuss the directed power graph [5] of $Z_m \times Z_n$ denoted by $G(Z_{m \times n})$. Two distinct vertices (x, y) and (u, v) of $G(Z_{m \times n})$ are joined by an arc from (x, y) to (u, v) if and only if (u, v) belongs to the cyclic subgroup generated by (x, y).

For example, Figure 1 shows $G(Z_{2\times 4})$.

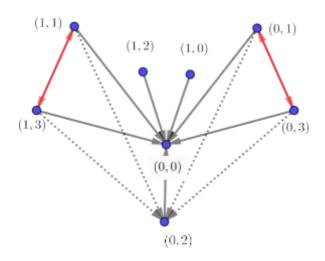


Figure 1: $G(Z_{2\times 4})$

If we consider $G(Z_{m \times n})$ the following are some immediate observations:

- od((0, 0)) = 0.
- id((0, 0)) = mn 1
- od((a, b)) = O((a, b)) 1, where O((a, b)) is the order [3] of (a, b) in the group $Z_m \times Z_n$.
- If g.c.d.(x, n) = 1, then there exist arcs from (0, x) to (0, y), for every $0 \le y \le n 1$.

2 Structural Properties of $G(Z_{p \times p})$

Let p be a prime number. Now $G(Z_{p \times p})$ has a particular structure. Let us consider these digraphs as *flowers* with *petals*. A *petal* represents a spanning subdigraph of a collection of vertices in $G(Z_{p \times p})$. $G(Z_{p \times p})$ contains p + 1 *petals* with the centre as the vertex (0, 0). Each of these p + 1 *petals* contains p - 1 vertices other than (0, 0) and they are adjacent to each other or they are reachable from one another.

³Department of Statistics, Mahatma Gandhi College, Iritty.

ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

Let us denote these *petals* by P, P_0 , P_1 , P_2 , \cdots , P_{p-1} . Here, P is the *petal* with vertices (0, 1), (0, 2), \cdots , (0, p-1). Now P_i , $i = 0, 1, \cdots$, p-1 are *petals* which are the spanning subdigraph of the vertices in the cyclic subgroup generated by (1, i) for $i = 0, 1, \cdots$, p-1 in $G(Z_{p \times p})$. Figure 2 shows $G(Z_{2 \times 2})$ and $G(Z_{3 \times 3})$ and Figure 3 shows $G(Z_{5 \times 5})$.

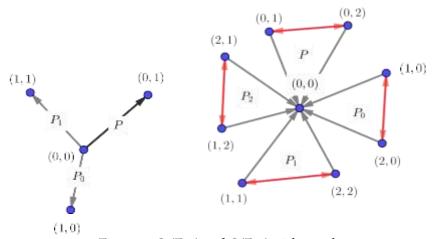


Figure 2: G $(Z_{2\times 2})$ and G $(Z_{3\times 3})$ with *petals*

Theorem 2.1. Let (x, y), $0 \le x$, $y \le p$ be a vertex of $G(Z_{p \times p})$. Then $(x, y) \in P_i$, if and only if $y \equiv ix \pmod{p}$, $i = 0, 1, 2, \dots$, p - 1.

Proof. Suppose $(x, y) \in P_i$, then by the definition of P_i , (x, y) and (1, i) are adjacent to each other

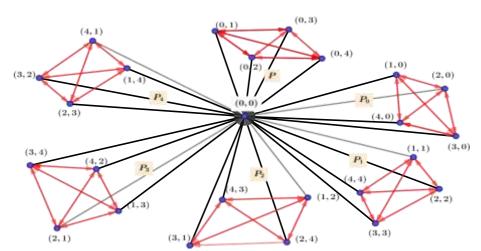


Figure 3: $G(Z_{5\times 5})$ with *petals*

Thus, in $Z_P \times Z_P$, for some positive integer r,

$$(x, y) = r(1, i)$$
 \Rightarrow $x = r; y = ri \text{ in } Z_p$
 $\Rightarrow \Rightarrow$ $y = xi \text{ in } Z_p$
 $y \equiv xi(\text{mod } p).$

Conversely, suppose that

$$y \equiv xi \pmod{p} \qquad \Rightarrow \qquad y = xi \text{ in } Z_p$$

$$\Rightarrow \qquad (x, y) = (x, xi) \text{ in } Z_p \times Z_p$$

$$\Rightarrow \qquad (x, y) = x(1, i) \text{ in } Z_p \times Z_p.$$

Thus, $(x, y) \in P_i$.

3 Structural Properties of $G(Z_{p\times 2p})$

Let p be an odd prime number. Then $G(Z_{p \times 2p})$ has a particular structure that is different from that of $G(Z_{p \times p})$. In $G(Z_{p \times 2p})$, there exists a vertex (0, p) that has order 2 in the group $Z_p \times Z_{2p}$, which we call the *centre of attraction* of $G(Z_{p \times 2p})$. We denote this vertex by z.

ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

Theorem 3.1. Let p be an odd prime. Then the in-degree of the centre of attraction of $G(Zp \times 2p)$ is $p^2 - 1$.

Proof. The vertices in $G(Z_{p \times 2p})$ have an order of either p or 2p. Consider the vertices $(x, y) \neq (0, 0)$ with $0 \le x \le p - 1$, $0 \le y \le 2p - 1$ and $y \equiv 1 \pmod{2}$ which are different from z. Then the order of these elements in the group $Z_p \times Z_{2p}$ is

 $l.c.m(O(x) \text{ in } Z_p, O(y) \text{ in } Z_{2p}) = l.c.m(p, 2p) \text{ or } l.c.m(1, 2p) = 2p.$

Now, since y is odd, $px \equiv 0 \pmod{p}$ and $py \equiv p \pmod{2p}$. Therefore, p(x, y) = (px, py) = (0, p) in $Z_p \times Z_{2p}$, and hence these elements, which have order 2p in the group $Z_p \times Z_{2p}$ generate (0, p). Thus, there exist arcs from these vertices to (0, p) in $G(Z_{p \times 2p})$. Now there are p choices for x and p choices for y, thus there are p^2 such vertices (x, y). But this includes z = (0, p) also. So the number of vertices p^2 in the group p^2 in the group p^2 is $p^2 - p^2$, and these $p^2 - p^2$ vertices contribute $p^2 - p^2$ to the in-degree of p^2 .

Now, let (a, b) be a vertex in $G(Z_{p \times 2p})$ whose order in the group $Z_p \times Z_{2p}$ is p.

Case(i) a = 0 and b is even.

Consider the subgroup generated by (0, b). That is,

 $\langle (0, b) \rangle = \{(0, b), (0, 2b), (0, 3b), \cdots, (0, (p-1)b)\}.$

Since b is even, for any positive integer r, rb is not equal to p in Z_{2p} . So an arc does not exist from (0, b) to (0, p).

Case(ii) $a \ne 0$ and b is even.

Consider the subgroup generated by (a, b). That is,

 $\langle (a, b) \rangle = \{(a, b), (2a, 2b), (3a, 3b), \dots, ((p-1)a, (p-1)b), (pa, pb)\}$

Since *b* is even, (pa, pb) = (0, 0) in $Z_p \times Z_{2p}$. So the element (0, p) is not in this collection. Hence, there exists no arc from (a, b) to (0, p) in $G(Z_{p \times 2p})$.

Case(iii) $a \ne 0$ and b = 0.

Consider the subgroup generated by (a, 0), this subgroup never contains an element of the form (0, p). So there exists no arc from (a, b) to (0, p) in $G(Z_{p \times 2p})$. Therefore, there exists no arc from a vertex whose order in $Z_p \times Z_{2p}$ is p to the vertex (0, p). Hence, the in-degree of *centre of attraction* is $p^2 - 1$.

Note that the spanning subdigraph of the vertices of the form (o, j), for $j = 0, 1, 2, \dots, 2p - 1$ and $j \neq p$ in $G(Z_{p \times 2p})$ forms a petal which is denoted by P.

Theorem 3.2. Let p be an odd prime. Then the petals other than P of $G(Z_{p \times 2p})$ contain the vertices which are in the cyclic group generated by either the vertex of the form (1, i) or the vertex of the form (1, p + i) for $i = 0, 1, \dots, p - 1$.

Proof. The cyclic subgroup generated by (1, i) contains the elements of the form k(1, i), for $k = 1, 2, \dots, 2p$.

Case(i) i is odd

Note that $p(1, i) \neq (0, 0)$. Thus,

$$\langle (1, i) \rangle = \{(1, 0), (2, 2i), \dots, (p-1, (p-i), (0, p), (1, (p+1)i), (2, (p+2)i), \dots, (0, 0)\}$$

having order 2p and the spanning subdigraph of < (1, i) > in $G(Z_{p \times 2p})$ forms a *petal*. The generators of this cyclic subgroup are (1, i), (3, 3i), \cdots , (p - 2, (p - 2)i), (2, (p + 2)i), \cdots , (p - 1, (2p - 1)i) and they are adjacent to each other. The remaining vertices of this *petal* are of order p in the group $Z_p \times Z_{2p}$ and are adjacent to each other by the definition of $G(Z_{p \times 2p})$. So for each odd $i \in \{0, 1, 2, \cdots, p - 1\}$, (1, i) generates a *petal*, each of which contains 2p - 1 vertices.

Case (ii) i is even

Then < (1, p + i) >= {k(1, p + i): k = 1, 2, \cdots , 2p} has order 2p and these vertices forms a petal. Here (2, 2i), (4, 4i), \cdots , (p - 1, (p - 1)i), (1, p + i), (3, p + 3i), \cdots , and (p - 2, p + (p - 2)i) are the vertices having order 2p in $Z_p \times Z_{2p}$ and they are adjacent to each other. The remaining elements of < (1, p + i) > are of order p in $Z_p \times Z_{2p}$ and they are adjacent to each other. So for each even $i \in$ {0, 1, 2, \cdots , p - 1}, (1, p + i) generates a *petal* each of which contains 2p - 1 vertices.

Now if i is odd, there are (p-1)/2 petals with 2p-2 vertices other than (0, 0) and if i is even, there are (p+1)/2 petals with 2p-2 vertices other than (0, 0). Also, there are 2p-2 vertices in the petal, P. Thus, the number of vertices in each petal P_i , $i = 0, 1, 2, \dots, p-1$, and the petal P together with the vertices (0, 0) and (0, p) is

$$\frac{p-1}{2}(2p-2) + \frac{p+1}{1}(2p-2) + (2p-2) + 2$$
$$= p^2 - 2p + 1 + p^2 - 1 + 2p - 2 + 2 = 2p^2$$

ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

Since the number of vertices in G ($\mathbb{Z}_{p \times 2p}$) is $2p^2$, all the vertices of G ($\mathbb{Z}_{p \times 2p}$) are in some unique *petals*.

Note: The *petals* other than P in $G(Z_{p\times 2p})$ contain the vertices which are the elements in the cyclic subgroup generated by (1, i), if i is odd, and by (1, p + i) if i is even and is denoted by P_i , $i = 0, 1, \dots, p - 1$. Thus, we can say that $G(Z_{p\times 2p})$ contains (p + 1) *petals*, and each of these p + 1 *petals* contains 2p - 2 vertices other than (0, 0). Out of these 2p - 2 vertices of a *petal*, p - 1 vertices are of order p and the remaining p - 1 vertices are of order p in the group p in the vertices with the same order are adjacent to each other and the vertices with order p are adjacent to the vertices with order p. Also, there are arcs from the vertices having order p to the vertex p to p to p to p to p to p to p the vertex p of attraction of p in p to p the vertex p to p to

For example, Figure 4, and Figure 5 show G ($Z_{3\times 6}$), and G ($Z_{5\times 10}$) respectively.

Theorem 3.3. Let (x, y), $x \ne 0$ be a vertex in $G(Z_{p \times 2p})$. If $(x, y) \in P_i$ then $y \equiv xi \pmod{p}$. Proof. Case (i): i is odd.

 P_i contains the vertices that are in the cyclic subgroup generated by (1, i). So if (x, y) is in P_i , then for some positive integer $r \neq p$, in $Z_p \times Z_{2p}$,

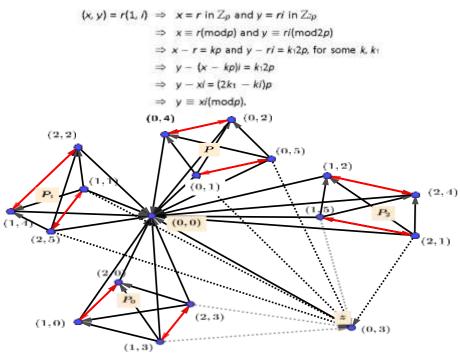


Figure 4: $G(Z_{3\times 6})$

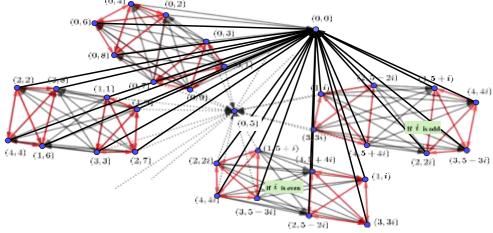


Figure 5: $G(Z_{5\times10})$

ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

```
Case (ii): i is even.
```

```
If (x, y) is in P_i, then for some r \neq p in Z_p \times Z_{2p}
                                                           \Rightarrow x = r \text{ in } Z_p \text{ and } y = r(p + i) \text{ in } Z_{2p}
\Rightarrow r - x = kp \text{ and } y - rp - ri = 2k_1p, k, k_1 \in \mathbb{Z}
\Rightarrow r = kp + x \text{ and } y - r(p + i) = 2k_1p
\Rightarrow y - (kp + x)(p + i) = 2k_1p
\Rightarrow y - kp^2 - kpi - px - xi - 2k_1p = 0
\Rightarrow y - xi \equiv O(\text{mod}p)
\Rightarrow y \equiv xi \pmod{p}.
```

Thus in both cases $y \equiv xi \pmod{p}$.

Theorem 3.4. Let (x, y), $x \neq 0$ be a vertex in $G(Z_{p \times 2p})$. If $y \equiv xi \pmod{2p}$ or $y \equiv p + xi \pmod{2p}$, then $(x, y) \in P_i$. *Proof.* Let us consider two cases.

Case(a): i is even

Claim: (x, y) = r(1, p + i), for some integer r.

(i) x is even.

Since x is even,

$$x(p + i) = xp + xi \equiv xi \equiv y \pmod{2p}$$
.

Also,

$$(p + x)(p + i) = (p + x)p + (p + x)i$$

$$\equiv p + pi + xi \pmod{2p}$$

$$\equiv p + xi \pmod{2p}$$

$$\equiv y \pmod{2p}.$$

(ii) x is odd.

Since x is odd,

$$x(p + i) = xp + xi \equiv p + xi \equiv y \pmod{2p}$$

Also,

$$(p+x)(p+i)=(p+x)p+(p+x)i$$

$$\equiv 0+pi+xi \pmod{2p}$$

$$\equiv xi \pmod{2p}$$

$$\equiv y \pmod{2p}.$$
Since $p+x\equiv x \pmod{p}$, $(x,y)=r(1,p+i)$ for either $r=x$ or $r=p+x$.

Case(b): i is odd.

Claim: (x, y) = r(1, i), for some integer r.

$$x(1, i) = (x, xi) \equiv (x, y) \text{ in } \mathbb{Z}_p \times \mathbb{Z}_{2p}.$$

Also, since *i* is odd, (p + x)(1, i) = (p + x, (p + x)i)= (p + x, pi + xi)= (x, p + xi)= (x, y) in $Z_p \times Z_{2p}$. Thus, (x, y) = r(1, i) for either r = x or r = p + x.

4 Structural Properties of $G(Z_{p \times p}^2)$

Consider $G(Z_{p \times p}^2)$, where p is a prime number. These digraphs contain p-1 vertices of the form (0, ip), where $i = 1, 2, \dots, p-1$. We call these vertices center of attractions of the digraph and are denoted by z_i , i = 1, $Z_p \times Z_p^2$ is p. There exist arcs from all the vertices of $G(Z_{p \times p}^2)$ except (0, 0) and the vertices whose order in the group $Z_p \times Z_p^2$ is p to these z_i . Now the vertices of the form i(1, 1)

ISSN: 2229-7359 Vol. 11 No. 24s, 2025

https://theaspd.com/index.php

0), i(1, p), i(1, 2p), \cdots , i(1, (p-1)p), where $i = 1, 2, \cdots, p-1$ whose order in the group $Z_p \times Z_p^2$ is p form p-1 small petals with p-1 vertices. For $j = 1, 2, \cdots, p-1$, i(1, jp) form small petals.

Now there exists a *petal* P_0 containing all the vertices of the form (0, i), where $i = 1, 2, \dots, p^2 - 1$ except $i = p, 2p, \dots, (p-1)p$. Also, for $i = 1, 2, \dots, p-1$, there exists *petals* P_i containing the vertex (1, i). This P_i contains p(p-1) vertices that are adjacent to each other. For a fixed i, vertices in P_i are (1, i), (1, (1+p)i), (1, (1+2p)i), \cdots , (1, (1+(p-1)p)i), (2, 2i), (2, (2+p)i), (2, (2+2p)i), \cdots , (p-1, (p-1)i), (p-1, (2p-1)i), (p-1, (3p-1)i), \cdots , (p-1, (p-1)p)i) as elements in $Z_p \times Z_p^2$. That is, the vertices are of the form (1, (1+p)i), (2, (2+p)i), \cdots , (p-1, (p-1)+p)i), where, (p-1, (p-1)+p)i, where, (p-1, (p-1)+p

That is, for a fixed $k = 1, 2, \dots, p-1$, the vertices in P_i are of the form (k, (k+jp)i), $j = 1, 2, \dots, p-1$ in $\mathbb{Z}_p \times \mathbb{Z}_p^2$. For example, Figure 6 shows $\mathbb{G}(\mathbb{Z}_{3\times 9})$.

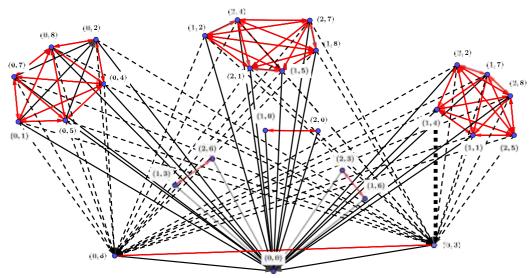


Figure 6 : $G(Z_{3\times 9})$

Theorem 4.1. Two vertices (a, b) and (a, d) in $G(Z_{p \times p}^{2})$ are in the same petal P_i if and only if $b - d \equiv O(\text{mod}p)$.

Proof. Suppose (a, b), $(a, d) \in P_i$, then $(a, b) = (k, (k + j_1 b)i) \in \mathbb{Z}_p \times \mathbb{Z}_p^2$

 $\Rightarrow a = k \text{ and } b = (a + j_1 p)i \in \mathbb{Z}_p^2$.

Similarly, $(a, d) \in P_i$. Then, $d = (a + j_2 p)i \in \mathbb{Z}_p^2$.

So, $b - d = (j_1 - j_2)pi \equiv O(\text{mod}p)$.

Conversely, suppose that (a, b) and (a, d) are in different petals, say, P_s and P_t respectively.

Then, $b = (a + j_1 p)s$ and $d = (a + j_2 p)t$.

So,
$$b - d = (as - at) + (j_1s - j_2t)p$$

= $(s - t)a + (j_1s - j_2t)p$
= $(s - t)a \pmod{p}$.

Since $1 \le s \ne t \le p - 1$, $(s - t)a \not\equiv 0 \pmod{p}$.

Thus, $b - d \not\equiv 0 \pmod{p}$.

REFERENCES

- [1] John Clark, Derek Allan Holton, A First Look at Graph Theory, Allied Publishers Ltd, 1995
- [2] F. Harary, Graph Theory, Narosa Publishing House, 2001.
- [3] J. B. Fraleigh, A First Course in Abstract Algebra, Seventh edition, Pearson.
- [4] D.M. Burton, Elementary Number Theory, McGraw-Hill Education (India) Private Limited, New Delhi, 2012.
- [5] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra, volume 12, 2000, pages 229-235
- [6] Jimly Manuel, Bindhu K Thomas, *Properties of Digraphs Associated with Finite Cyclic Groups*, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol. 6, Issue.5, pp 52-56, October (2019).