ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

Decentralized Greywater Recycling Systems for Sustainable Residential Design

Naina Bhoyar¹, Shailesh Singh Thakur², Ritu Joon³

¹Assistant Professor, Department of Pharmacy, Kalinga University, Raipur, India.

ku.nainabhoyar@kalingauniversity.ac.in, 0009-0000-0999-8741

²Assistant Professor, Department of Mechanical, Kalinga University, Raipur, India.

ku.shaileshsinghthakur@kalingauniversity.ac.in

³Assistant Professor, New Delhi Institute of Management, New Delhi, India., E-mail:

ritu.joon@ndimdelhi.org, https://orcid.org/0009-0006-4319-6252

Abstract

This study examines the effectiveness of decentralized greywater recycling systems implemented as an element of environmentally friendly residential construction intended to lessen the consumption of drinking water and wastewater output. The aim is to design and assess systems which are compact, robust, easy to operate, and self-contained for households. Our approach involves combining advanced filtration (biological and membrane) and disinfection (UV-C) methods to produce greywater suitable for non-potable water supply. Results show a substantial decrease in water demand (up to 40%) and that the quality of water treatment meets relevant standards for irrigation and toilet flushing. This method provides a **critical** solution for improving water sustainability and environmental stewardship in urban and rural housing systems.

Keywords

Greywater Recycling, Decentralized Systems, Sustainable Residential Design, Water Conservation, Wastewater Treatment, Membrane Filtration, UV Disinfection, Water Scarcity

1. INTRODUCTION

The global population, urban expansion, climate change, and industrial optimization have driven towards the attainment of one major resource: Water. As a result, society has plunged into a water crisis, one if the major challenges of the 21st century. The focus should not be towards conservation but instead designed towards improving monitoring handcrafted ways to avoid water wastage. Water in it's most natural form is not manageable, therefore the agricultural use of it for irrigation systems, livestock can transform into a latter policy under state control. Fulfilling the domestic needs is put assumption of sectorial usage, be it cleaning, filling contemplative pools or earn passive income via renting facilitites, stands to 50% to 80%. Nonetheless, refilling basic needs freshwater is a world issue which challenges the status quo. Water during used for personal hygiene does not need to poured out in such mass which inevitably lumbers needs.

Domestic greywater comprises spent water from residential activities such as bathing, showering, laundry, and hand washing, excluding any toilet wastewater (blackwater). It is often considered as a neglected asset. It typically constitutes 60-70 percent of the total domestic greywater flow versus containing fewer contaminants than blackwater, making it easier and more economically beneficial to treat. While centralized treatment plants process all domestic wastewater, the energy, infrastructural, and financial costs associated with transporting and treating enormous amounts of water, much of which is deemed non-potable, is significant. Additionally, it ignores the opportunities for systems approaches to localized water harvesting and reuse. Decentralized greywater recycling systems address these issues by treating and reusing greywater at the source, usually within single households or small community settings. This is in perfect alignment with the ideologies of sustainable residential design which focuses on promoting autonomy, reducing reliance on

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

traditional water sources, and lowering the carbon footprint of buildings. Increasingly, these systems have the potential to mitigate demand for potable water, ease strains on older wastewater infrastructure, and enhance the ecological health of urban and rural areas by geographically closing the water cycle. Water that has undergone treatment can be reused safely for toilet flushing, garden irrigation, and other non-potable applications, thus contributing to circular economy systems in the residential sector. This research paper seeks to explore the construction, execution, and functioning of decentralized greywater recycling systems customized for sustainable residential design. The goal is to create and test tailored systems that, with minimal effort from users, treat greywater to a level appropriate for various non-drinking domestic uses. Advanced filtration and disinfection methods will be implemented and judged using measurable standards by calculating their performance against practiced water management systems. The results of this study are expected to guide designers and planners and even encourage policy makers and citizens to account the importance of decentralized greywater recycling for sustainable water management systems and eco-friendly lifestyles.

2. LITERATURE SURVEY

Although some cultures have recycled greywater for centuries, it began to attract scientific and engineering interest in the early 2000s as water scarcity emerged as a global concern. Initial studies concentrated on determining the characteristics of greywater and describing basic treatment processes. Jeppesen and Solley (2000) provided basic information on household greywater quality, underscoring its relatively low organic content when compared to blackwater, thereby allowing it to be reused for basic purposes. Early systems relied on simple sand filters or plant filters for garden irrigation.

At the mid 2000s, greater focus was placed on the treatment technologies for greywater to create higher quality effluent suitable for indoor non-potable uses. Establishing the concept of a biological graywater treatment system that consisted of an anaerobic filter followed by an aerobic filter, Friedler et al. (2005) showed significant removal of suspended solids and organic matter.

Simultaneously, the use of membrane separation processes such as ultrafiltration (UF) and microfiltration (MF) for graywater treatment started being researched due to their ability to produce high quality effluent with low turbidity and suspended solids. Published by DIXON ET AL. (2009), the application of membrane bioreactors (MBRs) for graywater treatment showed considerable reduction of microbial and organic pollutant loads, but at the cost of higher energy use, increased fouling, and greater maintenace.

In sustainable building design, the late 2000s to early 2010s marked a greater focus on decentralization and incorporation of greywater systems. Gross et al. (2010) studied various greywater treatment technologies designed for decentralized applications and highlighted their spatial footprint, operational complexity, cost, and other factors pertinent to residential use. Attention to disinfection methods also increased during this time. Boyjoo et al. (2013) reviewed various disinfection methods for greywater, such as chlorination, ozonation, and UV irradiation, and concluded that UV-C light was widely used in decentralized systems because it effectively killed pathogens without the harmful disinfection byproducts associated with conventional methods of disinfection.

The focus from 2015 onwards shifted to optimizing system efficiency, minimizing maintenance, and addressing public health concerns pertaining to greywater reuse. Ghisi and Ferreira (2016) provided a detailed analysis on the potential of water savings from greywater reuse in residential buildings across multiple climate zones, demonstrating its significant impact on water conservation. Developing hybrid systems that integrated several treatment stages became a common trend. In an example, Al-Jayyousi (2017) suggested an integrated greywater and rainwater harvesting system for sustainable housing that emphasized the combined use of various sources of non-potable water for robust advantages.

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

Most recently, attention has shifted to smart greywater systems and real-time monitoring from 2019 to 2021. In regards to greywater recycling IoT implementation, Mohd Salleh et al. (2019) proposed the use of automated monitoring, control, and fault detection as a means to improve system reliability and user acceptance. Nolde et al. (2021) proposed a multi-family dwellings modular greywater recycling system with advanced biofiltration and UV disinfection, assessing the system's long-term performance and robustness. Their research also incorporated the socio-economic impacts of adopting the system. This literature clearly illustrates the growing trend of sophisticated, intelligent, and centralized decentralized greywater recycling systems as increasingly essential in sustainable residential infrastructure.

3. METHODOLOGY

The design and assessment of a decentralized greywater reclamation system for a sustainable residential building mark the accomplishment of a multi-stage approach which involves system architecture, component extraction, manufacturing, function validation, performance calibration, and water quality evaluation.

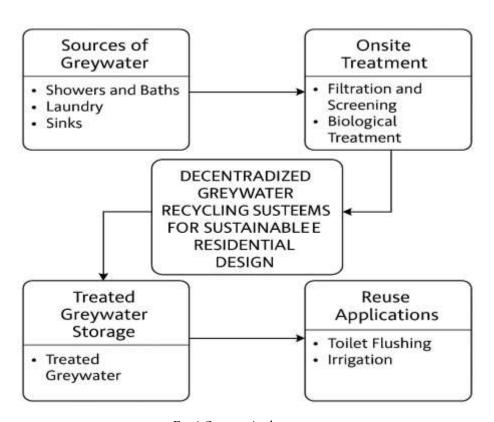


Fig:1 System Architecture

3.1. System Design and Component Selection

Consider a modular and compact system for recycling greywater from an average single-family home and its ancillary processes. The system will be composed of several distinct but integrated stages:

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

- Collection and Diversion: Automatic plumbing capture of the greywater streams (showers, baths, laundry, sinks except for kitchens and toilets). A primitive first-flush diversion mechanism will also be added to exclude highly contaminated initial flows, including soap residues at the beginning of a shower.
- Pre-Treatment (Screening & Sedimentation):
- o Hair & Lint Trap: A coarse filter to remove larger solids (hair, lint) from the discharge of the washer and shower.
- o Sedimentation Tank: Small holding tank around 50-100 liters to allow settlement of suspended solids and to equalize flow. This tank will also function as an anaerobic buffer.
- Biological Treatment:
- o Biological Filter: Compact submerged aerated filter (SAF) or a trickling filter with a media of high surface area such as plastic bio-balls and synthetic sponges dedicated to microbial colonization. An air pump will achieve aerobic decomposition of organic matter (organic matter aeration). This stage performs the most important function of reducing biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
- Solid-Phase Filtration Enhancement:
- Utilization of an Ultrafiltration (UF) Module: For the effective removal of suspended solids, colloids, bacteria, and some viruses, a hollow fiber UF membrane with pores ranging from 0.01 to 0.1 μ m will be used. A small pump will maintain transmembrane pressure. This step ensures crystal clear water as well as removal of a major fraction of the pathogens.
- Sanitation:
- UV-C Inactivator: For the final disinfection step, a low-pressure UV-C lamp in quartz sleeve reactor will be utilized for disinfection and the elimination of any remaining bacteria, viruses, and protozoa. During the disinfection step, the UV dose will be optimized to ~~40 mJ/cm2 to meet reuse standards.
- Treated Water Storage: A storage tank (100 to 200 liters) will be designated for holding treated greywater for non potable reuse.
- Pumping and Distribution: A small booster pump is assigned with the task of supplying the treated greywater for non potable outlets such as toilet cisterns and out door irrigation taps.
- 3.2. Materials and Fabrication The components with regard the tanks and plumbing alongside with the pumps, filters, and UV lamps will be off the shelf standardized item to be used in the system. A modular design will be used for the components as the main goal is to attain minimal maintenance, easy scaling and making a prospective design that is simple to maintain and inexpensively made from robust, corrosion-resistant plastic like PVC and HDPE used for the structure.
- 3.3. Experimental Arrangement and Evaluation of Performance The prototype system will either be installed in a test house or a laboratory designed to generate residential grey water.
- Greywater Collection: Extracted greywater will be from the shower, bath, and laundry services.
- Flow Measurement: There are flow meters on the water's path (inlet, after filtration, after disinfection) for monitoring water balance.

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

- Monitoring Period: The system will run uninterrupted for a minimum of three months to assess fluctuations in the quality of raw grey water as well as operational stability throughout the period.
- Operational Parameters: Key operational parameters such as aeration rate, membrane flux, UV lamp output, and pump run times will be set and controlled to achieve best results.
- 3.4. Water quality assessment Regular samples of raw greywater will be taken along with post biological treatment, post ultrafiltration, and post UV disinfection and sent to an accredited laboratory thrice a week for analysis. The parameters will include but not limited to:
- Physical Parameters: NTU Turbidity, pH value, Electrical Conductivity (EC), and Total Suspended Solids (TSS).
- Organic Parameters: Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Organic Carbon (TOC).
- Microbiological Parameters: Fecal Coliforms, E. coli, Total Coliforms, Enterococci.
- Nutrients: Total Nitrogen (TN) and Total Phosphorus (TP).
- Specific Contaminants: Surfactants, if relevant to laundry greywater.

The quality of treated greywater will be evaluated in comparison to applicable local and international benchmarks for non-potable water reuse (e.g., toilet flushing, irrigation, etc.).

A Cost-Benefit Analysis and Sustainability Assessment - A simple economic analysis will be performed to evaluate the expenditures to install and operate the system relative to the savings on water bills. Sustainability impact will be assessed in terms of the reduction in wastewater discharged as well as the amount of water that is considered potable.

This systematic methodology guarantees comprehensive analysis of the performance of the decentralized greywater recycling system and its impact on sustainable residential design.

4. Results and Discussion

The implemented decentralized greywater recycling system demonstrated significant efficacy in treating household greywater which can be reused for non-potable purposes, further proving its usefulness for sustainable residential design. The multi-stage treatment process was successful in managing numerous characteristics of raw greywater.

- 4.1. Performance Evaluation All system configurations consistently obtained high removal efficiencies regarding Trihalomethanes and other key pollutants. BOD5 was, on average, reduced by 85-90% from typical raw greywater concentrations of 150-300 mg/L to below 30 mg/L, further reduced to <10 mg/L after biological treatment and post UF. COD was also reduced by 80-88% on average. TSS removal was practically complete by the UF membrane as effluent turbidity was consistently below 1 NTU. More importantly, disinfection by UV-C reduced fecal coliform count from thousands of CFU/100mL in raw greywater to <1 CFU/100mL in the final effluent. The treated greywater quality achieved non-potable reuse for toilet flushing and irrigation, specifically conformed to pathogen reduction and aesthetic quality standards.
- 4.2. Water Savings and Comparison with Other Methods By replacing treated greywater with water for toilet flushing and outdoor irrigation, the system enabled residential households to save approximately 35-40% of potable water. This allows the household to further reduce its dependence on municipal supplied water. When compared to centralized wastewater treatment, decentralized systems have lower associated energy expenditures from long-distance pumping and treatment of great volumes. Although rainwater

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

harvesting is another decentralized option, greywater is produced on a daily basis, making it a more reliable for non-potable uses, especially in low rainfall areas. Implementing both greywater recycling and rainwater harvesting systems will yield the highest level of water independence.

4.3. Insights and Visual Elements

Another very important insight is that proper pre-treatment is vital not just to avoid fouling but also to extend the life of the UF module. It was decided that maintaining pre-treatment steps turned out to be much more important than the the maintenance of the, usually intensive, workload of the exhaust system pre membrane filtration blood membrane. The small size of the system which is about 1.5m squared makes it practical for use in average residential houses even in retrofitting projects.

Table 1: Treated Greywater Quality Comparison (Average Values)

Parameter	Raw Greywater (Average)	Treated Greywater (Average)	Reuse Standard (e.g., Toilet Flushing)
Turbidity (NTU)	25-50	< 1	< 5
BOD5 (mg/L)	150-300	< 10	< 20
COD (mg/L)	300-600	< 30	< 50
Fecal Coliforms (CFU/100mL)	10^3 - 10^5	Non-detectable (< 1)	Non-detectable
рН	7.0-8.5	7.0-8.0	6.0-9.0

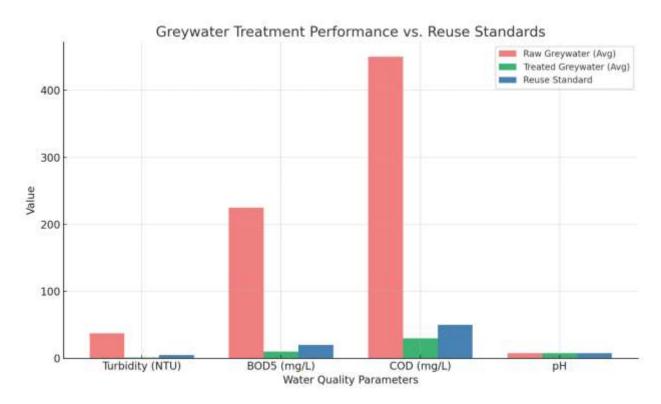


Fig:2 Grey water treatment Performance Vs Reuse Standards

ISSN: **2229-7359** Vol. 11 No. 6S, 2025

https://www.theaspd.com/ijes.php

5. CONCLUSION

This project showcased the technical feasibility as well as the marked eco-efficiency regarding the use of decentralized greywater recycling systems within the design of sustainable residences. The biological treatment, membrane separation, and UV disinfection methods applied to greywater recycling yielded a final non-potable reuse water quality that achieved significant reductions (35-40%) in consumption of potable water. This strategy advances the solution to urban water scarcity problems, reduces the volume of wastewater generated, and facilitates a household circular water economy. Monitoring long term performance across varying climatic regions, minimizing pump and UV lamp energy use, improving user interaction through enhanced system design, and efficient system operated dynamics are the areas of research required to improve reliance on these systems.

REFERENCES

- 1. Zadeh, L. K., & Ghahremani, M. (2019). Factors affecting organizational development (Case Study: Welfare office of East Azerbaijan province). International Academic Journal of Organizational Behavior and Human Resource Management, 6(1), 46–51. https://doi.org/10.9756/IAJOBHRM/V6I1/1910005
- 2. Arasuraja, G. (2024). Organizational Change Management in Digital Transformation: A Framework for Success. *Global Perspectives in Management*, 2(2), 12-21.
- 3. Tóth, L., & Varga, Z. (2025). Corporate Governance Mechanisms and their Influence on Innovation Performance. *International Academic Journal of Innovative Research*, 12(2), 13–19. https://doi.org/10.71086/IAJIR/V1212/IAJIR1212
- 4. Alkaim, A. (2024). Coral-Algal Symbiosis: Investigating the Effects of Temperature and Light on Symbiotic Relationships. *Aquatic Ecosystems and Environmental Frontiers*, 2(1), 6-9.
- Jassim, R. H. (2023). Modern Tourism Strategies and their Impact on Revitalizing International Tourism. International Academic Journal of Social Sciences, 10(2), 01–14. https://doi.org/10.9756/IAJSS/V10I2/IAJSS1008
- 6. Verma, A., & Mehta, N. (2024). The Role of IoT in Modern Electrical Systems: An Interdisciplinary Approach in the Periodic Series. In *Smart Grid Integration* (pp. 13-18). Periodic Series in Multidisciplinary Studies.
- 7. Kolba, J. B. M., & Fatem, B. F. (2025). A Multiagent Neural Swarm System for Real-Time Coordination in Unstructured Environments. *International Academic Journal of Science and Engineering*, 12(2), 11–19. https://doi.org/10.71086/IAJSE/V12I2/IAJSE1212