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Abstract: This paper presents a deformation prediction analysis for 3D printed parts, employing machine 
learning models alongside finite element simulations to develop a comprehensive dataset. We utilized five 
machine learning algorithms—Linear Regression, Decision Tree Regressor, Random Forest Regressor, Support 
Vector Regressor, and K-Nearest Neighbors Regressor—to assess the influence of critical process parameters, 
including layer height, print temperature, print speed, and bed temperature, on the deformation of printed 
components. Finite element simulations were conducted to generate accurate deformation data, which served as 
the foundation for training the machine learning models. Each algorithm's performance was rigorously 
evaluated, revealing insights into their predictive capabilities and the significant effects of the analyzed 
parameters on deformation outcomes. Importantly, the study also contributes to environmental protection and 
sustainable manufacturing by reducing material waste, minimizing failed prints, and lowering energy 
consumption, thereby supporting environmental management and green technologies. The results provide 
valuable guidance for optimizing 3D printing processes, ultimately enhancing printed parts' mechanical 
performance, reliability, and sustainability 
Keywords: Deformation prediction, machine learning, finite element simulation, 3D printing, process 
parameters, layer height, print temperature, print speed, bed temperature, regression algorithms. 
 
1.0 INTRODUCTION  
The advent of additive manufacturing, commonly known as 3D printing, has revolutionized 
various industries, including healthcare, aerospace, and manufacturing (Hsieh et al.). One of the 
key challenges in 3D printing is the accurate prediction of the deformation of printed objects, 
which can have a significant impact on the final product quality and performance. Traditional 
methods for predicting deformation, such as finite element analysis, can be computationally 
expensive and time-consuming, particularly for complex geometries. In recent years, the 
development of machine learning models has emerged as a promising approach to address this 
challenge. Machine learning algorithms can analyze large datasets of 3D printing parameters, 
process conditions, and the resulting deformation patterns to create predictive models that can be 
used to optimize the 3D printing process and minimize deformation. 
Several reports are available in the literature dealing with the experimental and computation study 
of 3D printing. In this context, Ahn et al. [1] utilized factorial design to assess the impacts of build 
orientation, air gap, temperature, road width, and filament color on the tensile and compressive 
strength of ABS parts produced via fused deposition modeling (FDM). Their results indicated 
optimal processing parameters yielding tensile strengths of 65-72% with a 0.003 mm air gap and 
compressive strengths of 80-90%, compared to injection-molded components. Wang et al. [2] 
analyzed input factors affecting FDM tensile properties using the Taguchi method and Gray 
relational analysis, identifying build orientation as critical. The peak tensile strength reached 24.36 
MPa at a layer height of 0.254 mm and a zero-degree orientation. Equbal et al. [3] examined five 
process parameters impacting the dimensional accuracy of FDM parts, employing Taguchi, artificial 
neural networks (ANN), and fuzzy logic methods (FLM) for mathematical modeling. 
Yadav et al. [4] developed a genetic algorithm-integrated artificial neural network (GA-ANN) to 
optimize process parameters in fused deposition modeling (FDM) for enhancing tensile strength. 
Their findings showed a strong correlation between predicted and experimental results, validating 
the optimization method. In a separate study, Yadav et al. [5] employed the Adaptive Neuro-Fuzzy 
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Inference System (ANFIS) to model FDM process parameters, achieving improved estimation 
accuracy over conventional numerical methods. Various researchers have effectively utilized soft 
computing techniques, including ANN, ANFIS, and GA, to analyze process parameters and 
optimize output responses. Saad et al. [6] applied response surface methodology (RSM) to examine 
the effects of layer width, print velocity, and nozzle temperature on the surface quality of printed 
parts, concluding that reduced layer thickness and print velocity significantly lower surface 
roughness. The optimization accuracy of their techniques exceeded that of traditional RSM 
methods. 
Deswal et al. [7] investigated the effects of various process parameters on the tensile strength of 
FDM-fabricated parts, optimizing these parameters using machine learning algorithms, including 
GA-ANN, GA-RSM, and GA-ANFIS. The hybrid models demonstrated significant potential for 
accurate prediction and optimization across various industrial applications. Ziadia et al. [8] analyzed 
the impact of process parameters and material selection on the mechanical properties of 3D-printed 
components, employing genetic algorithms for multi-objective optimization. Their findings 
confirmed that both parameters and material choices significantly influence mechanical properties, 
with the genetic algorithm effectively identifying optimal values. Zhang et al. [9] applied machine 
learning techniques to create a data-driven model for predicting melt pool temperature in the 
directed energy deposition (DED) process, utilizing Extreme Gradient Boosting and Long Short-
Term Memory networks. Both algorithms exhibited high scalability and effectiveness in analyzing 
time-series data, accurately forecasting melt pool temperatures. 
Singh et al. [10] employed a Back-Propagation Neural Network (BPNN) to assess relative density 
and predict porosity in bronze 3D printing. The model was trained using multiple algorithms and 
optimized with a Genetic Algorithm (GA) for enhanced accuracy. Caiazzo and Caggiano [11] 
applied machine learning in the directed energy deposition (DED) process to correlate input 
parameters of laser metal deposition with the output geometrical characteristics of printed 
components. They trained an artificial neural network (ANN) using experimental data in a two-
phase process, demonstrating that ML can accurately predict processing parameters for specific 
metallic shapes. Tapia et al. [12] utilized a Gaussian process model to predict melt pool depth in 
laser powder-bed fusion, based on experimental data from 316L stainless steel, incorporating scan 
speed and laser power as input factors. The validated model showed exceptional performance with 
a low mean prediction error. 
Sridhar et al. [13] aimed to optimize FDM process parameters using a multidisciplinary 
evolutionary algorithm and machine learning models. A response surface approach generated a 
dataset, with a screening design applied to 14 parameters. After training and testing, the random 
forest model achieved over 90% prediction accuracy. The study focused on optimizing infill 
percentage, layer height, print speed, and extrusion temperature to maximize tensile strength. 
Particle Swarm Optimization (PSO) and Differential Evolution (DE) were used for parameter 
optimization, with PSO proving effective in enhancing the tensile strength and mechanical 
properties of FDM-fabricated specimens [14]. Ulkir and Akgun [15] examined the influence of key 
printing factors—layer thickness, raster angle, and infill density—on the flexural strength of PETG 
components produced via FDM. They employed fuzzy logic modeling and analysis of variance, 
identifying infill density as the most significant factor affecting flexural strength. 
Despite the advances made in optimizing FDM process parameters, existing studies primarily focus 
on tensile and flexural strengths, leaving a gap in understanding the deformation behavior of 3D 
printed parts under varying conditions. Therefore, the present work aims to develop a robust 
framework for predicting deformation using machine learning models, supported by finite element 
simulations, to comprehensively analyze the effects of layer height, print temperature, print speed, 
and bed temperature on the deformation of 3D printed components. 
 
2. METHODOLOGY 
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2.1 Development of Dataset for Predicting Deformation (Warpage) 
The dataset was specifically designed to capture key process parameters that influence deformation 
(warpage) in the Fused Filament Fabrication (FFF) additive manufacturing process. The input 
parameters considered include layer height, print speed, print temperature, and bed temperature, 
all of which significantly affect warpage. For each simulation, the corresponding deformation data 
was recorded. The dataset was organized with each row representing a unique combination of input 
parameters and a column representing the output deformation value (given in Table 1). The dataset 
was sufficiently large to cover a broad range of conditions, enabling the machine learning models to 
learn the complex relationships between the process parameters and the warpage response. This 
diverse set of data allows for a comprehensive exploration of how each parameter affects the 
deformation behavior. 

+ 
(a)      (b) 

Figure 1: (a) Dimensions ISO 527-2 Type 1A (b) Orientation of Specimen on Print Bed visualised 
from Side View 
2.2 Thermo-Mechanical Model for Warpage 
The numerical simulations were conducted using Digimat, which provided a detailed 
understanding of the thermal and mechanical behavior of the printed parts. #D models has been 
developed as per the ASTM standard and finite element analysis has been carried out to investigate 
the deformation of the printed part (Figure 1). The finite element (FE) model of the printed 
structure was divided into 36,800 voxels, representing the physical part in the simulation. Each 
voxel captured thermal and mechanical interactions, enabling accurate predictions of warpage. The 
various steps involved in the simulation are as follows: 
2.2.1 Heat Transfer Equation 
The temperature distribution             across the part during printing is calculated using the 
heat transfer equation: 

   
  

  
               (1) 

Where,  = material density,    = specific heat capacity,  =                     ,  = heat due to 
printing nozzle,    =                              
2.2.2 Thermal Strain Calculation 
As the material cools, it shrinks, generating thermal strain: 
                (2) 
where:    = coefficient of thermal expansion,      = difference between the initial and current 
temperature. 
2.2.3 Elastic and Inelastic Strain Calculation 
The total strain (    in the material consists of elastic strain      , thermal strain (    , and plastic 
strain (     if the material undergoes any permanent deformation: 
                     (3) 
For isotropic linear materials, the elastic strain can be related to stress using Hooke's Law: 
                (4) 
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where   is the Young's modulus of the material.  
2.2.4 Residual Stress Calculation 
Residual stress        arises from differential cooling and thermal contraction: 
       (       )            (5) 
where     is the equilibrium stress, ensuring compatibility across layers. 
 
2.2.5. Finite Element Method (FEM) for Deformation 
The residual stresses calculated are applied to a finite element model to predict the deformation or 
warpage ( ) of the part: 
              (6) 
where:    and   stiffness matrix and force vector respectively.  
2.3 Mesh Convergence Analysis 
A mesh convergence analysis was performed to ensure simulation accuracy as shown in Fig. 2. The 
study tested different mesh sizes and found that a mesh size of 0.65 mm provided the best balance 
between precision and computational efficiency. This level of mesh refinement was critical in 
capturing small but significant deformations in the part due to the thermal and mechanical effects 
present during printing. 

 
Figure 2: Convergence study 
2.4 Dataset Overview 
The dataset contained input features that are critical parameters influencing the deformation in 3D 
printing. These input features were: 

 Layer height (mm) 
 Print temperature (°C) 
 Print speed (mm/s) 
 Bed temperature (°C) 

The output variable was: 
 Deformation: The degree of deviation from the intended shape of the printed part. 

Glimpse of dataset us given in Table 1.  
Table 1: Dataset 
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2.5 Data Splitting 
To ensure robust model evaluation, the dataset was split into two subsets: 

 Training set: 80% of the data was used to train the models. 
 Testing set: The remaining 20% was reserved for testing the models and evaluating their 

performance. 
The split aimed to prevent overfitting and ensure that the models generalized well to unseen data. 
 
 
2.6 Development of Predictive Models for Deformation 
A range of machine learning regression models was implemented to predict deformation (warpage) 
based on the selected process parameters. A detailed discussion about the various algorithm used 
has been given in Appendix 1. 
a) Linear Regression 
A simple model that assumes a linear relationship between the input variables and the output 
(deformation). The model fits a linear equation to the data: 
 ̂                                   (7) 
Where               are the input features and                are the coefficients determined 
during training. 
b) Decision Tree Regressor 
This model splits the data into subsets by making decisions at each node based on the input 
features. It recursively splits the data, reducing the error at each split by minimizing the mean 
squared error (MSE). The tree captures non-linear relationships between the features and 
deformation. 

Layer 

Height 

(mm) 

Bed 

Temperature 

(°C) 

Print 

Speed 

(mm/s) 

Print 

Temperature 

(°C) 

Deformation 

(mm) 

0.08 40 20 150 0.28 

0.08 40 20 190 0.4113 

0.08 40 20 250 0.5981 

0.08 40 40 150 0.2789 

0.08 40 40 190 0.4097 

0.08 40 40 250 0.5959 

0.08 40 70 150 0.2774 

0.08 40 70 190 0.4075 

0.08 40 70 250 0.5928 

0.08 60 20 150 0.2468 

   

     

0.16 40 70 150 0.17 

0.16 40 70 190 0.3047 

0.16 40 70 250 0.4428 

0.16 60 20 150 0.1868 

     

     

0.28 40 20 150 0.1129 

0.28 40 20 190 0.1594 

0.28 40 20 250 0.1885 

0.28 40 40 150 0.1124 
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c) Random Forest Regressor 
An ensemble method, Random Forest builds multiple decision trees and aggregates their 
predictions. This model helps reduce overfitting and increases the robustness of predictions. Each 
tree is trained on random subsets of data, and the final prediction is an average of all the trees' 
predictions. 
d) Support Vector Regressor (SVR) 
SVR is a model that finds a hyperplane in a high-dimensional space that best fits the data while 
maintaining a margin of tolerance (ϵ) for errors. It uses kernel functions to capture non-linear 
relationships between the input features and the output deformation: 
 ̂  ∑              

            (8) 
e) K-Nearest Neighbors Regressor (KNN) 
KNN is a non-parametric model that predicts deformation by averaging the output values of the 
kkk nearest training samples based on a distance metric like Euclidean distance. It is highly flexible 
but can be sensitive to noise and outliers. 
2.7. Model Evaluation 
The models were evaluated based on the following metrics: 
 Mean Squared Error (MSE): Measures the average squared difference between actual and 

predicted deformation values. 
 R² Score: Indicates the proportion of variance in the target variable that is predictable from the 

features (closer to 1 is better). 
 
3.0 RESULTS AND DISCUSSION: 
3.1 Analysis of various machine learning models:  
The performance of various machine learning models—Linear Regression, Decision Tree Regressor, 
Random Forest Regressor, Support Vector Regressor (SVR), and K-Nearest Neighbors Regressor 
(KNN)—was evaluated for predicting deformation (warpage) in the Fused Filament Fabrication 
(FFF) process. The results are shown in Figure 3 and Table 2.  

 
Figure 3: Comparison of various Machine learning models 
Table 2: The performance of each model is summarized below: 

Model MSE R² Score 

Linear Regression 0.001758 0.851583 
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Decision Tree Regressor 0.001398 0.881942 

Random Forest Regressor 0.001425 0.879667 

Support Vector Regressor 0.009548 0.193884 

K-Nearest Neighbors 
Regressor 

0.009510 0.197095 

 
It is evident from the results that, the Linear Regression demonstrated a reasonable performance, 
with an R² score of 0.8516 and MSE of 0.001758, explaining about 85% of the variance in 
deformation. Although it effectively captured the linear relationships between input parameters like 
layer height, print speed, and temperatures, it was limited in handling non-linearities and 
interactions between variables, which likely exist in this complex manufacturing process.  In 
Decision Tree Regressor model, R² score is 0.8819 and an MSE is 0.001398 which reflect better 
results compared to Linear Regression. Its ability to model non-linear relationships and capture the 
complex interactions between parameters contributed to its improved performance. This is due to 
the fact that tree-based model can better identify thresholds and discontinuities in the data, making 
it highly effective for predicting deformation. 
Random Forest Regressor closely followed, with an R² score of 0.8797 and an MSE of 0.001425. 
As an ensemble of decision trees, Random Forest enhances generalization by reducing overfitting, 
although it performed marginally worse than the single Decision Tree in this case. Nevertheless, it 
remains a reliable model due to its balance between bias and variance, making it suitable for 
deformation prediction in similar scenarios. 
In contrast, Support Vector Regressor (SVR) showed significantly poorer results, with an R² score 
of 0.1939 and an MSE of 0.009548. This model failed to capture the complexity of the data, 
potentially due to the inadequacy of its linear kernel or insufficient hyperparameter tuning. Its 
inability to model the non-linear interactions between input variables rendered it ineffective for 
predicting deformation. Similarly, K-Nearest Neighbors (KNN) Regressor performed poorly, with 
an R² score of 0.1971 and an MSE of 0.009510. Like SVR, KNN struggled to handle the non-
linearities in the data and failed to model the intricate relationships between process parameters. Its 
local approximation method likely missed the broader trends and interactions needed to predict 
warpage accurately. 
3.2 Correlation matrix:  
The correlation matrix shown in Figure 4 illustrates the relationships between various key 
parameters—layer height, bed temperature, print speed, and print temperature—and their influence 
on the deformation of a 3D-printed part. Among these, layer height and print temperature stand 
out as the most significant factors affecting deformation. There is a strong negative correlation (-
0.70) between layer height and deformation, indicating that as the layer height increases, the 
deformation of the part decreases. This suggests that using larger layer heights can result in a more 
dimensionally stable final product. 
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Figure 4: Correlation matrix among the input parameters and output parameter 
Conversely, the print temperature shows a moderately strong positive correlation (0.58) with 
deformation, meaning that higher print temperatures tend to increase the deformation. This 
highlights the importance of carefully controlling the print temperature to minimize warping or 
unwanted deformations in the 3D-printed part. Bed temperature, while negatively correlated with 
deformation (-0.19), has a weaker influence, suggesting that while raising the bed temperature may 
slightly reduce deformation, it is not a major factor. Print speed, on the other hand, shows almost 
no correlation (0.03) with deformation, indicating that variations in print speed have little to no 
effect on the structural integrity of the printed part. 
In terms of the relationships between the input parameters themselves, the matrix shows that layer 
height, bed temperature, print speed, and print temperature are largely independent of each other, 
with most inter-parameter correlations hovering around zero. This means that adjustments to one 
parameter are unlikely to affect the others, allowing for more flexibility in the optimization process. 
Overall, to minimize deformation, controlling layer height and print temperature should be the 
primary focus, while bed temperature and print speed can be considered secondary factors. 
3.3 Parametric study:  
It is evident from the above discussion that the Decision Tree Regressor performed the best with 
the lowest Mean Squared Error (MSE = 0.001398) and the highest R² score (0.881942). This model 
explains approximately 88% of the variance in the deformation data, making it the most suitable 
for predicting deformation in 3D-printed materials. Therefore in the subsequent study, Decision 
Tree Regressor will be used to perform the analysis.  
3.3.1 Influence of layer height on the deformation 
Figure 5 demonstrate the relationship between predicted deformation and layer height in 3D 
printing process. It can be observed that deformation remains relatively constant within certain 
height ranges, suggesting threshold effects. Generally, as layer height increases, predicted 
deformation decreases, likely due to the greater mass and stability of thicker layers. The results also 
show three distinct steps, indicating different material behaviors or deformation regimes, where the 
first step may represent a range more susceptible to deformation, while later steps indicate 
increased resistance. This behavior could be attributed to material properties that influence 
deformation at various heights, manufacturing process factors such as cooling rates and printing 
orientation, and layer adhesion quality, which can affect risks of delamination or warping. Overall, 
the findings underscore the importance of optimizing layer height to enhance print quality and 
stability. 
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Figure 5: Layer Height vs Deformation 
 

3.3.2 Influence of Bed Temperature on the deformation 
Figure 6 highlights the influence of bed temperature on the deformation of 3D printed part. It is 
evident from the results that lower bed temperatures (below 50°C) are associated with higher 
deformation due to poor layer adhesion, leading to warping. As the bed temperature increases, 
particularly around the 70°C–80°C range, the deformation decreases significantly. This indicates 
that in this range, the print bed provides better support and adhesion for the printed material, 
reducing the chances of deformation. However, after a certain point (around 80°C), the 
deformation stabilizes, indicating diminishing returns from further increasing the bed temperature. 
Beyond this threshold, other factors such as print temperature or layer height might have a more 
pronounced effect on further improving part quality.  

 

 
Figure 6: Bed Temperature vs Deformation 
 

3.3.3 Influence of Print Speed on the deformation 
Figure 7 presents the effect of print speed on the deformation of 3D printed part. It is evident from 
the results that as print speed increases, predicted deformation generally decreases. However, there 
are specific print speed ranges where the material exhibits different deformation behaviors. It is 
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clear from the results that    moderate print speeds (around 30–50 mm/s) showing the least 
deformation. This implies that there's an optimal range of print speeds where deformation is 
minimized, likely because the material has enough time to solidify properly without excessive 
warping or distortion. At very low speeds (around 20–30 mm/s), the deformation is higher, 
possibly due to excessive heat accumulation in the printed layers, leading to increased warping. 
Similarly, at very high speeds (above 50 mm/s), the deformation increases again, likely due to 
incomplete layer cooling and weaker layer bonding. 

 
Figure 7: Print Speed vs Deformation 
 
 

3.3.4 Influence of Print Temperature on the deformation 
In figure 8, the effect of print temperature on the deformation of 3D printed part has been given. It 
is clear form results that at lower temperatures, specifically between 160°C and 180°C, the 
deformation remains constant at approximately 0.20, indicating minimal effect of temperature on 
deformation within this range. However, as the temperature increases beyond 180°C, a slight rise 
in deformation occurs, reaching around 0.25 by 200°C. The most significant change happens 
between 200°C and 220°C, where the predicted deformation sharply rises to about 0.40, suggesting 
a substantial structural change or weakening in response to the higher temperature. Beyond 220°C, 
up to 240°C, the deformation plateaus at 0.40, indicating that further increases in temperature no 
longer lead to additional deformation. This behavior reflects the material's or system's sensitivity to 
temperature, with distinct transitions at 180°C and 220°C, followed by stabilization. 
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Figure 8: Print Temperature vs Deformation 
4.0 CONCLUSION 
In this study, we developed a robust framework for predicting deformation in 3D printed parts, 
utilizing machine learning models and finite element simulations to create a comprehensive 
dataset. Our analysis demonstrated that the Decision Tree Regressor emerged as the most accurate 
model for predicting deformation, effectively capturing the non-linear relationships inherent in the 
data. While other models, such as Linear Regression and Random Forest, also performed well, they 
did not match the predictive accuracy of the Decision Tree. This work underscores the significance 
of critical process parameters—layer height, print temperature, print speed, and bed temperature—in 
influencing deformation outcomes. The findings provide essential insights for optimizing 3D 
printing processes, thereby enhancing the mechanical performance and reliability of printed 
components. Future research could further explore the integration of additional parameters and 
advanced modeling techniques to improve predictive capabilities in additive manufacturing. 
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APPENDIX#1 

A: Linear Regression Algorithm 
 Input: Dataset with 4 input variables (X₁, X₂, X₃, X₄) and one output variable (y). 
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  Initialize: Parameters (weights w₁, w₂, w₃, w₄, and bias b) to zero or small random values. 
  Hypothesis: Predicted value (ŷ) is calculated as: 

 ̂                         
  Loss Function: Use Mean Squared Error (MSE) to measure the error: 

           MSE = (1/n) * Σ (ŷᵢ - yᵢ)² 
              where n is the number of samples. 

 Gradient Descent: 
 Compute the gradients for each weight (w₁, w₂, w₃, w₄) and the bias (b): 

                                         
                        

 Update the parameters w₁, w₂, w₃, w₄, and b: 
                                
                

where α is the learning rate. 
  Repeat: Steps 3–5 for a set number of iterations or until the model converges. 
  Output: Final values of w₁, w₂, w₃, w₄, and b (the trained model). 

B: Decision Tree Regressor Algorithm 
 

 Input: Dataset with 4 input variables X (where X=[X1,X2,X3,X4]) and one output variable 
y. 

 Initialize: 
o Set the maximum depth of the tree      (optional). 
o Set a minimum number of samples per leaf nminn_{\text{min}}nmin. 

 Tree Construction (Recursive Splitting): 
For each node: 

o Stopping Criteria: 
 If all samples in the node belong to the same target value or the node 

contains fewer than nminn_{\text{min}}nmin samples, stop splitting and 
make this a leaf node. 

 Compute the predicted value for this leaf as: 

 ̂  
 

 
∑   

 

   

 

where m is the number of samples in the node. 
o Otherwise, for each feature jjj (where j=1,2,3,4j = 1, 2, 3, 4j=1,2,3,4): 

 For each possible split point s of feature Xj: 
 Split the data into two subsets: 
Left subset:             

Right subset: 
            

 Calculate the Mean Squared Error (MSE) for the split: 

    
 

| |
∑      ̂  

   

 
 

| |
∑      ̂  

   

 

where: 

  ̂  
 

| |
∑   

   

 

  ̂  
 

| |
∑   
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    ̂  
 

 
∑   

      

 

 Choose the feature jjj and the split point sss that results in the 
lowest MSE. 

o Split the data into two child nodes based on the best split found: 
 Left child: data where      
 Right child: data where      

Recursively repeat the splitting process for each child node (left and right) until the stopping 
criteria are met. 

 Prediction: 
o To predict for a new input      [                           ]The 

predicted value is the mean of the target values yyy in the leaf node: 

    ̂  
 

 
∑   

      

 

 Output: A decision tree model that can be used to predict the target variable yyy for new 
input data. 

C: Random Forest Regressor Algorithm 
Input: Dataset with 4 input variables XXX (where X=[X1, X2, X3, X4] and one output variable y. 

Initialize: 
Set the number of trees        . 
Set the maximum depth of each tree       (optional). 
Set a minimum number of samples per leaf     . 

Construct Forest: For each tree ttt from 1 to       : 
Bootstrap Sampling: 

Create a bootstrap sample St by randomly selecting mmm samples (with 
replacement) from the original dataset. 

Tree Construction: 
Build a decision tree Tt using the bootstrap sample StS_tSt: 

For each node in the tree: 
Stopping Criteria: 

If the node contains fewer than      samples or if the 
maximum depth      is reached, stop splitting and 
make this a leaf node. 
Compute the predicted value for this leaf as: 

 ̂  
 

 
∑   

 

   

 

where mmm is the number of samples in the node. 
Otherwise, for each feature j (where j=1,2,3,4): 
Randomly select           from the total features. 
For each feature j in the selected features: 
For each possible split point s: 
Split the data into left and right subsets.  

  ̂  
 

| |
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  ̂  
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Calculate the Mean Squared Error (MSE) for the split. 

    
 

| |
∑      ̂  

   

 
 

| |
∑      ̂  

   

 

 
Choose the feature and the split point that result in the lowest MSE. 
Split the data based on the best split found. 
Prediction:  To predict for a new input Xnew=[X1,new,X2,new,X3,new,X4,new] 

Obtain predictions from each tree Tt. 
The final prediction  ̂    is the average of the predictions from all trees: 

    ̂  
 

      
∑         

      

   

 

Output: A random forest model that can be used to predict the target variable yyy for new input 
data. 
 
D: Support Vector Regressor (SVR) Algorithm 
 

 Input: Dataset with 4 input variables X (where X=[X1,X2,X3,X4]) and one output variable 
y. 

 Initialize: 
o Choose a kernel function K (e.g., linear, polynomial, radial basis function). 
o Set the regularization parameter C. 
o Set the epsilon ϵ that defines the epsilon-tube within which no penalty is 

associated in the training loss function. 
 Train the Model: 

o Formulate the optimization problem as follows: 
o Minimize the objective function: 

   
      

 

 
| |   ∑   

 

   

 

 
subject to the constraints: 

                  
where: 

o w is the weight vector, 
o b is the bias, 
o ξi are the slack variables for the error, 
o ϕ(Xi) is the feature mapping. 

 Optimization: 
o Use Sequential Minimal Optimization (SMO) and find w and b. 

 Prediction: 
o To predict the output y^ for a new input Xnew=[X1,new,X2,new,X3,new,X4,new] 
o  ̂              
o If using the kernel trick: 

 ̂  ∑             

 

   

   

where αi are the Lagrange multipliers obtained from the optimization. 
 Output: A Support Vector Regression model that can be used to predict the target variable 

yyy for new input data. 
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E:  K-Nearest Neighbors (KNN) Regressor Algorithm 
 Input: 

o Dataset with 4 input variables X (where X=[X1,X2,X3,X4] and one output variable 
y. 

o Specify the number of neighbors k. 
 Data Preprocessing: 

o Normalize or standardize the input features X if necessary to ensure all features 
contribute equally to the distance calculations. 

 Distance Calculation: 
o For a new input Xnew=[X1,new,X2,new,X3,new,X4,new] 
o  to each training sample Xi. Common distance metrics include: 

 Euclidean Distance: 

           √∑(           )
 

 

   

 

 Manhattan Distance: 

           ∑|           |

 

   

 

 Find Neighbors: 
o Identify the k training samples closest to Xnew based on the calculated distances. 

 Prediction: 
o Calculate the predicted output y^\hat{y}y^ as the mean of the output values y of 

the k nearest neighbors: 

 ̂  
 

 
∑   

 

   

 

 Output: A KNN regression model that can predict the target variable y for new input data. 
 


