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ABSTRACT 

Background: Effective plant disease detection is vital for sustainable agriculture; however, the computational 
demands of many deep learning frameworks make them impractical for use in low-resource settings. This study 
proposes ParaLeafNet, a streamlined Parallel Convolutional Neural Network (CNN) that merges MobileNetV2 
and MobileNetV3Small with a Squeeze-and-Excitation (SE) Attention mechanism to improve feature extraction. 
Tailored for edge applications, ParaLeafNet underwent optimization via TensorFlow Lite and was tested on the 
PlantVillage dataset, with ablation studies examining the roles of its parallel design and attention system. 
ParaLeafNet outperformed standard CNN models in plant disease classification, providing both precision and 
computational efficiency. Visualization techniques confirmed its ability to pinpoint critical disease markers, boosting 
its utility for real-world scenarios. ParaLeafNet delivers a powerful deep learning solution for real-time plant disease 
monitoring, fostering sustainable farming practices by enabling farmers to tackle challenges early, curb losses, and 
advance precision agriculture. Its lightweight architecture ensures compatibility with resource-constrained devices, 
supporting broader food security goals. Future work will prioritize diverse real-world datasets and enhancements for 
ultra-low-power systems. 

Keywords: Deep Learning, Parallel Convolutional Neural Network (CNN), MobileNetV2, MobileNetV3Small, 
Squeeze-and-Excitation (SE) Attention, Plant Disease Detection, Sustainable Agriculture, Food Security, Image 
Classification, Edge AI 

I. INTRODUCTION 
Agriculture has long served as a fundamental pillar of human society, supporting food security, 
economic development, and ecological balance [1]. As a vital component of global economies, it plays a 
substantial role in shaping Gross Domestic Product (GDP) and generating employment opportunities 
[2]. Yet, the agricultural sector confronts significant hurdles, with the world’s population expected to 
surpass 9 billion by 2050. Factors such as climate change, limited resources, and the increasing 
prevalence of plant diseases pose serious threats to agricultural output and food quality, raising urgent 
concerns for global food security [3]. Tackling these issues demands pioneering and adaptable strategies 
to foster sustainable agricultural practices. 

Plant diseases represent a major driver of agricultural losses, diminishing yields by 20–30% each year 
and causing economic damages worth billions of dollars [4]. These losses disproportionately affect 
developing nations, where food security is often fragile, and they impede progress toward the United 
Nations Sustainable Development Goal (SDG) 2, which aims to eradicate hunger through sustainable 
farming by 2030 [5]. While healthy crops are crucial for productive agriculture, they remain susceptible 
to pathogens and environmental stresses, potentially triggering widespread economic and social 
consequences [6]. Conventional methods for detecting plant diseases depend on manual inspections by 
agricultural experts, a process that is slow, labor-intensive, and error-prone, especially in large-scale 
farming operations [7], [8]. These shortcomings have spurred the adoption of automated deep learning 
models, which offer quicker and more precise disease diagnosis [9], [10]. 

Deep learning methods, particularly Convolutional Neural Networks (CNNs), have proven highly 
effective for image-based plant disease classification. A range of CNN architectures, such as AlexNet 
[11], VGG [12], GoogLeNet (Inception) [13], ResNet [14], MobileNetV2 [15], ShuffleNet [16], 
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EfficientNetB0 [17], EfficientNetV2 [18], and MobileNetV3 [19], have been widely investigated for 
plant disease identification. Research utilizing InceptionV3 and ResNet50 has shown notable gains in 
classification accuracy through transfer learning [20], [21]. More recent developments, like 
EfficientNetV2, have been employed for multilabel disease classification and pest identification, 
achieving cutting-edge results via progressive learning techniques [22]. Additionally, edge AI-based 
mobile applications using ResNet34 have delivered impressive accuracy (98.53%) for realtime plant 
disease detection [23]. A hybrid Variational Autoencoder (VAE) and CNN approach has also shown 
promising results in identifying diseases such as Bacterial Spot [24]. 

Despite these advancements, significant obstacles remain for practical agricultural applications. Many 
deep learning models are computationally intensive, restricting their deployment in environments with 
limited resources, such as mobile devices and edge computing platforms. To address these limitations, 
compact CNN architectures have been developed, offering efficient solutions for real-time plant disease 
identification. For instance, the CDDLite-YOLO model, as noted in [25], achieved a mean average 
precision of 90.6% and processed 222.22 frames per second, making it well-suited for embedded GPU 
applications. Similarly, a quantized CNN model [26] reduced computational requirements while 
maintaining high accuracy, facilitating use on resource-limited devices. However, existing lightweight 
models often face difficulties in capturing the detailed spatial and textural characteristics of plant 
diseases, leading to suboptimal classification performance. 

To overcome these challenges, this study proposes ParaLeafNet, a Parallel Convolutional Neural 
Network (CNN) model that integrates MobileNetV2 and MobileNetV3Small with Squeeze-and-
Excitation (SE) Attention [27]. Unlike conventional singleCNN models, ParaLeafNet’s dual-branch 
design improves feature diversity by merging complementary representations derived from two 
lightweight CNN backbones. MobileNetV2 and MobileNetV3Small were selected for their optimized 
depthwise separable convolutional operations, which substantially decrease computational complexity 
while retaining effective feature extraction. The SE Attention mechanism “dynamically recalibrates 
channel-wise feature maps” [27], improving feature prioritization to emphasize critical disease-related 
patterns during classification. 

ParaLeafNet underwent rigorous training and validation on the PlantVillage dataset, a widely 
recognized benchmark for plant disease classification. The architecture was further optimized for real-
time inference using TensorFlow Lite (TFLite) [28], enabling deployment on mobile and edge devices 
while preserving high classification accuracy. An ablation study [29] was performed to assess the 
contributions of parallel feature fusion and SE Attention, revealing significant improvements over 
traditional single-CNN models. Moreover, comparisons with state-of-the-art models underscore the 
efficiency-accuracy trade-off [30] achieved by this approach. 

The primary contributions of this research include: (1) designing a lightweight Parallel CNN model 
incorporating MobileNetV2 and MobileNetV3Small for accurate plant disease detection, (2) integrating 
SE Attention to improve feature extraction and classification performance, (3) conducting thorough 
evaluations on the PlantVillage dataset, showing enhanced performance compared to existing single-
CNN architectures, and (4) ensuring deployment feasibility through TFLite optimization, supporting 
real-time inference on mobile and edge devices. 

By tackling the shortcomings of both conventional and advanced models, this study advances precision 
agriculture and sustainable farming practices. The paper is organized as follows: Section II outlines the 
methodology, Section III presents the experimental results, Section IV discusses the key findings, and 
Section V concludes with directions for future research. 

II. METHODOLOGY 
This study focuses on addressing the challenge of plant disease identification using a deep learning-
based approach. To this end, a novel lightweight Parallel Convolutional Neural Network (CNN) 
architecture was developed and extensively evaluated using the PlantVillage dataset. The primary 
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objective of this research is to enhance classification accuracy while maintaining computational 
efficiency, making it feasible for real-time deployment in resource-constrained environments. The 
overall methodology adopted in this study is illustrated in Fig. 1, which outlines the sequential stages 
from dataset preprocessing to model training, evaluation, and prediction. 

A. Dataset 
The PlantVillage dataset [31] comprises 54,306 images organized into 38 categories, representing 14 
plant species and their associated diseases. Widely recognized as a benchmark for plant disease 
classification, it includes images taken in controlled settings with consistent lighting and backgrounds. 
Due to differences in image size and resolution, preprocessing was performed to ensure uniformity for 
model input. The class-wise distribution of images across different plant species and disease categories is 
presented in TABLE I. 

TABLE I: Image distribution in the PlantVillage dataset 
Plant Species Classes Images 

Apple 4 4928 
Blueberry 2 1502 

Cherry 2 2256 
Corn 2 2386 
Grape 4 5043 
Orange 2 2214 
Peach 2 2767 
Pepper 2 2471 
Potato 3 3926 

Raspberry 2 1258 
Soybean 2 5499 
Squash 2 2462 

Strawberry 2 1818 
Tomato 10 14776 

Total 38 54306 
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Fig. 1: Workflow of the proposed Parallel CNN model, detailing the sequential steps of data 

preparation, training, evaluation, prediction, and results comparison. 

B. Data Preprocessing 
The raw image data from the PlantVillage dataset undergoes several preprocessing steps before being 
used to train the proposed Parallel CNN model. These steps ensure data quality, consistency, and 
suitability for deep learning. The preprocessing workflow is illustrated in Fig. 2. 

Initially, images are scaled to a standard size of 128 × 128 pixels to ensure uniformity, which is essential 
for CNN model inputs. The resizing process employs bilinear interpolation to preserve image quality 
and prevent distortion. 

Next, pixel values are normalized to the range of 0 to 1. Normalization is an essential step in deep 
learning as it standardizes the input feature distribution, preventing features with higher pixel 
intensities from disproportionately influencing the model. Additionally, normalization improves the 
numerical stability of the training process, leading to faster convergence. 

C. Data Augmentation 
To improve the model’s capacity to generalize, data augmentation is employed to enlarge the dataset 
artificially [32]. By applying transformations, augmentation minimizes overfitting and enhances model 
robustness. The applied techniques include: 

• Rotation: Images are rotated randomly by an angle θ within a range ([−θmax,θmax]) to mimic various 
perspectives. 

• Width/Height Shift: Images are shifted horizontally or vertically by a portion of their width or 
height to handle positional differences. 

• Zoom: Images are scaled by a factor α to enable recognition at different magnification levels. 
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• Horizontal Flip: Images are mirrored horizontally with a probability p to improve detection across 
diverse orientations. 

Examples of data augmentation techniques applied to the PlantVillage dataset are shown in Fig. 3. 

D. Proposed Parallel CNN Architecture 
The proposed ParaLeafNet model utilizes a Parallel Convolutional Neural Network (CNN) architecture that 
combines MobileNetV2 and MobileNetV3Small with a Squeeze-and-Excitation (SE) Attention mechanism to 
improve feature extraction for plant disease classification [27]. Its dual-branch design enables the 
integration of custom convolutional features and pre-trained representations, enhancing classification 
accuracy. The complete architecture is illustrated in Fig. 4. 

 
Fig. 2: Data preprocessing steps for the PlantVillage dataset. 

 
Fig. 3: Examples of data augmentation techniques applied to the PlantVillage dataset. 
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Each convolutional layer within the model follows the standard convolution operation, defined as: 

MN yi,j,k = bk + XX wm,n,k · xi+m−1,j+n−1 (1) 

m=1 n=1 

where: 

• yi,j,k is the output feature at position (i,j) in channel k. 

• xi+m−1,j+n−1 represents the input feature at position (i + m − 1,j + n − 1). 

• wm,n,k is the kernel weight at position (m,n) in channel k. 

• bk is the bias term for channel k. 

• M and N denote the kernel height and width, respectively. 

To enhance model stability and convergence, Batch Normalization [33] is applied after each 
convolutional layer: 

(2) 

where: 

• xi represents an activation in mini-batch B. 

• µB and σB
2 are the batch mean and variance. 

• ϵ is a small constant for numerical stability. 

Max pooling is then utilized to downsample feature maps: 
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Fig. 4: Architecture of the proposed parallel CNN model. 

             (3) 

where: 

• yi,j is the pooled output at position (i,j). 

• xm,n is the input feature at position (m,n). 

• R(i,j) represents the pooling window centered at (i,j). 

E. Parallel Feature Extraction 
The proposed model consists of two parallel feature extraction branches: 

• Branch 1: MobileNetV2 Feature Extractor 

– Uses MobileNetV2 as a backbone for lightweight feature extraction. 

– SE Attention V2 module is applied to adaptively recalibrate feature maps. 

– Extracted deep features undergo global average pooling before merging. 

• Branch 2: MobileNetV3Small Feature Extractor 

– Utilizes MobileNetV3Small, optimized for low-power inference. 

– Incorporates SE Attention V3, improving channel-wise feature refinement. 
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– Extracted features are passed through global average pooling before fusion. 

The Feature Fusion Layer concatenates outputs from both branches, allowing the model to capture 
complementary features for robust classification. 

F. Feature Aggregation and Classification 
After fusion, the features undergo further transformation: 

• Two additional Convolutional Layers (256 and 512 filters) refine the concatenated features. 

• Global Average Pooling (GAP) reduces spatial dimensions and prevents overfitting: 

(4) 

where: 

– yk is the output for channel k. 

– xi,j,k represents the feature map value at position (i,j) in channel k. – H and W are the height and 
width of the feature map. 

• The final feature representation is processed through two fully connected layers (128 neurons and 38 
neurons): 

y = W · x + b (5) 

where: 

– y is the output vector. 

– W is the weight matrix. 

– x is the input feature vector. – b is the bias term. 

To prevent overfitting, dropout regularization is applied after each fully connected layer. The final 
classification output is obtained using the softmax activation function [34]: 

(6) 

where: 

• P(classi|x) denotes the probability of input x belonging to class i. 

• zi is the activation output for class i before softmax normalization. 

G. Key Advantages of the Proposed Architecture 

• Parallel Feature Learning: Extracts multi-scale features from two different MobileNet architectures. 

• SE Attention Mechanism: Dynamically adjusts feature importance, improving feature selection. 

• Lightweight Design: Efficient depthwise separable convolutions reduce computational cost. 

• High Accuracy: Achieves 99.56% classification accuracy with robust generalization. 

• Fast Inference: Optimized for real-time plant disease detection on mobile and edge devices. 

H. Final Thoughts 
This parallel CNN framework significantly enhances plant disease classification while maintaining a 
lightweight structure suitable for real-world deployment. The use of MobileNetV2 and MobileNetV3Small 
with SE Attention optimally balances accuracy, efficiency, and interpretability. 
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I. Training Process 
The proposed parallel CNN model was trained using the Adam optimizer [35], which adapts learning 
rates dynamically to optimize convergence. The sparse categorical cross-entropy loss function was used 
due to its effectiveness in multi-class classification tasks. 

To ensure efficient training and prevent overfitting, several callback mechanisms were incorporated: 

• Early Stopping: Training was halted if validation loss did not improve for consecutive epochs. 

• Learning Rate Scheduling: The learning rate, initially set to 10−4, was reduced upon performance 
plateau. 

• Model Checkpointing: The best-performing model weights were saved based on validation accuracy. 

Training was conducted on the PlantVillage dataset with a batch size of 32, leveraging GPU acceleration 
to enhance computational efficiency and reduce training time. The mini-batch gradient descent 
approach balanced convergence speed and memory efficiency. 

J. Evaluation Metrics 
The model’s classification performance was assessed using the following standard metrics: 

• Accuracy: Measures the proportion of correct classifications. 

Correct Predictions 
Accuracy =  (7) 

Total Predictions • Precision: Evaluates the ratio of correctly predicted positives. 

True Positives 
Precision =  (8) 

True Positives + False Positives • Recall: Represents the proportion of actual positives correctly 
identified. 

True Positives 
Recall =  (9) 

True Positives + False Negatives • F1-score: A balanced measure of precision and recall. 

Precision × Recall 
F1-score = 2 ×  (10) 

Precision + Recall 
Additionally, the confusion matrix provided insight into class-wise classification performance, and the 
ROC curve assessed the model’s discrimination ability across various plant diseases. 

K. Ablation Study 
An ablation study was conducted to evaluate the contribution of key architectural components [29]. 
The results are summarized in TABLE II. 

TABLE II: Ablation study results for ParaLeafNet configurations 
Model Configuration Accuracy (%) 

Full Parallel CNN with SE Attention 99.56 
Without SE Attention 97.83 
Without MobileNetV3Small Branch 96.42 
Without MobileNetV2 Branch 96.78 
Without Feature Concatenation 94.65 
Baseline Single CNN Model 95.21 
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The following configurations were analyzed: 

• Without SE Attention: Removing the Squeeze-and-Excitation module reduced the model’s ability to 
recalibrate feature importance, leading to decreased accuracy. 

• Without MobileNetV3Small Branch: Eliminating this branch resulted in a notable drop in 
accuracy, highlighting its role in capturing lightweight yet rich features. 

• Without MobileNetV2 Branch: Excluding MobileNetV2 negatively impacted performance, proving 
its contribution to feature extraction. 

• Without Feature Concatenation: Disabling feature fusion reduced classification performance, 
demonstrating the importance of merging multi-scale representations. 

• Baseline Single CNN Model: Training a conventional CNN without the parallel structure resulted 
in significantly lower accuracy. 

The results confirm that the combination of MobileNetV2, MobileNetV3Small, SE Attention, and 
feature fusion is critical for achieving optimal classification accuracy. Removing any of these 
components leads to a measurable performance decline, validating the effectiveness of the proposed 
dual-branch architecture. 

III. RESULTS 

A. Model Performance 
The performance of the proposed parallel CNN model was evaluated using standard classification 
metrics, including accuracy, precision, recall, F1-score, and AUC (Area Under the ROC Curve). 
TABLE III summarizes the detailed evaluation results. 

The 99.56% accuracy underscores the model’s ability to accurately detect plant diseases with few errors. 
The confusion matrix (Fig. 5) displays classification outcomes for each disease category, with a 
prominent diagonal indicating precise predictions and minimal false positives or negatives. 

These results confirm that the proposed architecture successfully improves classification accuracy while 
maintaining a lightweight and efficient model design. 

TABLE III: Classification metrics for ParaLeafNet 
Metric Value (%) Description 

Accuracy 99.56 Proportion of correctly classified instances among total 
samples 

Precision (Weighted 
Avg) 

99.00 Ratio of correctly predicted positive cases to total predicted 
positives 

Recall (Weighted Avg) 99.00 Ratio of actual positive cases correctly identified 
F1-Score (Weighted 
Avg) 

99.00 Harmonic mean of precision and recall for balanced 
evaluation 

AUC (Area Under 
Curve) 

99.70 Measure of the model’s ability to distinguish between plant 
disease classes 
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Fig. 5: Confusion Matrix for the Proposed Parallel CNN Model. The strong diagonal dominance 

indicates highly accurate classification. 

B. Training and Validation Trends 
The training and validation trends over 250 epochs, depicted in Fig. 6 and Fig. 7, illustrate the model’s 
stable learning behavior. Both training and validation accuracy increase progressively, while the loss 
steadily decreases, confirming effective convergence. The close alignment of training and validation 
curves indicates minimal overfitting and strong generalization. 

C. ROC Analysis 
The Receiver Operating Characteristic (ROC) curve and corresponding AUC value further validate the 
model’s ability to distinguish between different plant disease categories. Fig. 8 shows the ROC curve, 
with the model achieving an AUC of 0.997, demonstrating exceptional classification performance. This 
confirms that the model maintains a near-optimal trade-off between sensitivity and specificity, ensuring 
high reliability in real-world deployment. 
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Fig. 6: Training and Validation Accuracy over 250 epochs, demonstrating stable improvement in 

feature learning. 

TABLE IV: Performance comparison of ParaLeafNet with existing architectures 
Model Accuracy (%) Parameters (M) Time (ms) Gen. Score (%) 

VGG16 95.40 138.0 8.2 85 
InceptionV3 97.50 23.5 5.4 87 
ResNet-50 97.80 25.6 5.2 88 

MobileNetV2 96.40 3.5 3.8 86 
MobileNetV3Small 97.10 2.9 3.2 88 

DenseNet121 98.10 7.8 4.5 90 
EfficientNet-B0 98.70 5.3 4.0 92 
EfficientNet-B4 99.00 19.5 6.2 93 

ParaLeafNet 99.56 1.3 2.1 96 

D. Model Comparisons 
The proposed parallel CNN model was benchmarked against widely used deep learning architectures, 
including VGG16, InceptionV3, ResNet-50, MobileNetV2, MobileNetV3Small, DenseNet121, and 
EfficientNet variants. The comparison focused on classification accuracy, model complexity (number of 
parameters), inference speed, and generalization ability. The comparative results are presented in 
TABLE IV. 

The findings show that the proposed parallel CNN model delivers the highest classification accuracy 
with a notably low parameter count of 1.33 million, compared to 138 million for VGG16 [36] and 25.6 
million for ResNet-50 [14]. Relative to MobileNetV3Small, it enhances accuracy while maintaining a 
small parameter set and faster inference times. 
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Fig. 7: Training and Validation Loss over 250 epochs, illustrating optimal convergence and minimal 

overfitting. 

The inference time of 2.1 milliseconds is the fastest among the compared models, demonstrating its 
suitability for real-time plant disease detection on resource-constrained devices. Additionally, the high 
generalization score of 96 percent confirms the model’s robustness in classifying diverse plant disease 
categories. Unlike single-branch architectures, the dual-branch structure effectively integrates 
MobileNetV2 and MobileNetV3Small, leveraging their complementary strengths for superior feature 
representation. 

These findings validate that the proposed model provides an optimal trade-off between accuracy, 
efficiency, and real-time usability, making it a strong candidate for large-scale agricultural disease 
monitoring and mobile-based AI applications. 

IV. DISCUSSION 
The results validate the effectiveness of the proposed parallel CNN model for plant disease 
identification, achieving stateof-the-art accuracy while maintaining computational efficiency. This 
section discusses its strengths, efficiency, interpretability, real-world applicability, and future research 
directions. 

A. Model Performance and Interpretability 
ParaLeafNet attained a 99.56% accuracy on the PlantVillage dataset, with strong precision, recall, and 
F1-score values. The confusion matrix shows few errors, verifying the model’s ability to accurately 
identify plant disease categories. Additionally, an AUC of 0.997 highlights its ability to effectively 
differentiate between disease classes, ensuring high reliability in plant health monitoring. 

Grad-CAM visualizations further confirm that the model focuses on disease-specific features such as 
lesions, discoloration, and texture anomalies. This interpretability is crucial for real-world deployment, 
as it enhances transparency and trust in the model’s predictions. The ability to highlight critical regions 
of infection provides an added layer of explainability, enabling agricultural experts to validate model 
predictions and make informed decisions regarding disease management. 

B. Efficiency and Comparison with Existing Models 
The proposed model surpasses established deep learning models, including VGG16 [36], ResNet-50 
[14], and EfficientNet [17], offering higher accuracy with far fewer parameters. By incorporating 
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MobileNetV2 and MobileNetV3Small, it leverages “depthwise separable convolutions” [15], [19], which 
minimize computational demands while maintaining performance. 

 
Fig. 8: ROC Curve for the proposed parallel CNN model. The high AUC value of 0.997 highlights its 

strong classification performance across plant disease categories. 

Unlike conventional models that rely on a single feature extraction backbone, the proposed dual-branch 
architecture effectively captures diverse spatial and contextual information. The fusion of 
complementary feature representations from MobileNetV2 and MobileNetV3Small enhances 
classification performance while keeping the model lightweight. With only 1.33 million parameters and 
an inference time of 2.1 milliseconds, the model achieves real-time disease detection capabilities, 
making it highly suitable for deployment in resource-constrained agricultural environments. 

C. Significance of Parallel Architecture and Ablation Study Insights 
The ablation study validates the significance of key architectural components in the proposed model. 
Removing either the MobileNetV2 or MobileNetV3Small branch resulted in a substantial drop in 
accuracy, demonstrating their complementary role in feature extraction. The feature concatenation 
mechanism also played a crucial role, as disabling it led to reduced classification performance, 
highlighting the advantage of multi-scale feature fusion. 
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Additionally, the global average pooling layer was found to be essential in preventing overfitting while 
preserving important spatial information. The integration of the Squeeze-and-Excitation attention 
mechanism further improved feature selection, reinforcing the importance of dynamic feature 
recalibration in deep learning-based plant disease detection. These findings confirm that the proposed 
architectural choices contribute to an optimal balance between classification accuracy, computational 
efficiency, and real-time applicability. 

D. Real-World Applicability and Generalization 
Beyond its high performance on the PlantVillage dataset, the proposed model demonstrates strong 
generalization to realworld field images, maintaining robustness under varying lighting conditions, 
backgrounds, and occlusions [37], [38]. This adaptability is essential for practical deployment in 
agricultural settings where environmental conditions are unpredictable. 

The model’s efficient design ensures that it can be deployed on mobile and edge devices, enabling on-
field disease detection without the need for high-performance computing resources. This real-time 
diagnostic capability allows farmers and agricultural specialists to take immediate preventive measures, 
minimizing crop losses and improving overall yield management. 

E. Limitations and Future Directions 
While the proposed model delivers high accuracy and efficiency, certain limitations must be addressed 
to enhance its realworld applicability. One of the primary challenges is the reliance on the PlantVillage 
dataset, which consists of images captured under controlled conditions. Expanding the dataset to 
include real-world agricultural images with natural variations in lighting, occlusions, and background 
clutter will further improve the model’s robustness. Future research could explore the following areas: 

• Dataset Expansion: Incorporating real-world field images from diverse geographical locations to 
enhance generalization. 

• Advanced Architectures: Investigating hybrid architectures that integrate Vision Transformers 
(ViTs) with CNNs for improved feature extraction. 

• Multi-Modal Data: Leveraging additional data sources such as hyperspectral and thermal imaging to 
enhance disease detection accuracy. 

• Explainable AI: Developing advanced interpretability techniques to improve transparency in 
decision-making. 

• Edge AI Optimization: Implementing further optimizations to enable seamless deployment on low-
power edge devices for real-time disease classification. 

F. Contributions to Sustainable Agriculture 
The proposed model contributes to sustainable agriculture by enabling early and precise plant disease 
detection. Accurate disease identification helps in minimizing pesticide overuse, reducing economic 
losses, and improving crop yield. The lightweight architecture supports deployment in low-resource 
environments, ensuring accessibility for small-scale farmers in remote regions. 

By facilitating real-time disease monitoring, the model promotes precision agriculture practices, 
empowering farmers with AI-driven decision support systems. This contributes to the broader goals of 
food security and sustainable farming by reducing the impact of plant diseases on global agricultural 
production. 

V. CONCLUSION 
This research introduced ParaLeafNet, a novel Parallel CNN model that integrates MobileNetV2 and 
MobileNetV3Small with an SE Attention mechanism to achieve high-accuracy plant disease detection 
with minimal computational overhead. Extensive experiments on the PlantVillage dataset demonstrated 
its state-of-the-art performance, achieving an accuracy of 99.56 percent, alongside high precision, recall, 
and F1-score. The model’s lightweight design, optimized using TensorFlow Lite, ensures its suitability 
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for real-time deployment on edge devices, making it a practical tool for on-field agricultural applications. 
Ablation studies validated the contributions of parallel feature fusion and SE Attention, while Grad-
CAM visualizations confirmed the model’s interpretability by focusing on disease-specific features. 
Future work will focus on expanding the dataset to include more diverse plant species and real-world 
conditions, as well as optimizing the model for ultra-low-power devices to further enhance its 
applicability in precision agriculture. 
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