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Abstract: Together with protein and fat, carbohydrates are among the macronutrients in the human diet, playing 
an important role in the anatomy. The process of breaking down carbohydrates into glucose begins in the digestive 
tract. Glucose is absorbed across the membrane of the small intestine and conveyed to the liver where they are either 
utilized, or distributed to the more remote parts of the human body. Sugar levels in the bloodstream then increase, 
triggering secretion of insulin which motivates the body’s cells to absorb glucose for energy. High carbohydrates 
consumption may contribute to obesity, cardiovascular diseases, and type 2 diabetes. However, it was reported that 
“the risk of developing type 2 diabetes is lowered as the amount of calories from carbohydrates is increased. Diet that 
are high in carbohydrates tend to increase the sensitivity of insulin.” Nowadays, some healthcare providers routinely 
recommend high carbohydrate diet to type 2 diabetics, whose risk of heart disease has been observed to lower. To 
investigate this paradoxical effects, we construct a 3 compartmental dynamical model of the glucose-insulin control 
system incorporating the carbohydrate absorption process, described by an exponential function so that the amount 
absorbed per unit of digested carbohydrate varies with space and time. We arrive at an integro-differential system 
model, which is analyzed for its stability. Its analytical solution obtained as a traveling wave solution, and the time 
series of glucose and insulin levels provide valuable insights into the impacts of starch content on the glucose-insulin 
control system for diabetics or healthy subjects. 

Keywords: Carbohydrate absorption, glucose-insulin control system, integro-differential model equations, stability 
analysis, traveling wave solutions, type 2 diabetes 

 

INTRODUCTION 
In addition to protein and fat in the human diet, carbohydrates are known to be among the 
macronutrients which play a crucial role in the proper function of the human anatomy [1]. The 
beginning of the process of breaking down carbohydrates into glucose begins in the digestive tract upon 
consumption, yielding energy. Glucose, fructose, and galactose are absorbed across the membrane of the 
small intestine and conveyed to the liver where they are either utilized by the liver, or distributed to the 
more remote parts of the human body. Any remaining glucose in circulation is stored in the liver and 
muscle tissue until additional energy is required. As carbohydrates are digested, the sugar levels in the 
bloodstream increase, triggering insulin secretion by the pancreas. Insulin then motivates the body’s 
cells to absorb glucose for energy. Any extra glucose in the bloodstream is stored in the liver and muscle 
tissue until further energy is needed. According to [1], the term Carbohydrates is an umbrella term that 
includes sugar, fruits, vegetables, encompassing fibres, and legumes. Although they may be delineated 
into many divisions, benefits to human are mostly derived from only a certain subset of these [2, 3]. 

A diet needs to be nutritionally balanced, consisting the proper amount of carbohydrates. A rise or fall 
of carbohydrate levels beyond the appropriate amount can impact both physiological and metabolic 
activities. High carbohydrates may contribute to obesity, leading to cardiovascular diseases. Several 
investigations reported that carbohydrate intake can also contribute to type 2 diabetes. In addition, 
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foods rich in non-starch polysaccharides and low-glycemic foods protect against diabetes, among other 
illnesses. On the other hand, according to [1], data have been reported that show that “the risk of 
developing type 2 diabetes is lowered as the amount of calories from carbohydrates is increased. Diet 
that are high in carbohydrates tend to increase the sensitivity of insulin.” Therefore, nowadays, some 
healthcare providers routinely recommend high carbohydrate diet to type 2 diabetics, whose risk of 
heart disease has been observed to lower. 

To investigate this paradoxical effects, we construct a 3 compartmental dynamical model of the glucose-
insulin control system which incorporates the process of carbohydrate absorption in the small intestine. 
The model tracks the changes in the levels of glucose and insulin which are effected by the level of 
carbohydrates, the cross-membrane absorption process being described by an exponential function so 
that the amount absorbed per unit of digested carbohydrate varies with space and time. Thus, the rate 
of change of the amount of carbohydrates is modeled by a partial differential equation. We accordingly 
arrive at a dynamical model consisting of a system of integro-differential non-autonomous equations. 

After the introduction of new state variables which vary with the traveling wave coordinate, the model 
can be transformed into an autonomous system of ordinary differential equations. Stability analysis is 
carried out to discover the dynamical behavior of the solution near the system’s equilibrium state. 
Analytical solution is subsequently obtained in the form of a wave solution traveling along the length of 
the digestive tract. The resulting simulated graphs of glucose and insulin levels as functions of time 
provide valuable insights and shed light on the impacts of high or low starch content in our food intake 
on the glucose-insulin control system for diabetics or healthy subjects. 

METHODS 

Model System 
To better understand how carbohydrates upon consumption and the process of cross membrane 
absorption may impact the dynamics of glucose levels in the blood stream and the control mechanism 
in the human anatomy involving insulin secretion by the pancreas, we let 

( )  ,  carbohydrate content,C t z =  

( )  glucose concentration,G t =  

( )  insulin concentration,I t =  

where t denotes the time, and x denotes the spatial radial distance measured from a point of reference at 
the surface of the small intestine. Extending the models considered in [4] and [5] to incorporate 
carbohydrate absorption prose, we then arrive at the following model equations. 
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The first term on the right of (1) represents the rate of change of C due to active transport, with 
transport coefficient kCC. The second term is the rate of change of C due to diffusion, with diffusion 
coefficient D, while the last term is the rate of its removal due to intestinal absorption, with the specific 
removal rate kCG which is written as 

( ) ( )0,
k z vt

GCk z t e
−

= ,        (4) 
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where v is the speed at which the digested carbohydrate moves along the intestine. When z equals vt, the 
rate of carbohydrate absorption per unit of carbohydrates present will be at the value a. The more time 
passes the term z – vt becomes more negative, and the less absorption should be possible due to 
saturation. This absorbed amount of carbohydrates leads to the increase in the rate of change of glucose 
in (2), the total amount of which needs to be the integral sum of kCG(z,t)C(t, z) over the length l of the 
intestine, namely the second term in (2). Thus, the first term on the right of (2) represents the rate of 
increase of glucose level at zero consumption, the second term is the rate of change of G due to 
carbohydrate consumption and subsequent absorption, and the last term gives the rate of decrease of G 
due to insulin which has been secreted by the pancreas triggered by the rise of glucose level in the 
bloodstream. Finally, in (3), the first term on the right represents the rate of increase of insulin due to 
the presence of glucose, while the last term is the removal rate by natural means, with specific removal 

rate 0Ik . 

In the next section, we shall analyse the model system (1) – (3) in order determine whether there exist 
some conditions under which the solution to our model remains close to, or tends asymptotically, to 
some steady state value. To this end, we introduce the traveling wave coordinate: 

x ct = − , 

and the following new state variables as functions of  . 

( ) ( ) ( ) ( )0( ) , , ( )
k z vt

c c z vt C t z z vt e   
−

= − = = − =  

Stability Analysis 

Letting 

( ) ( ) ( ), ,x c y c w   = = = ,         (5) 

where ( )  denotes the derivative with respect to z vt = − , equation (1) becomes 

ccvc k c Dc c  − = + − .          (6) 

Using (5), (6) can be written as 

ccvy k y Dy wc− = + −  

which leads to 

ccv k
y wx y

D D

 +
 = −  . 

Thus, we are led to the following system of autonomous ordinary differential equations. 

x y =              (7) 

ccv k
y wx y

D D

 +
 = −           (8) 

0w k w =            (9) 

To discover the stability behaviour of the system near the washout steady state (0,0,0)S = , at which 

point the right hand sides of (7) – (9) are zero, we find the Jacobian matrix of the model system about S 
to be 
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1 0, =             (11) 

2 0,ccv k

D


+
= −            (12) 

and 

3 0 0.k =             (13) 

Since one of the eigenvalues is zero, S is a non-hyperbolic equilibrium point, and its local stability 
cannot be determined by approximating the system by linearizing it. The non-linear terms have to be 
considered as well. Therefore, inspection of the considering (9) and the non-linear term in (8), we see 
that the system (7) – (9) is dynamically unstable in the (x, y, w)-space unless k0 is negative. 

In the next section, we derive the analytical solution to the model system in the form of traveling wave 
fronts by utilizing the extended hyperbolic tangent method based on the work of Taghizadeh and 
Mirzazadeh [6]. 

TRAVELING WAVE FRONTS 
In this section, we shall employ the modified extended tanh method [6] to derive analytical solutions in 
terms of the traveling wave coordinate x t = − . This method has been made used of by several 
researchers [7, 8, 9, 10] concerning important phenomena of great interest, yielding insightful and 
valuable conclusions. The authors refer the readers to these research articles for its description, and 
detailed development as well as its various applications. 

Analytical Solution 
We attempt to find the solution of the system (7) – (9) by expressing the state variables as finite series of 
hyperbolic tangent functions in the form 

0
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where , ,  and k l ma b c  are constants, and ( ) ( )tanh  =  satisfies the Riccati equation 

( )21 .   = −             (17) 

We determine the values of ,K L   and M  by first equating the highest order of     in the linear term 

x    with the highest order of    in the nonlinear term  y  in equation (7) which gives 

1 .K L+ =             (18) 

Equating the highest order of     in the linear term  y   with the highest order of   in the nonlinear 
term wx   in equation (8) gives 
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1 .L K M+ = +             (19) 

So, we obtain 

2, 3K L= =  and  2M = .         (20) 

Substituting (20) into (14) – (16) we obtain 

( ) 2
0 1 2x a a a  = + +            (21) 

( ) 2 3
0 1 2 3y b b b b   = + + +          (22) 

( ) 2
0 1 2w c c c  = + +           (23) 

Substituting ( )tanh = and the Riccati equation in equations (7) – (9), with the aid of (21) – (23), 

and equating the coefficients of each power of  , we obtain a system of algebraic equations of the 
parameters 0 1 2 0 1 2 3 0 1 2, , , , , , , , ,  and a a a b b b b c c c ; 
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22 0,c  =  0 2 1 0,k c c + =  0 1 22 0,k c c − =  0 0 1 0.k c c − =  

Solving the system (24), we obtain the parameters 2 0 1 2 3 0 1 2, , , , , , ,  and a b b b b c c c  expressed in terms 0 1,a a  
as follows: 
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Thus, we obtain the following analytical solution for the level of carbohydrates in the intestine. 

( ) ( )( ) ( )( )2
0 1 1 0, tanh 3 tanh

2

ccv k
C t z a a z vt a a z vt

D
 



+ 
= + − − + − 

 
      (28) 

RESULTS 
With the help of the equations in (25), once we fix the values of 0 2 and a a , the values of the remaining 
coefficients are automatically set. Then, the coefficient values obtained in this manner can be 
substituted into the expression for the carbohydrate content (28), the plot of which, seen in Fig.1, 
provides us with the view of the wave front of consumed carbohydrates traveling through space and 
time. 
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Figure 1. Traveling wave of C, the digested carbohydrate for different time and spatial distance z. 

 

 
Figure 2. Three dimensional plot of C(t, z) as a function of space z and time t. 

Fig. 1 above shows the analytical solution for C(t, z), plotted as  wave fronts traveling through time t, 
here ranging from 0 to 80, along the length of the small intestine which may be assumed to be very 
long. Here, 0 0.1a = , 1 0.8a = − , 2 2.5a = , 0b = , 1b = , 2b = , 3b = 0c = , 1c = , 2c = , 0.1 = , D = 1.0, v = 

0.2, KCC = 0.5, k0 = 0.1, 0.1 = . Figure2 shows the corresponding three dimensional plot of C(t, z) as a 

function of space z and time t, by which we may easily identify the level of digested carbohydrate 
remaining in the small intestine at any moment in time and at any spatial location along the intestinal 
tract. 

Glucose and Insulin Time Series 
It is now possible to derive the levels of glucose and insulin by numerically simulating the following 
system. 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No.9s, 2025 
https://www.theaspd.com/ijes.php 

181 
 

0

0 I
GS

dG I
R C GS

dt I I
= + −

+
,         (29) 

0

max
0  

IG

IG IG
I

IS

dI G
k I

dt G G



 
= −

+
         (30) 

0
0 0  

dK
vk K

dt
= −            (31) 

= ( ) ( ) ( ) 
dC

t K t C t
dt

 +           (32) 

where (29) is the rate of change of glucose from equation (2), and (30) is the rate of change of insulin 
from equation (3). To simplify our simulation, we have introduced the new variables: 

( ) ( )
0

,

l

C t C t z dz=  ,          (33) 

and 

0 ( )
0

k z vt
K e

−
=  ,           (34) 

in which the analytical solution for C(t, z) is now known, expressible as in (28). The above integral in 
(33) can be done since we already know the explicit formula for C(t, z) whose graph is seen in Fig. 1, 
where it can be observed that, as z becomes very large, C(t, z) tends asymptotically to a constant level. 
Therefore, at the far end of the very long digestive tract, we may assume that 

0
z l

C

z =


=


. 

Thus, we are able to find that, in (32), 

( )0
0( ) ( ) ( ,0) ( ,0)

k
CC

C
t k D k C t e D t

z



= − − −


, 

and 

2
0 0 0 1CCk D k k vk = − − − . 

The parametric values used in our simulations have been taken partly from the work by Barbiero and 
Lió on the computational patient with diabetes and A COVID [4], and the seminal work by De 
Gaetano et al. on mathematical models of diabetes progression [5], are provided in Table 1 below. Table 
2 provides the values the coefficients in the expansions (21) – (23), satisfying the relationships in (25), 
which have been derived through the use of traveling wave coordinate and the modified extended 
hyperbolic tangent method described by Taghizadeh, and Mirzazadeh in [6], resulting in the graphs of 
C(t, z) shown in Fig. 1 and Fig. 2. 

The resulting time series for G(t), I(t),  0 ( )K t , and ( )C t , are shown in Fig. 3A through 3D, respectively. 

Table 1: Parametric values used in numerical simulation of (29) – (32) with (33). 
Parameter Value Source 

0R  
1 11.0864  ml dl g− −  [4] 

IS  0.1 [4] 

0GSI  0.359 [4] 

IG  2 [5] 
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max  1 10.176134  U ml d − −

 
[4] 

0IS
G  2 20.02 ml dl−  [4] 

0Ik  10.432 d −  [4] 

Table 2: Coefficients in the expansions (21) – (23) used in (33) 
Parameter Value Parameter Value Parameter Value 

  0.1 k0 0.1 kCC 0.5 
  0.2 v 0.2 D 1 
a0 0.1 b0 -0.08 c0 -0.6 
a1 1.0 b1 0.5 c1 0.0 
a2 -1.05 b2 0.08 c2 0.6 
  b3 -0.5   

 
Figure 3. Time series of A. G(t), B. I(t), C. 0 ( )K t , and D. ( )C t . 

DISCUSSION 
When the parameters in the model system are adjusted to fit different physiological types, we may begin 
to understand the different impacts of high or low carbohydrate food intakes. For example, v reflects 
how fast the consumed food travels thru a person’s intestine while carbohydrate is absorbed.  and k0 

reflect the gastric absorption efficiency of each person.  The parameters 
0

max  and IG

IS
G


  reflect how the 

body reacts to an increase in glucose and how fast it saturates. When one parameter is high, while the 
other is low, the reaction could be much different in a person with the reverse being true. 

By varying these parameters, we may determine how food digestion with initial carbohydrate content 
C(0,t), and initial glucose level in the person bloodstream, will affect the person’s glucose-insulin control 
system at different times and locations. 

As an example, let’s considering Fig. 1 more closely. What we’ve shown here is the case in which 
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initially (t = 0 along the blue curve) the carbohydrate content is close to 0 at the start of the digestive 
tract (z = 0), meaning not much carbohydrate remains around this point to begin with. However, a 
distance from the beginning of the tract, far to the right of the axis, a finite amount of carbohydrates 
still remains, tending asymptotically to a constant value. As time progress, we can see that the curve 
moves from left to right. If we keep our attention on a fixed position z = z0 1  along the tract, we see 
that the carbohydrate starts to rise, from the level on the blue curve to orange to yellow, then to the 
green level. On the other hand, if we are further along the digestive tract, the carbohydrate level will fall 
since the digested food has not reach that point yet, until the time has sufficiently passed, at which 
point the carbohydrate will begin to rise. Now, with different values of , k0,

0

max  or IG

IS
G


 , for example, 

the levels will vary in a dynamically different manner, modelling a different person of different 
physiological type. 

Furthermore, from the exact solution of C(t, z), we can simulate the system model for the time series of 
glucose and insulin levels for a particular physiological type, as a result of the types of nutritional 
contents being consumed. The graphs shown in Fig. 4, were obtained for initial conditions that G(0) = 
0.5 and I(0) = 0.4077. We see that in this case, it is felt by the control mechanism that the level of 
glucose in the bloodstream is still not too high, and so the amount of insulin initially decreases. 
However, as the carbohydrates are absorbed and converted to more glucose in the bloodstream, the 
pancreas is triggered to secrete insulin to try to bring the glucose level to a constant level. However, in 
the case shown, the digested carbohydrates continue to be absorbed and thus the glucose level is 
expected to continue to increase, escaping insulin’s control. This scenario appears to be the case where 
a supplementary insulin injection might be called for. 

CONCLUSION 
We have constructed a three compartmental dynamical model of the glucose-insulin control system 
which incorporates the process of carbohydrate absorption in the small intestine. The cross-membrane 
absorption process was described with the use of an exponential function so that the amount absorbed 
per unit of digested carbohydrate varies with space and time. Consequently, the rate of change of the 
amount of carbohydrates has been modeled by a partial differential equation. Our model thus consisted 
of a system of integro-differential non-autonomous equations. 

New state variables which vary with the traveling wave coordinate led us to a system of ordinary 
differential equations. After carrying out a stability analysis, an analytical solution has been obtained in 
the form of a wave solution traveling along the length of the digestive tract. Time series of both glucose 
and insulin levels as functions of time have been illustrated to be useful for us to predict the impacts of 
high or low starch content in our food intake on the glucose-insulin control system for diabetics or 
healthy subjects, so that appropriate actions could be taken to mediate the effects of high or low starch 
content in our food intake. 

From the above discussion, it is apparent that our effort at modeling and deriving analytical solutions 
can become a valuable tool in our drive towards personalized medicine [11], also known as precision 
medicine, which has the objective of tailoring healthcare to fit individual patients [12] by taking into 
account their unique genetic factors, environments, and lifestyles, bringing about more effective and 
safer treatments. 
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