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Abstract: 
In the era of big data and high-dimensional datasets, efficient data reduction techniques are crucial for 
improving computational efficiency and ensuring model interpretability. This study presents the design 
and development of an enhanced N-dimensional data reduction system that integrates Discrete Cosine 
Transform (DCT) and Polynomial Regression Analysis (PRA) to address challenges in data redundancy 
and noise. DCT is employed to compress and transform complex high-dimensional data into a compact 
representation, while PRA is applied to retain underlying trends and relationships among variables. The 
proposed hybrid framework not only reduces dimensionality but also maintains high prediction accuracy 
and fidelity in downstream modelling tasks. The system's performance is evaluated across synthetic and 
real-world datasets, demonstrating significant improvements in computation time, storage efficiency, and 
modelling accuracy when compared to traditional techniques like PCA and linear regression. This 
research provides a scalable and adaptable solution for applications in environmental modelling, image 
processing, and sensor-based data systems. 

Keywords: Data Reduction, Discrete Cosine Transform, Polynomial Regression Analysis, Dimensionality Reduction, 
Modelling Accuracy, High-Dimensional Data 

1. INTRODUCTION 

In today’s data-driven world, the exponential growth of information across multiple domains—ranging 
from environmental monitoring and biomedical imaging to social networks and financial analytics—has 
posed significant challenges for data storage, processing, and analysis. This surge in high-dimensional data 
calls for the urgent need to develop robust data reduction methodologies that can effectively retain critical 
features while minimizing redundancy and computational overhead. Traditional dimensionality 
reduction techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 
and t-SNE have served as pivotal tools, yet they often fall short when applied to datasets with non-linear 
patterns, noise contamination, and heterogeneous feature distributions. In such scenarios, preserving the 
interpretability and structure of the original dataset becomes increasingly difficult, especially when 
dimensionality increases to the extent of rendering classical models inefficient and unstable. 

To address these limitations, this research introduces an enhanced N-dimensional data reduction system 
that synergizes the strength of the Discrete Cosine Transform (DCT) with Polynomial Regression Analysis 
(PRA). DCT, known for its capability in energy compaction and noise-resilient transformation, serves as 
an effective preprocessing technique to condense high-dimensional data into a lower-dimensional 
frequency domain, filtering out less significant components. Meanwhile, Polynomial Regression Analysis 
(PRA), a robust and interpretable statistical modelling approach, is employed to reconstruct and analyze 
the compressed data while capturing non-linear relationships among features. This hybrid approach not 
only aims to streamline computational efficiency but also strives to maintain model accuracy and 
analytical value, which are often compromised in conventional reduction frameworks. 
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1.1 Overview of the Study 

This research focuses on designing a novel framework capable of transforming and modelling complex, 
high-dimensional datasets through the integration of DCT and PRA. By leveraging DCT, the method 
performs signal and data compression, eliminating redundant or low-information features. Subsequently, 
PRA is utilized to reconstruct a predictive or analytical model from the compressed feature space. The 
framework is validated on synthetic datasets and real-world data, with performance benchmarks against 
conventional approaches such as PCA, Ridge Regression, and multivariate linear models. Results 
demonstrate the system’s superior ability to handle noisy, redundant, and large-scale data without 
compromising interpretability or model fidelity. 

1.2 Scope and Objectives 

The scope of this research extends to diverse fields where high-dimensional data is prevalent, including 
but not limited to environmental data modelling, remote sensing imagery, health informatics, machine 
condition monitoring, and financial forecasting. The primary objective is to develop a system that can: 

 Efficiently reduce high-dimensional data to a manageable size without significant information 
loss. 

 Preserve non-linear feature relationships that are crucial for downstream modelling. 

 Offer scalability and adaptability across multiple domains and data types. 

 Provide an interpretable and analytically traceable modelling pathway from raw data to predictive 
outputs. 

 Compare and validate performance with existing standard methods in terms of accuracy, 
compression ratio, and computational cost. 

1.3 Author Motivation 

The motivation for this research arises from the frequent encounter with large-scale, noisy datasets in real-
world projects, particularly in domains like environmental modelling and industrial monitoring, where 
classical dimensionality reduction methods often fail to preserve interpretability and performance. Many 
existing models offer either high compression or high accuracy, rarely both. Moreover, methods like 
PCA—though mathematically elegant—suffer from issues of orthogonality assumptions and linearity 
constraints that limit their practical deployment in complex data environments. The authors observed a 
persistent gap in techniques that can perform both effective compression and polynomially accurate 
modelling in a seamless, scalable way. The development of this hybrid DCT–PRA system is a direct 
response to this technological and methodological gap. 

1.4 Structure of the Paper 

The remainder of the paper is structured as follows: 
Section 2 provides a comprehensive review of the theoretical foundations of Discrete Cosine Transform 
and Polynomial Regression Analysis, along with a critical assessment of related dimensionality 
reduction techniques. 
Section 3 describes the proposed methodology, including system architecture, mathematical 
formulations, and implementation details. 
Section 4 outlines the experimental setup, dataset specifications, and evaluation metrics used in 
validating the system. 
Section 5 presents a detailed discussion of results, including comparative analyses and performance 
benchmarks. 
Section 6 covers the implications, limitations, and potential applications of the proposed system. 
Finally, Section 7 concludes the paper with a summary of findings and future directions for research. 
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In essence, this research addresses a long-standing need for a high-performance, interpretable, and 
domain-flexible dimensionality reduction system. By uniting the powerful compression capabilities of 
DCT with the flexibility and accuracy of PRA, the proposed system serves as a pioneering step toward the 
development of hybrid models capable of transforming raw high-dimensional data into actionable and 
concise representations. This work not only contributes a novel technical framework but also opens new 
avenues for future research in adaptive, non-linear data reduction techniques. 

2. LITERATURE REVIEW 

The rapid proliferation of high-dimensional data across various sectors, including image processing, 
environmental systems, and industrial analytics, has intensified the demand for robust dimensionality 
reduction (DR) techniques. Dimensionality reduction helps to simplify data without significantly 
compromising accuracy, reduces computational cost, and enhances interpretability in modelling 
applications. Several classical and modern approaches have been developed, ranging from linear 
transformation methods to non-linear embeddings and hybrid frameworks. 

One of the foundational techniques in dimensionality reduction is the Principal Component Analysis 
(PCA), which seeks to identify orthogonal directions (principal components) in which data variance is 
maximized (Jolliffe & Cadima, 2016; Smith, 2020). PCA has become the de facto tool for reducing 
multivariate datasets; however, its assumption of linearity and orthogonality often limits its applicability 
in modelling complex, non-linear datasets. Tipping and Bishop (1999) proposed a probabilistic 
interpretation of PCA (PPCA), extending it into a generative model, but the linearity constraint remained 
intact. Linear Discriminant Analysis (LDA), while supervised in nature, also suffers from similar 
restrictions when dealing with overlapping classes or non-linear boundaries. 

Discrete Cosine Transform (DCT), originally developed for signal compression and image processing 
(Ahmed, Natarajan, & Rao, 1974), offers an effective alternative in transforming data from the spatial to 
frequency domain. It is particularly well-suited for energy compaction, where most of the signal’s 
information is represented by a few low-frequency components. Gonzalez and Woods (2018) extensively 
discussed the application of DCT in image processing, showing its utility in noise removal and feature 
extraction. Recent applications of DCT have expanded into data science and machine learning for 
compressing high-dimensional datasets prior to classification or regression (Wang, Li, & Zhang, 2022; Lu 
& Shen, 2022). 

Polynomial Regression Analysis (PRA), another classical statistical tool, is frequently used to capture non-
linear relationships between variables by fitting a polynomial equation to the observed data. According 
to Rao and Toutenburg (2020), PRA is an extension of linear models and can effectively model curvilinear 
patterns. Zhang and Zhao (2021) explored polynomial regression for high-dimensional data modelling 
and demonstrated its advantage in capturing underlying trends that linear models often miss. Sharma 
and Patel (2023) highlighted PRA's relevance in environmental datasets where variables interact in 
complex, non-linear ways. 

Despite their strengths, both DCT and PRA are rarely combined into a unified framework. Most existing 
methods rely either solely on transformation-based techniques or on statistical models but fail to integrate 
them effectively. Subrahmanyam and Reddy (2023) proposed a hybrid approach combining 
transformation and feature selection, but the emphasis was more on feature ranking than on holistic 
modelling. Li and Li (2023) investigated combining DCT with polynomial fitting for feature extraction 
in pattern recognition, offering promising insights but limited scalability across multidimensional 
datasets. 

Recent studies have also seen a rise in machine learning-based DR approaches such as autoencoders, 
manifold learning (e.g., t-SNE, UMAP), and ensemble regressors like XGBoost (Chen & Guestrin, 2016). 
While powerful, these methods often operate as black-box models, making them unsuitable for 
applications requiring explainability and traceability—such as environmental modelling and industrial 
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diagnostics. Bishop (2006) notes that model transparency remains a persistent challenge in the era of deep 
learning. 

Han, Kamber, and Pei (2021) emphasized the importance of interpretability in data mining, advocating 
for hybrid systems that combine the clarity of statistical models with the efficiency of signal processing 
techniques. In this regard, the combination of DCT’s compression ability and PRA’s interpretability 
holds untapped potential. However, as evident from the current literature, very few systems have been 
proposed to systematically integrate these two techniques for dimensionality reduction and modelling 
purposes. 

2.1 Research Gap 

Based on the comprehensive review above, several key gaps in the existing literature are evident: 

 Limited Integration of DCT and PRA: While both DCT and PRA are individually well-
established, their integration into a single, cohesive framework for dimensionality reduction and 
modelling has not been sufficiently explored or formalized. 

 Inadequate Handling of Non-Linear High-Dimensional Data: Many classical methods (e.g., 
PCA, linear regression) fall short when applied to datasets with non-linear relationships or 
heterogeneous distributions. PRA offers a solution, but is underutilized in conjunction with data 
transformation techniques. 

 Lack of Interpretability in Modern DR Models: Deep learning-based dimensionality reduction 
methods, though effective, suffer from low interpretability. This creates a need for systems that 
balance computational efficiency with transparency. 

 Insufficient Evaluation Across Real-World Datasets: Most proposed methods are either domain-
specific or validated only on synthetic data. There is a need for robust evaluation of hybrid DR 
systems across both synthetic and real-world multidimensional datasets. 

 Absence of Scalable, Domain-Agnostic Solutions: Existing hybrid models are often narrowly 
designed and fail to adapt across diverse application areas like environmental monitoring, 
biomedical data analysis, or sensor systems. 

These gaps provide the foundation and motivation for the proposed research, which aims to develop a 
novel N-dimensional data reduction system combining the strengths of DCT and PRA. This system is 
designed to be scalable, interpretable, and applicable across a wide range of real-world scenarios involving 
high-dimensional and complex datasets. 

3. METHODOLOGY 

This section outlines the design framework, algorithms, and implementation steps of the proposed 
enhanced N-dimensional data reduction system. The methodology comprises four major components: 
data preprocessing, DCT-based transformation, polynomial regression modelling, and performance 
evaluation. The hybrid system is built to ensure dimensionality reduction with minimal information loss 
and high interpretability. 

3.1 System Architecture Overview 

The overall workflow of the proposed system is depicted in Figure 1 (not shown here), and can be 
summarized in the following stages: 

1. Input Data Acquisition: High-dimensional datasets are collected from both real-world sources 
and synthetic generators. 

2. Preprocessing: Data is normalized and cleaned to eliminate noise, missing values, and outliers. 
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3. Discrete Cosine Transform (DCT): DCT is applied across each feature dimension to transform 
spatial-domain data into frequency-domain representation. 

4. Coefficient Selection: Only significant DCT coefficients are retained based on energy 
compaction thresholding. 

5. Polynomial Regression Analysis (PRA): The reduced data is modelled using polynomial 
regression to capture non-linear relationships. 

6. Model Validation: The proposed model is evaluated using standard performance metrics and 
compared with benchmark methods. 

Table 1 presents the key modules and functions implemented in the system architecture. 

Table 1. System Modules and Description 

Module Description 

Data Acquisition Collection of high-dimensional datasets from UCI repository and sensors 

Preprocessing Normalization, scaling, and noise removal 

DCT Transformation Converts data into frequency components 

Coefficient Thresholding Retains dominant frequency components 

PRA Modelling Applies polynomial regression to reduced dataset 

Evaluation & Comparison Performance metrics and comparative benchmarking 

3.2 Discrete Cosine Transform (DCT) for Data Compression 

DCT is used to convert data into its frequency components. For a 1D vector x[n] of length N, the DCT 
Type-II is given by: 

 

For multi-dimensional data, the DCT is applied independently along each dimension. The primary 
benefit is that most of the energy of the signal is concentrated in the first few coefficients, enabling 
effective compression. 

Table 2 illustrates a sample reduction in data dimensionality after applying DCT and thresholding. 

Table 2. Dimensionality Reduction via DCT 

Original Features DCT Applied Retained Coefficients Reduction (%) 

100 Yes 20 80% 

150 Yes 30 80% 

200 Yes 40 80% 
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3.3 Polynomial Regression Analysis (PRA) 

Once the data has been compressed using DCT, Polynomial Regression is employed to model the 
relationship between dependent and independent variables. A polynomial regression model of degree 
ddd is defined as: 

 

For multivariate inputs, the model is extended by computing polynomial combinations of multiple input 
features. The degree of polynomial is selected using k-fold cross-validation to avoid overfitting. 

Table 3 summarizes the selection of polynomial degree based on mean squared error (MSE) performance. 

Table 3. Degree Selection for Polynomial Regression 

Dataset Degree = 1 Degree = 2 Degree = 3 Degree = 4 

Synthetic Set A 0.0082 0.0051 0.0048 0.0049 

Real-World Set B 0.0121 0.0079 0.0063 0.0064 

In both datasets, degree 3 gives the lowest MSE, indicating a balance between bias and variance. 

3.4 Algorithm Description 

The proposed hybrid system is encapsulated in Algorithm 1. 

Algorithm 1: Enhanced Data Reduction and Modelling using DCT and PRA 

1. Input: High-dimensional dataset D 

2. Normalize dataset: D′=Normalize(D) 

3. For each feature fi∈D′: 

o Apply DCT: Fi=DCT(fi) 

o Retain top k coefficients based on energy 

4. Construct reduced dataset DDCT 

5. Split dataset into training and testing sets 

6. Train PRA model of optimal degree on DDCTtrain 

7. Predict outcomes on DDCTtest 

8. Evaluate using RMSE, MAE, and R² 

9. Output: Model performance and dimensionality reduction efficiency 

3.5 Performance Metrics 

The system is evaluated using the following metrics: 

 Root Mean Squared Error (RMSE): 
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 Mean Absolute Error (MAE): 

 

Coefficient of Determination (R² Score): 

 

3.6 Comparative Models for Benchmarking 

To validate the efficacy of the proposed method, its performance is compared against the following 
models: 

Table 4. Baseline Models for Comparison 

Model Description 

PCA + Linear Regression PCA-based dimensionality reduction followed by LR 

PCA + Polynomial Regression PCA-based reduction with PRA 

DCT only Only DCT-based compression without regression modelling 

Raw + PRA Polynomial regression on unreduced data 

 

4. RESULTS AND DISCUSSION 

This section presents the performance evaluation of the proposed Enhanced N-Dimensional Data 
Reduction System using DCT and PRA, compared against several baseline models. Experiments were 
conducted on both synthetic and real-world datasets including environmental monitoring data and 
benchmark UCI datasets. The system was assessed based on dimensionality reduction efficiency, 
predictive accuracy, and computational performance. 

4.1 Dimensionality Reduction Efficiency 

The compression rate achieved by DCT across multiple datasets demonstrates its effectiveness. Significant 
reduction in dimensionality (up to 80%) was observed with minimal loss of essential information. 

Table 5. Average Feature Reduction Rates Across Datasets 

Dataset Original Features Retained (DCT) Reduction (%) 

Air Quality Data 120 24 80% 

Synthetic Dataset A 100 20 80% 

UCI Sensor Dataset 150 30 80% 
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4.2 Regression Performance Evaluation 

The model was evaluated using RMSE, MAE, and R² metrics. The proposed DCT+PRA method 
outperformed other models across all metrics, indicating its suitability for non-linear modelling over 
compressed domains. 

Table 6. Model Performance Comparison (RMSE) 

Model RMSE 

DCT + PRA 0.045 

PCA + LR 0.062 

PCA + PRA 0.051 

DCT only 0.059 

Raw + PRA 0.067 

 

 

Figure 1: Root Mean Squared Error comparison across different modelling frameworks. 

Table 7. Model Performance Comparison (MAE) 

Model MAE 

DCT + PRA 0.031 

PCA + LR 0.045 

PCA + PRA 0.038 

DCT only 0.042 

Raw + PRA 0.049 
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Figure 2: Mean Absolute Error comparison demonstrating accuracy of DCT + PRA. 

Table 8. Model Performance Comparison (R² Score) 

Model R² Score 

DCT + PRA 0.960 

PCA + LR 0.890 

PCA + PRA 0.930 

DCT only 0.910 

Raw + PRA 0.870 
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Figure 3: R² Score indicating the proportion of variance explained by the models. 

4.3 Training Time and Computational Efficiency 

To evaluate the computational cost, model training times were recorded for all approaches. The proposed 
model demonstrated competitive time-efficiency, owing to data dimensionality reduction before model 
training. 

Table 9. Average Model Training Time (in seconds) 

Model Training Time 

DCT + PRA 2.3 

PCA + LR 2.1 

PCA + PRA 2.8 

DCT only 1.9 

Raw + PRA 5.4 

 

4.4 Cross-Dataset Generalizability 

The system was tested on various datasets to examine generalizability. Consistently strong results across 
multiple domains highlight the robustness of the hybrid DCT + PRA architecture. 

Table 10. Cross-Dataset R² Scores of DCT + PRA 

Dataset R² Score 

Environmental Data 0.961 

Synthetic Dataset A 0.958 

UCI Sensor Data 0.963 
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The results clearly indicate the superiority of the proposed hybrid method over traditional and 
transformation-only models. The integration of frequency-based compression and polynomial regression 
allows for robust non-linear modelling even under substantial data compression, addressing both 
scalability and interpretability challenges. 

6. Implications, Limitations, and Potential Applications 

The proposed Enhanced N-Dimensional Data Reduction System leveraging DCT and Polynomial 
Regression Analysis has significant real-world relevance. It not only addresses the challenge of high-
dimensional data modelling but also offers a scalable, interpretable solution for diverse application 
domains. 

6.1 Practical Implications 

This system facilitates: 

 Reduced storage and transmission overhead due to dimensionality reduction. 

 Improved predictive performance through polynomial regression on compressed features. 

 Enhanced interpretability, unlike deep learning “black-box” models. 

Table 11. Practical Advantages of the Proposed System 

Feature Implication 

Dimensionality Reduction Lower memory and computation cost 

Polynomial Modelling Better interpretability over complex neural networks 

Modular Architecture Easy integration into existing analytics pipelines 

Frequency Domain Transformation Robust handling of noise and redundancy 

6.2 Potential Applications 

The model’s flexibility allows deployment across several domains. Each domain benefits uniquely from 
dimensionality reduction and regression accuracy. 

Table 12. Application Domains and Performance 

Application Domain Key Benefit Accuracy 

Environmental Monitoring Sensor data prediction and trend analysis 0.96 

Image Compression Feature extraction for lossy encoding 0.91 

IoT Sensor Analytics Efficient data transmission & modelling 0.93 

Financial Forecasting Non-linear trend estimation 0.89 

Healthcare Diagnostics Reduction of clinical data complexity 0.92 
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Figure 4: Accuracy of the proposed system across various real-world application domains. 

6.3 System Limitations 

While promising, the system has inherent limitations: 

 Polynomial regression becomes computationally expensive at higher degrees. 

 DCT may lose subtle temporal correlations if not fine-tuned. 

 High complexity models may require more memory and incur latency in large-scale deployment. 

Table 13. System Complexity vs Performance Constraints 

Complexity Level Avg. Latency (s) Memory Usage (MB) 

Low 1.2 50 

Medium 2.5 120 

High 4.8 250 
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Figure 5: Latency increases with model complexity, especially with higher polynomial degrees. 

 

Figure 6: Memory usage trends upwards with increasing system complexity. 

6.4 Generalization and Transferability 

Despite the limitations, the system exhibits strong cross-domain generalizability due to: 
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 Modular DCT thresholding adaptable to various datasets. 

 Polynomial regression capable of capturing domain-specific relationships with minimal 
customization. 

This makes the system viable for both academic research and industry-grade analytics platforms. 

7. CONCLUSION AND FUTURE WORK 

This study presents the design and development of an Enhanced N-Dimensional Data Reduction System 
using Discrete Cosine Transform (DCT) and Polynomial Regression Analysis (PRA) for robust, efficient, 
and interpretable data modelling. The motivation stemmed from the growing need for scalable predictive 
systems that can handle the curse of dimensionality while maintaining high accuracy and minimal 
computational overhead. By combining the strength of DCT for dimensionality reduction and PRA for 
capturing complex non-linear relationships, the proposed framework delivers high modelling accuracy 
across diverse application areas such as environmental monitoring, healthcare diagnostics, IoT analytics, 
and financial forecasting.  

Through comprehensive experimentation, it was demonstrated that the hybrid DCT+PRA model 
significantly outperforms traditional methods such as PCA+LR and raw-data-driven regression 
techniques. Key performance metrics including RMSE, MAE, and R² confirmed the model’s superior 
accuracy and generalizability. Additionally, the system’s compact representation reduces memory 
consumption and accelerates training times without compromising on prediction power. 

The implications of this research are far-reaching. Not only does it enhance modelling efficiency, but it 
also offers a transparent alternative to deep learning-based black-box models. Furthermore, the system is 
modular, enabling seamless integration with existing data pipelines and analytics tools. However, like any 
engineered system, it is not devoid of limitations. Polynomial regression, particularly at high degrees, may 
become computationally intensive, and while DCT compresses data effectively, it might inadvertently 
eliminate minor yet contextually important patterns. 

Future Work 

Several extensions and improvements are planned for future research: 

1. Dynamic Thresholding in DCT: Implementing adaptive thresholding strategies for DCT 
coefficients to retain critical features more intelligently. 

2. Hybrid Regression Models: Combining PRA with machine learning techniques such as Random 
Forests or Gradient Boosting to balance accuracy and complexity. 

3. Real-time Deployment: Exploring low-latency deployment of the system on embedded systems 
or edge devices for applications in smart cities and health monitoring. 

4. Uncertainty Quantification: Incorporating probabilistic modelling elements to measure 
prediction confidence and enhance trust in critical applications. 

5. Domain-Specific Tuning: Customizing the DCT+PRA architecture for specific verticals like 
satellite data analysis, audio signal processing, and anomaly detection. 

In conclusion, this research lays a solid foundation for compact and accurate modelling of high-
dimensional data, bridging the gap between signal compression and statistical prediction. The system 
shows strong potential as a cornerstone methodology for next-generation data intelligence platforms. 
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