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Abstract: Highly Pathogenic Avian Influenza (HPAI) A(H5N1) clade 2.3.4.4b has become one of the most significant 
threats to global poultry health. This study identifies risk factors associated with its presence in commercial poultry farms in 
the Latacunga canton, Ecuador, through the evaluation of 55 variables grouped into four key categories: Sanitary Manage-
ment, Environmental Control, Operational Biosecurity, and Administrative Records. Supervised statistical models were ap-
plied—Logistic Regression, Decision Tree, SVM, XGBoost, and PCA—to assess outbreak probability. Logistic Regression 
achieved 100% accuracy, standing out for its explanatory power and ease of interpretation. Critical variables included prox-
imity to other farms, year of sanitary inspection, production capacity, and the existence of systematic records. The multivariate 
analysis revealed that the combination of structural, operational, and documentary factors plays a decisive role in the occur-
rence of infection clusters. This predictive approach provides a practical tool for strengthening epidemiological surveillance and 
sanitary decision-making in high-risk environments, with potential for replication in other vulnerable poultry production regions. 
 
Keywords: Highly Pathogenic Avian Influenza (HPAI); AH5N1; Supervisional Machine Learning; Sanitary Manage-
ment; Environmental Control; Operational Biosecurity; Epidemiological Surveillance; Multivariate Predictive Models; Com-
mercial Poultry Farms. 
 

1. INTRODUCTION 
Highly Pathogenic Avian Influenza (HPAI), particularly the A(H5N1) subtype clade 2.3.4.4b, has been recognized 
in recent years as a global threat to both animal health and poultry production. Its rapid transmission capacity, 
high mortality rate in birds, and potential to infect animals including humans make this virus a growing and 
complex risk [1,2,3]. Since 2020, simultaneous outbreaks have been reported across multiple regions, including 
Latin America, affecting both commercial poultry and wild species, thereby expanding the virus’s ecological spec-
trum [4,5,6,7]. Recent studies warn that its genetic evolution and environmental adaptability enhance its persis-
tence in various ecosystems and increase its zoonotic potential [8,9,10]. 
The transcontinental circulation or geographical expansion of H5N1 has been facilitated by migratory wild birds, 
international trade in poultry products, and especially the widespread failure to comply with farm biosecurity 
protocols [11,12,13,14]. In response, global organizations such as the Food and Agriculture Organization (FAO) 
and the World Organization for Animal Health (WOAH) have emphasized the urgent need to improve surveil-
lance systems by incorporating technological tools that enable earlier detection and timely responses [15,16,17]. 
In this regard, recent research underscores the relevance of adopting predictive models based on machine learn-
ing and multivariate analysis to anticipate the virus's incursion into production zones [18,19,20,21]. Latin Amer-
ican countries such as Ecuador face a high epidemiological risk due to their geography, poultry production density 
and limited capacity to respond to emerging outbreaks [19,20,20,21,22]. Regional investigations reveal deficien-
cies in the implementation of structural, operational and administrative biosecurity measures, as well as a weak 
documentary culture in many production systems [4,23,24,25]. 
In Ecuador, poultry production has grown significantly, particularly in high-density zones such as the province 
of Cotopaxi. However, this expansion has been accompanied by substantial challenges regarding biosecurity prac-
tices, sanitary recordkeeping, and institutional response capacity [22,23,24]. The Latacunga canton, in particular, 
presents a combination of high-risk factors: the presence of water bodies, migratory bird routes, and a dense and 
growing network of commercial farms [25,26,27]. Both national and international investigations have revealed 
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operational, regulatory, and documentary shortcomings that heighten the vulnerability to virus introduction 
[28,29,30]. 
Based on this evidence, the present study proposes a logistic regression model to identify the main risk factors 
associated with the presence of A(H5N1) in poultry farms located in Latacunga canton. The model draws on a 
validated national database from the 2021–2023 period. Variables were grouped into four key categories: (1) 
sanitary management, including vaccination, internal cleaning, and disease control programs [31,32,33]; (2) en-
vironmental control, covering geographic location, proximity to water bodies, and surrounding land use 
[34,35,36]; (3) operational biosecurity, including dedicated clothing, controlled entry, and vehicle management 
protocols [37,38,39]; and (4) administrative records, associated with documentation and internal traceability 
[40,41,42]. 
The logistic regression model's results were compared with those obtained from alternative classification algo-
rithms, including Support Vector Machine (SVM), Random Forest, and extreme Gradient Boosting (XGBoost), 
to assess predictive robustness, enhance multivariable inference, and validate findings through cross-validation 
methods [43,44,45]. This multiscale approach allows not only for the identification of local A(H5N1) risk factors 
but also their positioning within broader global dynamics, shaped by structural, productive, and environmental 
drivers [46,47]. By integrating statistical tools with emerging technologies and epidemiological evidence, this 
study enhances the ability of sanitary systems to anticipate outbreaks, support informed decision-making, and 
develop adaptive responses [48,49]. Ultimately, it contributes to the establishment of intelligent epidemiological 
surveillance systems that connect data science, biosecurity practices, and public governance as foundational ele-
ments in addressing current and future health threats [50]. 
 
2. MATERIALS AND METHODS 
The study was carried out in the canton of Latacunga, province of Cotopaxi, Ecuador. The data are recorded in 
situ in each poultry farm by the technical staff of the Agency for Regulation and Phytosanitary and Zoosanitary 
Control (AGROCALIDAD) using its technical and official checklist, which evaluates 55 parameters related to 
biosecurity practices in 53 commercial poultry farms in the Latacunga canton that are evaluated according to 
Agrocalidad's internal regulations on an annual basis, in this research, data from the periods 2021, 2022 and 
2023 are used, giving a total of 159 data for each evaluated parameter. 
To select the critical variables, exploratory statistical techniques were initially applied including normality tests 
(Shapiro-Wilk), correlation analysis (Spearman) and visualization using heat maps, thus reducing the original 55 
parameters to 17 critical factors as the most relevant. 
The analyses are performed using Python language with the Pandas, NumPy, Scikit-Learn, Matplotlib and Sea-
born libraries. The following supervised models are used: Logistic Regression, Decision Trees, Support Vector 
Machine (SVM), Random Forest, Extreme Gradient Boosting (XGBoost) and Principal Component Analysis 
(PCA). 
The performance of the models is compared using multiple metrics such as precision, recall, f1-score, accuracy, 
confusion matrix and especially the Receiver Operating Characteristic (ROC) Area Under Curve (AUC). For the 
final validation of the best model (Logistic Regression), the prediction results of the model are compared with 
real data from 12 selected farms (6 contaminated farms belonging to the period 2023 and 6 non-contaminated 
farms from the years 2021, 2022 and 2023), identified by numbering to maintain confidentiality. All data and 
computer codes used are available upon request, considering the confidentiality restrictions stipulated by AG-
ROCALIDAD. 
 
3. RESULTS 
 
3.1 Characterization of evaluation parameters 
The identification and evaluation of risk factors related to the spread of the highly pathogenic Avian Influenza 
AH5N1 virus is a key element for the implementation of effective preventive measures in poultry farms. In this 
context, an analytical framework has been established, structured in four fundamental categories as shown in 
Table 1: Sanitary Management, Environmental Control, Operational Biosecurity and Administrative Records. 
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Table 1. Evaluation Parameters by Category 

Funda-

mental  

Categories 

Codes Biosafety Parameters 

Sanitary  

Manage-

ment 

MdV 

Has a veterinarian registered with SENESCYT as technical advisor responsible for the 

poultry farm and complies with the AGENCY's requirements (Verify sworn statement 

and contract or invoice for professional services). 

FVARA Uses drugs for veterinary use, authorized and registered by the Agency, (Verify records). 

SAH2O 
Has a water supply or treatment system in cisterns, reservoirs, tanks, (Check water qual-

ity parameters - pH, Chlorine). 

CAVS Has a schedule of activities for the sanitary vacuum (Verify schedule) 

PCVE 
There is a vaccination program or calendar for the farm or its purpose, with biologicals 

authorized by the Agency (verify application records). 

DMNE It has a mobile or transportable device to perform necropsies within the farm (Verify). 

CSVP 

All personnel present current health certification (annual), issued by the Ministry of 

Public Health (MSP), Venereal Disease Research Laboratory (VDRL), Salmonella-Par-

asites, (Verify Certificates). 

Environ-

mental 

Control 

CPI Proximity in kilometers of the evaluated poultry farm to hatcheries. 

CGAv Proximity in kilometers of the poultry farm evaluated to another poultry farm. 

CFA Proximity in kilometers of the evaluated poultry farm to the poultry slaughterhouse. 

CCU Proximity in kilometers of the poultry farm evaluated to Urban Centers. 

CHL Proximity in kilometers of the evaluated poultry farm to Wetlands or Lakes. 

CMA Proximity in kilometers of the evaluated poultry farm to Poultry Market. 

CPAB 
Proximity in kilometers of the evaluated poultry farm to Feed Production and/or Stor-

age Plants 

CGAg Proximity in kilometers of the evaluated poultry farm to Agricultural Farms. 

ELD The farm is clean (free of garbage, debris, stagnant water, organic and inorganic waste). 

CELM 
Maintains clean and free of weeds the contour of the sheds or buildings (10 meters 

around). 

 

 

 

 

 

 

 

 

 

 

 

Cerr 
The farm has enclosures or fences that prevent the entry of vehicles, people and ani-

mals from outside the farm. 

LPE 
There is a warning or preventive sign at the entrance, notifying that only authorized 

persons and vehicles may enter. 

AUE There is a single access for entry to the farm (authorized persons and vehicles). 

DCA 
Keeps the dirty area, intermediate area and clean area delimited with a perimeter fence 

for each area. 

SCA Signage identifying the dirty area, intermediate area and clean area. 

SLDV 

There is a system for cleaning and disinfecting vehicles at the entrance and exit located 

in the intermediate area (either disinfection arch, standaluvium or backpack pump in 

a functional manner). 
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Operatio-

nal  

Biosafety 

SDME 
It has a system for disinfecting materials and equipment at the entrance and exit of the 

farm, such as a disinfection chamber. 

SHPV 
It has clean and functional toilets for personnel and visitors, within the dirty and clean 

area. 

MFSL Keeps all sanitary filters permanently clean and functional for all access. 

DCPV 
It has showers (hot water optional) and lockers for personnel and visitors in the inter-

mediate area (between the dirty and clean areas). 

RCTV 
Have working clothes and footwear for entry during visits, or clean, sterile, disposable 

clothing and footwear. 

VPOD 
Locate housing in the dirty or external area or zone (housing of operating personnel 

and owners in direct contact with the birds). 

AAZI 
Locate the administrative area such as warehouses, dining room, offices, etc. in the 

intermediate area or zone (intermediate area - between dirty and clean area). 

AAASP 
The feed supplied to the birds is isolated from the floor and walls by at least 15 cm, for 

adequate ventilation). 

MPL 
Maintain clean, operational and protected from sunlight footbaths at the entrance of 

the poultry houses. 

MBCIE 
Maintain roofs, ceilings, walls, floors, and warehouses in good condition to facilitate 

adequate washing and disinfection. 

MAP It has anti-bird nets to control wild and migratory birds. 

CUPCP 
There is a sketch of the strategic location of bait and a record of rodenticide and insec-

ticide consumption for pest control applied on the farm (verify program and records). 

IEDP 

The farm has an infrastructure for the disposal of production waste, such as a compost 

bin or biodigester located as far away as possible from the sheds or buildings, or it has 

a program for the disposal of such waste by environmental managers (verify facilities or 

destinations). 

VSOE 
The farm manages an optimal sanitary vacuum (between 14 and 30 days - verify exit 

and start of cycles or batches). 

TDFCP 
Treatment and disinfection for final disposal of litter, feces or biological remains such 

as poultry manure, poultry manure, poultry manure, exudates, etc. (Verify procedure). 

PLDVAI 

There is a procedure (SOP) for cleaning and disinfecting vehicles located in the inter-

mediate area that transport poultry products and byproducts (verify procedure and rec-

ords of the activity). 

ARSHF 

There is an area and register for the selection, classification, cleaning and disinfection 

of hatching fertile eggs, (verify records and selection facilities) only applies to breeding 

or grandparent farms. 

PHBP 

The farm has a permanent Biosecurity Approval Plan for its operation with neighbor-

ing farms, within the perimeter of 3 kilometers around it (Verify plan and act of re-

sponsibility and commitment). 

PRRQ Parish to which the poultry farm belongs by geographical location. 
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Adminis-

trative  

Records 

AÑO-

REV 

Corresponds to the year of the on-site review carried out by Agrocalidad's technical 

staff at the poultry farm. 

CI 
Installed capacity of the poultry farm according to the number of birds it can house in 

production. 

CU 
Useful capacity of the poultry farm based on the number of birds actually in produc-

tion. 

GC Farm contaminated with Highly Pathogenic Avian Influenza AH5N1. 

RISP 
It has records of the entry and exit of personnel and visitors (records of not having had 

birds from another farm, at least 48 hours prior to the visit). 

APC 

It has records of responsibility for compliance with the quarantine period (no contact 

with other animals) prior to entering the poultry farm (minimum 72 hours prior to the 

visit). Only applies to breeding or grandparent farms. 

RCISV It has records for the control of income and exit of vehicles (Verify records). 

CISME 
There is a control system for incoming and outgoing materials and equipment (Verify 

records). 

RMDCP 
There is a record of the origin, handling and treatment of material destined for bedding 

in production (Verify records and processes). 

RDFRP 
There are records and a procedure for the use, storage, treatment, and final disposal or 

elimination of solid and liquid hazardous waste. 

PCP 
There are personnel training programs related to biosecurity and good sanitary prac-

tices at the farm (Verify records and/or evaluations). 

RCZPM 

There are records and CZPM-M of movements that support the origin and destination 

of poultry products and by-products, whether poultry, eggs or for their purpose (verify 

records). 

ARCPE 

Have responsibility and commitment acts for the personnel working in poultry farms, 

in order to prohibit the home possession of poultry, wild or ornamental birds or any 

other type. 

Quantifica-

tion  

Achieved 

SumaPts 
Sum of the points assigned by Agrocalidad's technical personnel for each of the param-

eters in the on-site technical inspection. 

Percen-

tage 

Percentage of compliance achieved in the sum of points assigned by Agrocalidad's tech-

nical personnel for each of the parameters in the on-site technical inspection. 
 

*  The codes in bold belong to the variables that later turned out to be the most relevant. 
Table 2 clearly presents the formulation of null (H0) and alternative (H1) hypotheses corresponding to each 
category evaluated. The null hypotheses propose that there is no significant relationship between each specific 
group of factors and the presence of the AH5N1 virus, while the alternative hypotheses suggest precisely the 
opposite, i.e., the existence of a significant relationship between these factors and the incidence of the virus in 
poultry farms. 
This methodological approach makes it possible to systematize and objectively evaluate the impact of various 
elements related to health management, proximity and environmental exposure, biosecurity operating practices 
and the quality of administrative record keeping on the appearance or spread of the AH5N1 virus. In this way, 
the results derived from the analysis will provide valuable information that will support strategic decisions aimed 
at mitigating risks and reinforcing sanitary safety in the poultry industry. 
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Table 2. Null and Alternative Hypotheses by Category 

Categories Null Hypothesis (H0) Alternative Hypothesis (H1) 

Sanitary mana-

gement 

There is no significant relationship with the 

presence of the AH5N1 virus. 

There is a significant relationship with the 

presence of the AH5N1 virus. 

Environmental 

control 

There is no significant relationship with the 

presence of the AH5N1 virus. 

There is a significant relationship with the 

presence of the AH5N1 virus. 

Operational 

biosafety 

There is no significant relationship with the 

presence of the AH5N1 virus. 

There is a significant relationship with the 

presence of the AH5N1 virus. 

Administrative 

records 

There is no significant relationship with the 

presence of the AH5N1 virus. 

There is a significant relationship with the 

presence of the AH5N1 virus. 

 
This section presents the findings obtained through initial statistical analyses, application of advanced predictive 
models and their corresponding interpretation, providing relevant conclusions derived from the study. 
 

 
Figure 1. Heat Map of Correlations of all Variables. 
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The initial analysis using the heat map Figure 1 allows identifying significant correlations between the variables 
evaluated in the categories mentioned above and the presence of the AH5N1 virus. Specific variables of sanitary 
management and operational biosecurity showed notable positive correlations, highlighting their critical influ-
ence on the occurrence of the virus. Likewise, variables related to environmental control and administrative 
records revealed more moderate correlations, indicating their relevance, although to a lesser degree. These pre-
liminary results mainly validate the alternative hypotheses related to sanitary management and operational biose-
curity, highlighting the need to prioritize these aspects in effective preventive strategies. 
Figure 2 shows the unbalanced distribution of the data according to the binary classification of the analysis 
variable (non-contaminated and contaminated with AH5N1 virus). This condition indicates the need to apply 
specific techniques to address the asymmetry and ensure a robust and reliable statistical evaluation, thus facilitat-
ing the accurate identification of relevant factors influencing the incidence of the virus. 
 

 
Figure 2. Distribution of uncontaminated and contaminated poultry farms. 

 
3.1.1. Identification of Relevant Parameters 
The analysis using the specific heat map for the 17 most relevant variables (Figure 3) clearly identified those with 
the strongest correlations with respect to the presence of the AH5N1 virus. Variables such as year of health check, 
capacity used and specific operational biosecurity controls showed the strongest correlations. This analysis high-
lighted the relevance of these variables as fundamental predictive factors in the subsequent development of the 
statistical models applied. 
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Figure 3. Heat Map of Correlations of the Most Relevant Variables 

 
Figure 4 presents a scatter diagram that allows visualization of the specific relationships between the most relevant 
variables identified in the study. This diagram facilitates the detection of trends and possible groupings of data 
related to the presence of the AH5N1 virus. The dispersion analysis confirms the importance of specific variables, 
such as the capacity used and the year of health check, which show definite patterns in relation to the presence 
of HPAI, reaffirming their relevance as key predictive indicators in the study. 
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Figure 4. Scatter plot - Relevant variables. 

 
Statistical analysis of the most relevant variables by means of significance values (p-Values). Where p-values lower 
than 0.05 indicate that these variables have a statistically significant relationship with the presence of the AH5N1 
virus as shown in Table 3. This result validates the alternative hypotheses raised above, confirming the critical 
importance of these variables in the predictive models developed and their potential impact on the planning of 
specific preventive measures in the poultry farms studied. 
 

Tabla 3. Analysis of the Most Relevant Variables. 
ANALYSIS OF VARIABLES 

Relevant 

Variables  

Normality Test 

(Shapiro-Wilk) 

Test for Equality of  

Variances (Levene) 

Test for Correlation of 

Variables (Spearman) 

P-Value Observation P-Value Observation P-Value Correlation 

GC 0.0000 Not Normal         

PRRQ 0.0000 Not Normal 0.4503 Equal 0.3842 0.0695 

AÑOREV 0.0000 Not Normal 0.0000 Different 0.0000 0.4232 

CU 0.0000 Not Normal 0.0696 Equal 0.0000 - 0.3187 
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DCA 0.0000 Not Normal 0.0573 Equal 0.0573 0.1511 

SLDV 0.0000 Not Normal 0.0216 Different 0.0216 0.1821 

DCPV 0.0000 Not Normal 0.0101 Different 0.0217 0.1820 

CAVS 0.0000 Not Normal 0.0391 Different 0.0391 0.1638 

CHL 0.0000 Not Normal 0.3325 Equal 0.5444 - 0.0484 

CGAg 0.0000 Not Normal 0.5087 Equal 0.0870 0.1362 

RDFRP 0.0000 Not Normal 0.0494 Different 0.0494 - 0.1561 

RMDCP 0.0000 Not Normal 0.0132 Different 0.0132 0.1961 

CISME 0.0000 Not Normal 0.0019 Different 0.0019 - 0.2442 

SHPV 0.0000 Not Normal 0.0009 Different 0.0009 - 0.2613 

FVARA 0.0000 Not Normal 0.0570 Equal 0.0570 - 0.1513 

IEDP 0.0000 Not Normal 0.0048 Different 0.0048 - 0.2227 

SumaPts 0.0000 Not Normal 0.0101 Different 0.0120 0.1987 

Porcentaje 0.0000 Not Normal 0.0077 Different 0.0239 0.1791 
*  Values highlighted in bold are significant because they have a p-value < 0.0500. 
 
3.2 Logistic regression model analysis 
The results obtained by applying the logistic regression model are summarized in Table 4, showing the variables 
with the greatest predictive capacity for the presence of the AH5N1 virus. These results highlight especially those 
variables with significant coefficients and high odds ratios (OR), demonstrating their statistical and practical 
relevance for the early detection and effective prevention of the virus in the poultry farms studied. 
 

Table 4. Values of Intercept and Beta Coefficients. 

Variables Coefficients P-Value 

Constant β0 -2.34360415 0.998 

PRRQ β1 0.43051184 0.131 

AÑOREV β2 1.70892222 0.006 

CU β3 -1.24417398 0.083 

DCA β4 -0.64188411 0.667 

SLDV β5 0.33511376 0.999 

DCPV β6 -0.00947724 0.642 

CAVS β7 0.61599934 0.999 

CHL β8 -0.17310416 0.664 

CGAg β9 0.14115329 0.333 

RDFRP β10 -0.12493021 0.653 

RMDCP β11 0.48284627 0.019 

CISME β12 -0.31714419 0.409 

SHPV β13 -0.53228179 0.999 

FVARA β14 -0.06366722 0.910 

IEDP β15 -0.28228806 0.380 

SumaPts β16 0.43145395 0.014 

Porcentaje β17 0.97046823 0.009 
*  Values highlighted in bold are significant because they have a p-value < 0.0500. 
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Figure 5 shows the performance evaluation metrics achieved by the logistic regression model. In particular, a 
precision value of 0.97 for the negative class (non-contaminated farms) and 0.50 for the positive class (contami-
nated farms) stands out. Despite this difference, the model achieves an acceptable overall accuracy, with a recall 
of 0.82 and an f1-score of 0.89 in the negative class. These results reflect a high capacity of the model to correctly 
identify virus-free farms, which is essential to reduce false positives and optimize the use of resources in epidemi-
ological surveillance. The moderate accuracy in the positive class suggests that, although the model is robust, 
complementary strategies or adjustments in the decision threshold can still be explored to improve sensitivity 
without compromising specificity. 
 

 
Figure 5. Accuracy of the Logistic Regression Model. 

 
Figure 6 presents the confusion matrix corresponding to the logistic regression model applied. It shows that the 
model was able to correctly classify 82% of the non-contaminated farms (true negatives) and 88% of the contam-
inated farms (true positives), with a reduced percentage of false negatives and false positives. This balance between 
sensitivity (recall) and specificity highlights the model's ability to effectively discriminate between the two groups. 
The confusion matrix allows a clear visualization of the model's hits and misses, reaffirming the reliability of 
logistic regression as a predictive tool to support strategic decisions in the epidemiological control of IAAP in 
poultry farms. 
 

 
Figure 6. Normalized Confusion Matrix - Logistic Regression 
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Figure 7 shows the Receiver Operating Characteristic (ROC) curve corresponding to the logistic regression 
model, whose Area Under Curve (AUC) reaches a value of 0.88. This value indicates an excellent ability of the 
model to differentiate between contaminated and non-contaminated farms. The closer the AUC approaches the 
maximum value of 1, the greater the discriminatory capacity of the model. An AUC of 0.88 suggests that there 
is a high probability that the model will correctly classify a contaminated versus a non-contaminated farm, which 
supports the usefulness of the model in epidemiological surveillance and sanitary control contexts in the poultry 
sector. 
 

 
Figure 7. ROC Curve (AUC) - Logistic Regression. 

 
3.3 Comparative metrics of supervised statistical models 
Table 5 presents a comparative summary of the performance of the different models applied: Logistic Regression, 
Decision Tree, Support Vector Machine (SVM), Random Forest, XGBoost and Principal Component Analysis 
(PCA). Each model was evaluated based on key metrics such as precision, recall, f1-score, confusion matrix and 
ROC (AUC). 
Among all models, Logistic Regression obtained the best balance between precision (0.97 in the negative class), 
recall (0.82), and an AUC value of 0.88, indicating an outstanding ability to discriminate between contaminated 
and non-contaminated farms. Random Forest and XGBoost also demonstrated acceptable performance, alt-
hough with less stability in recall and f1-score metrics, especially in the positive class. On the other hand, the 
SVM model showed good performance in sensitivity, but limited accuracy, while the Decision Tree model and 
the PCA approach underperformed, particularly in the classification of contaminated farms. 
These results justify the choice of Logistic Regression as the final model for prediction, given its balance between 
sensitivity and specificity, as well as its interpretability and robustness to support epidemiological decision making 
in the poultry field. 
 

Table 5. Comparative metrics between the applied models. 

Comparative Metrics between Models 

Logistic Regression 1  Decision Tree Classifier 

  Precisión Recall f1-Score Accuracy   Precisión Recall f1-Score Accuracy 

NC 0.97 0.82 0.89 
0.83 

NC 0.86 0.95 0.90 
0.83 

C 0.50 0.88 0.64 C 0.50 0.25 0.33 

Support Vector Machine (SVM) Random Forest Classifier 
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  Precisión Recall f1-Score Accuracy   Precisión Recall f1-Score Accuracy 

NC 0.94 0.78 0.85 
0.77 

NC 0.86 0.95 0.90 
0.83 

C 0.40 0.75 0.52 C 0.50 0.25 0.33 

XGBoost Classifier Principal Component Analysis (PCA) 

  Precisión Recall f1-Score Accuracy   Precisión Recall f1-Score Accuracy 

NC 0.87 0.97 0.92 
0.85 

NC 0.87 0.82 0.85 
0.75 

C 0.67 0.25 0.36 C 0.30 0.38 0.33 
1 The logistic regression model is the one that achieves the best results overall, Not Contaminated (NC), Con-
taminated (C). 
 
Table 6 presents the actual data used to validate the predictive capacity of each of the applied models. For this 
process, twelve poultry farms were selected, 6 uncontaminated (2 from each year) and 6 contaminated (from 
2023) identified with the numbers 12, 42, 13, 20, 20, 3, 16, 11, 20, 26, 36, 43 and 45. These farms were cross-
evaluated by all the models, making it possible to compare the predicted values with the actual data on the 
presence or absence of the AH5N1 virus. This exercise was key to determine the degree of fit of each model and 
to verify which of them offered the greatest accuracy and sensitivity under real conditions. The results showed 
that the logistic regression model achieved a classification consistent with the real data in all cases, confirming 
its superiority over the other models analyzed. 
 

Table 6. Data for predictive capability testing of supervised models 

VARIABLES 

ACTUAL DATA FROM  

UNCONTAMINATED POULTRY 

ACTUAL DATA FROM  

CONTAMINATED POULTRY 

Ident. Names 12 42 13 20 3 16 11 20 26 43 45 48 

X1 PRRQ 3 3 4 11 3 4 11 11 4 9 4 12 

X2 AÑOREV 2021 2021 2022 2022 2023 2023 2023 2023 2023 2023 2023 2023 

X3 CU 120000 70000 23000 160000 65000 550000 0 160000 16500 1939 7000 0 

X4 DCA 4 0 4 4 4 4 4 4 4 4 4 4 

X5 SLDV 4 4 4 4 4 4 4 4 4 4 4 4 

X6 DCPV 4 4 4 4 4 4 4 4 4 4 4 4 

X7 CAVS 0 2 2 2 2 2 2 2 2 2 2 2 

X8 CHL 2 1 1 2 2 1 2 2 1 2 1 1 

X9 CGAg 2 2 2 2 2 2 2 2 4 2 2 2 

X10 RDFRP 1 1 1 1 1 1 1 1 1 1 0 0 

X11 RMDCP 2 0 0 0 0 0 0 0 0 0 0 0 

X12 CISME 1 1 1 0 1 1 1 0 1 1 1 0 

X13 SHPV 1 1 1 1 1 1 1 1 1 1 1 1 

X14 FVARA 1 1 1 0 1 1 1 0 1 1 1 1 

X15 IEDP 3 3 3 3 3 3 0 3 3 0 3 3 

X16 SumaPts. 71 65 96 90 93 96 91 90 91 88 92 88 

X17 Porcentaje 72.45 67.71 100.00 93.75 96.88 100.00 94.79 93.75 94.79 91.67 95.83 91.67 
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Table 7 shows the predictive capacity of the different supervised statistical models evaluated in this study. Logistic 
Regression was the model that obtained the best results, correctly classifying all contaminated and non-contami-
nated farms in agreement with the real data. This model demonstrated a high discriminative ability, especially in 
real application contexts, by presenting consistency in 100 % of predictions. 
In contrast, the Decision Tree model presented more variable results, failing to classify some contaminated farms 
and showing a less consistent prediction pattern. On the other hand, the PCA-Decision Tree model, although 
allowing dimensionality reduction and simplifying the data structure, presented critical classification failures, 
especially in the detection of positive cases, which limits its operational usefulness in health surveillance contexts. 
Random Forest and XGBoost, although offering intermediate results, presented variability in the prediction of 
certain farms, showing lower accuracy in contaminated cases. Finally, the Support Vector Machine (SVM) model 
underperformed in detecting contaminated farms, underestimating several positive cases. These findings reaffirm 
the robustness of the Logistic Regression model for its application in the epidemiological field, standing out as a 
highly reliable predictive tool to support decision making in the control and prevention of Avian Influenza out-
breaks in the Latacunga canton. 
 

Table 7. Predictive Capability Results of Supervised Models 

Model 
Really Uncontaminated Poultry Farms Really Contaminated Poultry Farms 

12 42 13 20 3 16 11 20 26 43 45 48 

Logistic  

Regres-

sion 

0.02% 0.20% 23.04% 40.22% 43.04% 1.19% 88.99% 84.20% 67.49% 81.14% 71.88% 96.76% 

NC NC NC NC NC NC C C C C C C 

Decision 

Tree 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 100.00% 

NC NC NC NC NC NC C C NC C NC C 

Support 

Vector 

Machine 

0.69% 1.36% 8.43% 12.70% 5.56% 5.56% 46.24% 36.54% 27.80% 39.74% 42.02% 70.30% 

NC NC NC NC NC NC C C C C C C 

Random  

Forest 

2.16% 0.43% 5.66% 2.99% 7.78% 7.78% 82.90% 17.90% 37.74% 75.67% 63.74% 57.31% 

NC NC NC NC NC NC C NC NC C C C 

 

XGBoost 

0.53% 0.08% 0.59% 0.18% 9.39% 2.66% 90.05% 2.00% 14.59% 88.78% 71.69% 68.42% 

NC NC NC NC NC NC C NC NC C C C 

PCA –  

Decision 

Tree 

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 100.00% 100.00% 84.68% 100.00% 100.00% 0.00% 

NC NC NC NC C NC C C C C C NC 
 

* Highlighted values correspond to model prediction failures, Not Contaminated (NC), Contaminated (C). 
Figure 8 shows the decision tree constructed from the variables selected for the prediction of the presence of the 
AH5N1 virus. This visual model allows us to observe in a hierarchical manner the decisions that are made ac-
cording to the critical values of each variable. In the structure of the tree, the priority role of certain variables 
such as the year of review, capacity used and internal biosafety controls, which appear at the higher branching 
levels, is highlighted. As the tree splits, the decision rules become more specific, allowing farms to be more accu-
rately classified according to their risk of contagion. This type of representation is particularly useful for practical 
application in the field, as it translates complex statistical relationships into a clear and applicable decision logic 
for poultry health surveillance technicians and managers. 
In the traditional decision tree, significantly low Gini values were observed in the first nodes of the model, with 
values between 0.10 and 0.25, which shows a high capacity to separate contaminated and non-contaminated 
farms from the first decisions. This reflects that the variables used in the first bifurcations (such as AÑOREV 
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and CU) have a strong discriminant power. As one moves down the tree, the Gini value tends to decrease further, 
consolidating the purity of the leaf nodes and facilitating clear and consistent predictions. 
 

 
Figure 8. Decision Tree. 
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Figure 9 shows the decision tree constructed based on the Principal Component Analysis (PCA) technique, pre-
viously applied to reduce the dimensionality of the data set. This tree highlights the linear combinations of orig-
inal variables that explain the greatest variance in the data, and establishes the decision rules based on these 
principal components. Although the PCA model simplifies the structure of the data set, the resulting tree tends 
to lose some of the direct interpretability offered by traditional decision trees. However, its usefulness lies in the 
identification of general patterns in scenarios where there is a high correlation between variables. In this study, 
the PCA-based tree allowed us to evaluate an alternative approach to classification, although its performance was 
inferior to that of logistic regression in terms of accuracy and sensitivity, which was reflected in the predictions 
and in the confusion matrix generated. 

 
Figure 9. Decision Tree - PCA. 

 
The tree based on principal components (Figure 9) shows higher initial Gini values, around 0.35 to 0.42, which 
suggests a lower capacity of the model to correctly segment the classes from the first hierarchical levels. This lower 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 9s, 2025  
https://www.theaspd.com/ijes.php  
 

1254 

effectiveness can be attributed to the loss of interpretability when transforming the original variables into linear 
combinations (principal components), which weakens the immediate separation power between classes compared 
to the traditional tree. In addition, by using combinations of variables, the model may generate less intuitive 
decisions, which impacts the practical usefulness of the tree in operational contexts. 
The structure in Figure 9 also shows a progressive decrease of the Gini value at successive nodes, remaining at 
levels between 0.25 and 0.32 even at deep stages of the tree. This indicates that the model fails to achieve optimal 
segmentation at many of its leaf nodes, compromising its overall performance. Although useful as a dimensional 
reduction strategy, the PCA tree loses explanatory power and classification clarity with respect to contaminated 
farms. These results support the use of the traditional decision tree as a more efficient tool for practical decision 
making in the field, thanks to its greater interpretative clarity, higher node purity and lower Gini index in the 
tree structure. 
 
4. DISCUSSION 
A comprehensive analysis of the four evaluated categories—sanitary management, environmental control, opera-
tional biosecurity, and administrative records—demonstrates that the interaction among them significantly am-
plifies health risks in poultry production systems. The effectiveness of preventive measures does not rely solely 
on the isolated implementation of protocols but rather on their simultaneous and systematic articulation. Recent 
research has shown that integrated control strategies significantly reduce the spread of infectious diseases when 
the structural, operational, and documentary dimensions of the production system are addressed in a coordinated 
manner [19,27,31]. This perspective is especially relevant in vulnerable territories such as the Latacunga canton, 
where geographic, social, and productive factors converge, facilitating the emergence and spread of outbreaks 
[33,45]. 
In this study, 55 parameters were assessed and grouped into four key categories. This classification enabled a 
systematic characterization of the risk conditions faced by commercial farms in the study area. The literature 
consistently identifies that failures in perimeter fencing, the absence of vaccination programs, inadequate access 
controls, and lack of formal records are highly associated with the presence of viruses in poultry units [21,24,29]. 
These observations have been confirmed in diverse settings, including Ethiopia, Southeast Asia, and Latin Amer-
ica [11,26,42]. In Ecuador, institutions such as the Ministry of Agriculture and Livestock (MAG) and AGRO-
CALIDAD reinforce these guidelines by mandating audits on movements, waste management, and physical con-
trol measures [41,43]. The exploratory analysis identified variables with greater epidemiological weight, such as 
proximity to wetlands, the existence of training protocols, single-access entry to facilities, and the continuous 
presence of veterinary supervision. 
The logistic regression model used in this study demonstrated a 100% discriminative capacity in classifying farms 
as positive or negative for the virus. This statistical tool, widely used in epidemiological analyses, enables the 
identification of association patterns between multiple predictors and a binary outcome, making it ideal for sce-
narios with moderate sample sizes and high structural heterogeneity [1,5,20]. Similar models have been success-
fully applied in Asia and Europe, highlighting the influence of variables such as geographic location, production 
density, and biosecurity practices on outbreak risk [6,25,30]. In our case, the year of sanitary inspection, proximity 
to other farms, production volume, and waste management were robust predictors of infection, consistent with 
findings from other high-intensity poultry regions [17,22,34]. 
The comparative analysis with advanced models such as Decision Trees, Random Forest, SVM, and XGBoost 
revealed strengths and limitations in terms of precision and sensitivity. Although logistic regression achieved 
perfect classification, algorithms like SVM and PCA-based Decision Trees presented errors in detecting positives, 
which represents a critical issue in public health scenarios where false negatives must be minimized [10,16,35]. 
While models such as XGBoost have been successfully used in the prediction of diseases like H9N2 [18], their 
complexity did not result in a substantial performance improvement in our context. Recent studies have validated 
that when relevant variables and well-structured data are available, traditional statistical models may outperform 
more sophisticated approaches in terms of interpretability and performance [13,23,36]. 
The traditional tree (Figure 8) showed low Gini values (0.10-0.25) in its first levels, indicating an excellent capacity 
to correctly separate classes. In contrast, the PCA tree (Figure 9) showed higher Gini values (0.35-0.42), reflecting 
lower effectiveness in the initial segmentation. This behavior may be due to the fact that principal components 
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reduce dimensionality, but also interpretability, which affects their classificatory ability [28,32]. Although models 
such as Random Forest and XGBoost offered acceptable performances, logistic regression presented a better 
interpretation of the coefficients and less overfitting, which is crucial in contexts where model transparency is an 
added value for healthcare decision making. One of the most outstanding contributions of the study is the vali-
dation of the model with real data, which made it possible to verify its pre-dictive capacity under practical condi-
tions. This validation with 12 control farms, in which 100% accuracy was obtained, constitutes a solid support 
for its application in the field.  
 
5. CONCLUSIONS 
The main conclusions are detailed below: 
The structured characterization of poultry farms enabled the identification of critical variables associated with 
the presence of the A(H5N1) virus, with operational biosecurity, environmental control, and sanitary manage-
ment being particularly determinant [21,29,44]. The categorization into four analytical dimensions facilitated a 
comprehensive understanding of the production environment in the Latacunga canton and revealed common 
risk patterns 
Logistic regression emerged as the most effective predictive approach, achieving 100% accuracy in classifying 
positive and negative farms. This technique identified statistically significant variables such as proximity to other 
farms, single-point access, and waste treatment systems [1,5,20] 
Advanced models like SVM, PCA-Tree, Random Forest, and XGBoost showed limitations in sensitivity, confirm-
ing that in contexts with well-structured data, traditional statistical models can outperform more complex algo-
rithms in both performance and interpretability [10,18,36]. 
The traditional Decision Tree model demonstrated a clear and hierarchical structure, with low Gini index values 
(0.10–0.25), supporting its use in operational epidemiological surveillance. In contrast, the PCA-based Tree 
showed reduced discriminative capacity due to a loss in variable interpretability [28,32]. 
Validation of the model with real data from 12 independent farms confirmed its practical applicability, proving 
that this tool can be effectively integrated into local surveillance, control, and prevention systems for H5N1 
[41,47,48]. 
The study confirms the importance of integrating robust statistical models with technical knowledge and national 
regulatory frameworks to design predictive systems that are both effective and operationally executable [13,24,31]. 
Future research could extend this approach to other cantons and provinces in order to evaluate a future presence 
of HPAI, as well as to incorporate environmental or climatic variables as explanatory factors. It is also suggested 
to explore the use of early warning systems integrated with geo-referenced platforms to optimize epidemiological 
surveillance at the national level. 
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