International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 4,2025
https://theaspd.com/index.php

Al-Enhanced 10T for Air Quality Forecasting: Offloading LSTM Predictions
to Edge Servers

Afzal Shaikh!, Ramjan Khatik?>, Manju Devi®, Shaista Shaikh*

2Department of Electrical and Computer Engineering, Anjuman-I-Islam’s Kalsekar Technical Campus, School of
Engineering & Technology, Plot 2 & 3, Sector 16, Near Thana Naka, Khandagaon, New Panvel 410206
3Department of Electronics and Communication Engineering, The Oxford College of Engineering, 10th Milestone,
Hosur Rd, Bommanahalli, Bengaluru, Karnataka 560068.

“Department of Computer Engineering, Anjuman-I-Islam’s A. R. Kalsekar Polytechnic, Plot 3, Sector 16, Near Thana
Naka, Khandagaon, New Panvel 410206

Abstract—

Air quality forecasting is critical for dealing with pollution's health and environmental implications, but resource-constrained loT
devices struggle to execute complicated predictive analytics locally. This study presents a distributed architecture-based Al-enhanced
Internet of Things system for real-time air quality index (AQI) predictions. An edge server receives Long Short-Term Memory
(LSTM) predictions from a Raspberry Pi-based system that gathers multi-sensor data (PM2.5, PM10, CO, temperature, and
humidity) through a RESTful API. Sensor data and the predicted AQI are shown in real time on a Node-RED dashboard.
According to experimental findings, offloading achieves scalable and effective air quality monitoring by reducing the computing
load of the 10T device by 85%. By bridging loT and Al this hybrid edge-cloud strategy provides a workable solution for intelligent
environmental systems.
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INTRODUCTION

Air pollution, fueled by a variety of toxic substances like fine particulate matter (PM2.5), nitrogen oxides (NOx),
sulfur dioxide (SO2), and carbon monoxide (CO), represents a formidable danger to human well-being and the
natural environment. These hazardous pollutants are directly associated with an array of health issues, including
chronic respiratory conditions such as asthma and bronchitis, cardiovascular disorders like heart attacks and
hypertension, and extensive ecological harm, such as soil and water degradation. Beyond these immediate effects,
they also exacerbate global climate change by altering atmospheric dynamics and contributing to the greenhouse
effect, as noted in scientific literature (Manisalidis et al., 2020) [1]. The critical need to confront these multifaceted
threats has catalyzed the creation of advanced technologies, including cutting-edge monitoring systems and predictive
tools, aimed at curbing the detrimental consequences of deteriorating air quality. Among these innovations, real-time
air quality forecasting stands out as an indispensable mechanism, offering the potential to deliver timely warnings
and actionable measures that shield vulnerable populations and fragile ecosystems from the worsening impacts of
polluted air. The complexity of air quality forecasting demands sophisticated analytical approaches, with Long Short-
Term Memory (LSTM) neural networks emerging as a particularly powerful solution due to their proficiency in
handling time-series data (Hochreiter & Schmidhuber, 1997) [2]. These networks excel at identifying and leveraging
temporal patterns within sequential datasets, making them exceptionally well-suited for predicting fluctuations in air
quality indices (AQI) over extended periods. Despite their strengths, integrating LSTM models into traditional
Internet of Things (IoT) setups poses significant hurdles. IoT devices, such as air quality sensors or low-power
microcontrollers, typically lack the computational horsepower and memory capacity required to execute these
resource-intensive algorithms locally [3]. On the other hand, offloading the processing to centralized cloud servers
introduces undesirable delays, as data must travel across networks, leading to latency that compromises the immediacy
essential for effective air quality interventions. Such setbacks can impede the issuance of urgent health advisories or
the deployment of rapid pollution control measures, highlighting the inefficiencies of relying solely on cloud-based
systems for time-critical environmental applications. To address these shortcomings, this research introduces a novel
Al-driven IoT framework engineered to balance computational power with swift system performance. The proposed
solution harnesses the advantages of edge computing, shifting the burden of LSTM-based AQI predictions from
underpowered IoT endpoints to more robust edge servers positioned closer to the data source. At the heart of this
system, a Raspberry Pi operates as a central hub, gathering real-time measurements—such as PM2.5 levels, CO
concentrations, and temperature—from an array of connected sensors. This data is efficiently stored on the device
using SQLite, a lightweight database system tailored for resource-constrained environments, ensuring minimal
overhead while maintaining data integrity. Periodically, the aggregated information is relayed to an edge server, where
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the LSTM model analyzes it to produce precise and timely AQI forecasts. To further enhance accessibility and
usability, the framework incorporates a Node-RED dashboard, a user-friendly platform that displays both live sensor
readings and predictive outputs in an easily digestible visual format, empowering users to make informed decisions
swiftly. This hybrid edge-l1oT architecture delivers multiple benefits, including reduced latency compared to cloud-
centric approaches, as processing occurs nearer to the data’s origin. It also offers improved scalability, enabling the
system to accommodate additional sensors or adapt to diverse environmental monitoring needs without
overwhelming individual devices. Moreover, the framework promotes operational autonomy by minimizing
dependence on distant cloud infrastructure, which can be prone to connectivity disruptions. By seamlessly integrating
resource-limited IoT hardware with the computational demands of advanced Al, this solution provides a viable
pathway for real-time air quality forecasting that is both practical and forward-thinking. It responds directly to the
escalating global demand for decentralized, efficient technologies capable of tackling air pollution’s pervasive
challenges in an era of rapid environmental transformation. Ultimately, this study advances the mission of sustainable
environmental stewardship, equipping policymakers, researchers, and communities with a robust toolset to protect
public health, preserve biodiversity, and combat the far-reaching effects of pollution on our planet.

LITERATURE SURVEY

The incorporation of Internet of Things (IoT) technologies into air quality monitoring has seen remarkable growth
in recent years, driven by their capacity to provide continuous, real-time data collection and facilitate effective
environmental management. Kumar et al. (2019) pioneered an Arduino-based system tailored for tracking PM2.5
concentrations, showcasing the practicality of affordable [oT solutions for air pollution surveillance [4]. While their
framework successfully demonstrated low-cost data acquisition, it was primarily focused on gathering measurements
and lacked the ability to forecast future trends, thus limiting its applicability for preemptive measures. In a step
forward, Zhang et al. (2020) expanded the scope by integrating machine learning, specifically employing Random
Forest algorithms, to analyze loT-generated data for predicting the Air Quality Index (AQI) [5]. Their model delivered
commendable accuracy; however, its dependence on centralized processing led to noticeable delays, diminishing its
effectiveness for time-sensitive scenarios where rapid decision-making is essential. Among advanced predictive tools,
Long Short-Term Memory (LSTM) networks—a specialized form of recurrent neural networks—have gained
prominence for their exceptional ability to model temporal relationships in time-series data, making them highly
suitable for environmental forecasting. Li et al. (2018) utilized LSTM networks to predict PM2.5 levels, achieving a
Mean Absolute Error (MAE) of 5.1, which underscored the method’s superior predictive accuracy compared to
traditional approaches [6]. Nevertheless, their implementation required significant computational resources,
rendering it unfeasible for deployment on typical IoT devices with limited processing power and memory. This
challenge echoes observations by Bai et al. (2018), who highlighted that deep learning models like LSTMs frequently
surpass the hardware capabilities of standard IoT setups, posing a barrier to localized execution [10]. Addressing this,
Wu et al. (2021) investigated streamlined LSTM variants for air quality predictions, reporting an MAE of 6.3 [11].
Although their lighter models reduced resource demands, scalability remained a concern when applied to edge-based
IoT systems, indicating a need for alternative strategies. To overcome the latency and computational constraints
inherent in traditional IoT and cloud-centric architectures, edge computing has emerged as a transformative
approach, enabling decentralized data processing closer to the source. Chen et al. (2019) showcased the benefits of
transferring deep learning workloads to edge servers, achieving a 70% reduction in inference time and a 40% decrease
in energy usage compared to cloud-reliant systems [7]. Similarly, R. Yu et al. (2021) explored offloading strategies for
deep learning tasks in IoT contexts, reporting latency reductions of up to 65% by leveraging edge infrastructure [8].
These findings are corroborated by Cao et al. (2020), who emphasized edge computing’s pivotal role in supporting
real-time analytics across loT applications, though their work focused broadly rather than specifically on-air quality
monitoring [12]. Collectively, these studies highlight edge computing’s potential to enhance responsiveness and
efficiency, addressing key limitations of conventional frameworks.

Despite these advances, the integration of IoT, artificial intelligence (Al), and edge computing for air quality
forecasting remains underexplored, presenting opportunities for innovation. Liu et al. (2022) proposed an edge-
supported IoT framework for environmental monitoring, incorporating convolutional neural networks (CNNs) to
classify pollutants [13]. While effective for categorization, their system did not extend to predictive modeling, limiting
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its proactive utility. In a different vein, Sharma et al. (2021) developed an loT-based air quality monitoring system
with cloud integration, achieving a MAE of 8.2 for AQI predictions [ 14]. However, its reliance on centralized cloud
processing introduced latency issues, undermining its suitability for real-time needs. Huang et al. (2020) combined
LSTM models with edge computing to forecast traffic-related air pollution, reporting an impressive MAE of 4.8 [15].
Yet, their study was narrowly focused on vehicle emissions rather than comprehensive QI metrics, leaving broader
applicability unaddressed. Effective visualization and user interaction are equally vital for translating air quality data
into actionable insights. Wang et al. (2019) introduced a dashboard for displaying real-time loT-derived air quality
data, but their interface was limited to static representations without predictive capabilities [16]. In contrast, Kim et
al. (2021) enhanced urban planning by integrating machine learning forecasts into a web-based platform, though
their reliance on cloud infrastructure compromised responsiveness [ 17]. Node-RED, a versatile open-source tool for
flow-based programming, has proven valuable for creating intuitive dashboards, as evidenced by Patel et al. (2020),
who applied it to visualize loT data in smart home environments [18]. Despite its flexibility, Node-RED’s use in air
quality forecasting remains largely untapped, suggesting an opportunity to bridge visualization with predictive
analytics. Methodological rigor is another critical consideration in this domain. The U.S. Environmental Protection
Agency (EPA) provides standardized guidelines for AQI calculations, ensuring uniformity and reliability in air quality
evaluations [9]. Adhering to these benchmarks strengthens the validity of predictive models. However, inconsistencies
in reported performance metrics across studies warrant scrutiny. For example, an MAE of 14.28 for PM2.5 prediction
cited in Environmental Pollution (2018) starkly contrasts with the 5.1 MAE reported by Li et al. (2018), raising
questions about data sources or attribution accuracy [19]. Zhou et al. (2020) reinforced this concern, advocating for
thorough cross-validation of predictive outcomes to ensure robustness in environmental research [20]. Additional
studies further validate the offloading paradigm. Xu et al. (2021) applied edge-based deep learning to loT health
monitoring, achieving a 50% latency reduction [21], while Gupta et al. (2022) optimized LSTM execution on edge
devices for weather forecasting, reporting a MAE of 5.8 [22]. Park et al. (2020) and Lin et al. (2021) also demonstrated
edge computing’s scalability and energy efficiency, with latency reductions of 60% and 55%, respectively [23, 24].
Real-world implementations by Singh et al. (2022) and Zhao et al. (2023) further confirmed the viability of edge-IoT
integration for environmental monitoring, though their frameworks did not prioritize predictive dashboards [25, 26].
Complementary research by Jeong et al. (2021) explored hybrid edge-cloud systems for air quality, achieving a MAE
of 6.1, yet scalability across diverse pollutants remained a challenge. Likewise, Tan et al. (2022) investigated
lightweight Al models for IoT air sensors, reporting a MAE of 7.0, but their approach struggled with complex
temporal patterns. This study synthesizes these insights into a comprehensive framework that integrates loT, LSTM-
driven Al, edge computing, and a Node-RED dashboard. It builds on the computational efficiency of edge offloading,
as demonstrated by Chen et al. (2019) and R. Yu et al. (2021), while enhancing usability through real-time
visualization, inspired by Patel et al. (2020). By tackling latency, scalability, and user engagement, this approach
distinguishes itself from prior efforts. It also incorporates EPA standards for AQI consistency and addresses validation
concerns raised by Zhou et al. (2020), ensuring a robust and practical contribution to the field of intelligent air quality
forecasting. Through this holistic design, the research not only advances technical capabilities but also aligns with the
urgent need for sustainable environmental solutions in an increasingly polluted world.

METHODOLOGY
The framework consists of three interconnected components:

e IoT Node: A Raspberry Pi 4 (4GB RAM) serves as the data collection hub, equipped with multiple sensors:

e SDSO011: Measures PM2.5 and PM 10 concentrations with a resolution of 0.3 pg/m* and a range of 0-999.9
ug/m¥*,

o  MQ-7: Detects carbon monoxide (CO) levels with a sensitivity of 202000 ppm.

e DHT11: Captures temperature (0—50°C) and relative humidity (20-90%) with accuracies of £2°C and +5%,
respectively. Data is sampled every 15 seconds and stored in a local SQLite database, a lightweight relational
database chosen for its minimal resource footprint and reliability on resource-constrained devices.

Edge Server: A mid-tier server (e.g., Intel i5, 16GB RAM) hosts a pre-trained LSTM model for AQI forecasting. It
exposes a RESTful API endpoint (/predict) implemented using Flask, enabling seamless communication with the
IoT node via HTTP requests. The server processes incoming data and returns predictions in real time.
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Dashboard: Deployed on the Raspberry Pi using Node-RED, a flow-based programming tool, the dashboard queries
the SQLite database and visualizes raw sensor data alongside forecasted AQI values through a web interface accessible
on a local network.

Data flows unidirectionally: sensors — SQLite — edge server (for prediction) — dashboard. The architecture,
illustrated in Figure 1, emphasizes modularity and low-latency interactions by leveraging edge computing over cloud-
based alternatives.
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Figure 2. Data Flow Process in the System
Data Collection and AQI Calculation

The IoT node collects environmental parameters at 15-second intervals, ensuring high temporal resolution for real-
time monitoring. The primary focus is PM2.5, a critical pollutant, with supplementary data from CO, temperature,

and humidity enhancing contextual analysis. The Air Quality Index (AQI) is calculated based on PM2.5
concentrations using a simplified linear interpolation formula derived from U.S. EPA guidelines (U.S. EPA, 2021):
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(1) Where:

AQI: Calculated Air Quality Index (unitless, 0-500 scale).
C: Measured PM2.5 concentration (pg/m*).

Chigh, Ciow: Upper and lower bounds of the PM2.5 concentration range corresponding to the AQI category.
Ihigh, Liow: Upper and lower AQI values for the corresponding category.
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The formula is implemented in Python on the IoT node, with results stored in SQLite alongside raw sensor
readings. Data persistence ensures operational autonomy, enabling the system to function during network
disruptions.

Data Source: Real-time data is sourced directly from the SDS011, MQ-7, and DHT11 sensors. For model training
(detailed below), historical PM2.5 data was obtained from the U.S. EPA’s Air Quality System (AQS) database
(https://www.epa.gov/ags), covering a one-year period (2022) from an urban monitoring station, supplemented by
local sensor data for validation.

LSTM Prediction Model

The LSTM model predicts future AQI values based on a sequence of 10 prior PM2.5 readings (a 2.5-minute window
given the 15-second sampling rate). The model was trained offline using TensorFlow on a desktop GPU (NVIDIA
GTX 1660) and deployed on the edge server for inference.

Pre-processing: Input data (X;) is normalized using a MinMaxScaler to scale PM2.5 values between 0 and 1:

e - E— —x_m-i TR
- — e i

(2) Where Xmin and Xmax are the minimum and maximum PM2.5 values from the training dataset (e.g., 0 and 500
ug/m*). The normalized sequence (X, X "..., X ) is fed into the LSTM model.

Model Architecture:

Input Layer: Accepts sequences of shape (10, 1), where 10 is the time step and 1 is the feature (PM2.5).

LSTM Layer 1: 50 units, capturing long-term dependencies, with ReL U activation.

LSTM Layer 2: 30 units, refining temporal patterns.

Dense Layer 1: 20 units, consolidating features.

Output Layer: 1 unit, predicting the normalized AQI.

Total parameters: ~15,000, optimized for edge deployment.

The model was trained on 80% of the historical dataset (70,080 samples, 15-second intervals over 4 months) with
a batch size of 32, using the Adam optimizer and Mean Squared Error (MSE) loss:

l TE =
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(3) Where y; is the true AQI, and y; is the predicted AQI. Validation on the remaining 20% yielded a MAE of 4.2:
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(4) Predictions are denormalized post-inference:

AQIpred —— 33:’ X (AQInuu' = ACJImin) + AQImin

(5) Where AQImax =500 and AQIwin =0. This ensures interpretability in the standard AQI scale.
Data Source: Training data was sourced from the U.S. EPA AQS database, augmented with synthetic noise to
simulate real-world sensor variability [27].
Offloading Mechanism
To minimize computational strain on the Raspberry Pi, AQI predictions are offloaded to the edge server. The IoT
node constructs a JSON payload containing the last 10 PM2.5 readings:
JSON

{
"pm25_history": [10.2, 12.5, 11.8, 13.1, 14.0, 13.7, 12.9, 11.5, 10.8, 12.3]

J

This payload is transmitted via an HTTP POST request to the edge server’s /predict endpoint. The server processes
the data through the LSTM model and responds with a JSON object:
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JSON
{
"predicted _aqi": 45.6
J
The round-trip latency averages 150 ms (measured over 100 requests), significantly lower than cloud-based systems
(~500 ms), due to the edge server’s proximity (same local network). This offloading reduces the Raspberry Pi’s CPU
usage from 85% (local inference) to 20%, preserving its capacity for data collection and visualization.
Dashboard Design
The Node-RED dashboard, hosted on the Raspberry Pi, queries the SQLite database every 15 seconds using SQL
commands (e.g., SELECT * FROM air quality ORDER BY timestamp DESC LIMIT 1). It presents:
e Gauges: Current PM2.5 (ng/m*) and predicted AQI (0-500).
o Charts: Historical trends of PM2.5 and AQI over the last hour (240 data points).
e Text Labels: Temperature (°C), humidity (%), and CO (ppm).
The interface, accessible at http:// <Raspberry Pi IP> :1880 /ui, updates dynamically, providing actionable insights
for users. Data is fetched using Node-RED’s SQLite node and rendered with its Ul nodes, ensuring a lightweight yet
comprehensive visualization.

RESULTS

Performance Evaluation

The system was evaluated over a 48-hour period in an urban environment:

Data Collection: The Raspberry Pi successfully collected and stored 5,760 data records (one every 15 seconds) in the
SQLite database without any loss, demonstrating reliability.

Prediction Accuracy: The LSTM model achieved a Mean Absolute Error (MAE) of 4.2 when compared to actual
AQI values on a test dataset, indicating high accuracy for forecasting. Root Mean Square Error (RMSE) was 5.8, and
R2 score was 0.92, showing strong predictive power. Together, these metrics demonstrate that the LSTM model
delivers precise and dependable AQI forecasts, making it an excellent choice for applications requiring actionable
and accurate environmental insights.

Computational Efficiency: Offloading the prediction task to the edge server reduced the Raspberry Pi’s CPU usage
from 90% (when running the LSTM model locally) to approximately 5%, with an average inference time of 0.3
seconds per prediction (including network latency). This represents an 85% reduction in computational load,
enabling sustained operation without overheating. By alleviating the computational burden on the IoT node, the
system not only enhances its operational lifespan but also maintains responsiveness, making it well-suited for
continuous, real-world use.

TABLE 1. SUMMARIZES THE PERFORMANCE METRICS

Metric Local LSTM Offloaded to Edge Server
CPU Usage (%) 90 5

Inference Time (s) 1.2 0.3

MAE (AQI Prediction) 4.2 4.2

RMSE (AQI Prediction) 5.8 5.8

R? Score 0.92 0.92

Usability of the Dashboard

User feedback indicated that the Node-RED dashboard provided an intuitive and responsive interface for monitoring
air quality data and forecasts in real time. The dashboard effectively displayed current AQI (ranging from 45 to 120)
and forecasted AQI (ranging from 50 to 130), updating every 15 seconds. Figure 2 shows a screenshot of the
dashboard, highlighting gauges and trend charts, which users reported as clear and actionable for decision-making.
The performance evaluation underscores the strengths of this Al-enhanced [oT framework across all three assessed
dimensions. The flawless collection of 5,760 data records over 48 hours confirms its reliability for continuous data
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acquisition. The LSTM model's MAE of 4.2, RMSE of 5.8, and R2 of 0.92 highlight its precision and predictive
power, ensuring accurate AQI forecasts. Finally, offloading predictions to the edge server slashes the Raspberry Pi’s
CPU usage by 85% and achieves a 0.3-second inference time, optimizing efficiency and sustainability. Collectively,
these results validate the system's effectiveness for real-time air quality forecasting, positioning it as a promising
solution for smart cities and environmental management initiatives.

CONCLUSION

This research unveils an innovative Al-enhanced Internet of Things (IoT) framework designed for air quality
forecasting, highlighting the effectiveness of offloading Long Short-Term Memory (LSTM) predictions to edge servers
while incorporating a dynamic real-time dashboard. By shifting the heavy computational burden of LSTM-based Air
Quality Index (AQI) forecasting from resource-constrained IoT devices to more powerful edge infrastructure, the
system achieves remarkable efficiency and scalability. Experimental findings validate its success, demonstrating an
85% reduction in CPU usage on local devices and a prediction Mean Absolute Error (MAE) of 4.2, positioning it as
a highly accurate and practical solution. This approach integrates loT-driven data collection—utilizing a Raspberry Pi
to gather real-time metrics like PM2.5 and carbon monoxide—with edge computing for swift Al predictions and a
Node-RED dashboard for accessible visualization, significantly advancing smart environmental monitoring
technologies.The framework offers a robust tool for public health protection and environmental stewardship,
enabling timely interventions to mitigate air pollution’s adverse effects. Its low-latency design and reduced
computational demands make it adaptable for broader applications, such as smart city ecosystems, where it could
inform urban planning and policy-making. Looking ahead, future enhancements could include monitoring
additional pollutants like ozone or nitrogen dioxide, bolstering API communication security with encryption, and
adopting distributed learning across IoT nodes to enhance accuracy and resilience. These developments could extend
the system’s scope and impact, ensuring its relevance in addressing global environmental challenges. Ultimately, this
work provides a scalable, user-friendly blueprint for leveraging Al and IoT to foster a healthier, more sustainable
future.
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