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Abstract: This research introduces a machine learning approach to help improve sustainability in the construction of 
high-rise buildings. The idea was to merge Gradient Boosting Machines with Genetic Algorithms to build a framework 
that helps predict and reduce cement amounts, all while the concrete meets the 90-day compressive strength standard. 
With Python, using XGBoost and DEAP libraries, the system yields an R² score of 0.92, indicating effective accuracy. 
Because the mix design uses fewer cement resources, it also leads to a 12% drop in CO₂ emissions. When compared 
to other methods, this new approach performs better at achieving good designs and addressing problems in making 
construction sustainable. According to the results, the eco-friendly compositions have promising potential for industrial 
adoption, as their durability and strength are not affected. In the next phase, we will add in extra material parameters 
and live building updates to further improve the outcomes of our optimization. 
Keywords: Machine learning, concrete mix design, sustainable construction, high-rise buildings, gradient boosting 
machines, genetic algorithms, multi-objective optimization. 
 
INTRODUCTION 
Climate change has had a stronger effect on the environment in recent years, prompting more nations to 
lower emissions of carbon and lessen any harm these emissions may cause for the earth [1]. According to 
the Environmental Protection Agency, More than 20% of global GHG emissions in 2021 were caused by 
the industrial sector (EPA) [2].About 7% of all greenhouse gas emissions around the world are produced 
by the manufacturing industry [3]. For reference, the total In 2018, CO2 emissions from cement 
production were around 1.50 Gt [4] and much of this came from concrete production activities using 
carbonate decomposition, burning fuel and electricity include thermochemical processes [5]. With an 
estimated 10 Bt output, concrete is commonly used in construction because it is simple to get, inexpensive 
and useful. The material is often better mechanically, thermally and insulatively than other common 
building materials (such as steel and wood)[6]. At the same time, extensive concrete use results in 
noticeable environmental consequences. National statistics reveal that the United States. They use more 
than double the world’s cement production, roughly 100 million metric tons which leads to a balance 
between consumption and production.CO₂ emissions per pound of produced cement and producing 
over a hundred million metric tons of GHG emissionssions [7].As additional residential and commercial 
concrete buildings, bridges, tunnels and infrastructure are needed. 

mailto:perumals2@srmist.edu.in
mailto:sunilkhilari@hotmail.com
mailto:autadeprerana@gmail.com
mailto:vsnarayanatinnaluri@kluniversity.in
mailto:anilkumarkb@bgsit.ac.in
mailto:drbsnagakishore@gmail.com


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4,2025 
https://theaspd.com/index.php  
 

1920 
 

 
Figure 1.Basic Concrete Mix Design. 
Due to a rise in population, the use and effects of concrete are also increasing. The number is anticipated 
to go up. Consequently, we need to make sure that concrete and other cement are used far less and much 
more efficiently.to use recently developed construction materials or techniques that will, at the same time, 
reduce GHG emissions Meet what industry requires, make production affordable and lessen the danger 
to nature as shown in figure 1.A consistent and energetic research effort involves during the last decade, 
from 2014 to 2023, more than 840 publications have looked into new ways to address this problem. 
Examining challenges and other paths to sustainable concrete [8] and outlining some possible answers 
[9].Problems and information gaps in this area of study. So, this paper sets out a new approach that 
designers might use. And using constructors to improve the process of reducing CO2 emissions in making 
concrete, with attention to their ease of use. Look also at how the theory fits with TiSEAN and its 
usefulness. By relying on machine learning, the method in this paper strives to maximize the cement 
concentration necessary for target strength. Because it reaches its ideal strength at 90 days, it lowers 
emissions too. 
Section 2 explains in detail the challenges in making predictions about com.Increasing pressive strength 
for long goals and using machine learning to address these challenges. Section 3 talks about The study 
develops a special machine learning model using algorithms through the methodology explained in the 
text. compressive strength. In section 4, the findings of the machine learning are shown and measured to 
select the best one according to the data we currently have [10]. The design of a reinforced concrete 
medium size building is used in the application of the model. Developing, to project the carbon reduction 
effects of choosing a 90-days concrete compressive strength. Outcomes from the case study include 
Estimated GHG emissions are shown to evaluate whether the alternative proposal here will lower carbon 
output.The case study underlines how the research will help move toward a more sustainable 
construction. 
 
RELATED WORK 
2.1 Approaches to reduce carbon emissions 
Improving how much energy is needed, changing the fuel and using Carbon Capture approaches could 
be part of concrete’s decarbonization.Potential approaches are tion and Storage (CCUS) and lowering 
the clinker to cement ratio [11]. A variety of methods aimed at addressing disease were revealed in the 
research. Concrete production goes through different stages, starting with the selection of the proper 
material and ending with making the ideal mix design. When it comes to making concrete. Researchers 
considered new procedures for building and constructions along with new types of concrete that catch 
CO2.[12]. As illustrated by two references [13,14], changing cement with fly ash, slag sand and stone 
powder is a way to minimize GHG emissions. When we make concrete, we create less air pollution and 
also produce less waste in factories. In other words, when we use alternative cementations materials Like 
both recycled aggregates and fiber scraps, furnace slag all cut down on the materials needed for 
construction work. credit for adding more carbon dioxide to the atmosphere [15,16]. It is noted in this 
context that these materials are not always available to everyone. yet unic apps which makes using these 
technologies in practice more difficult [17]. For some polymers, longer curing is neede Because novel 
cements react less, more time may be necessary for cement to hydrate which can delay the construction 
schedule substantially.even have an impact on how the product is designed [18-20]. The fees needed to 
collect and deal with the byproducts and technical issues continue to increase. Many types of regulations 
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could delay widespread use of the proposed alternative binders. On top of these, there are already limited 
Because energy policies at the global level are not strong, low carbon products are in higher demand from 
industrial businesses. The developTo fully mention new technologies, we need more support for testing 
and up scaling and that support is not currently available. Because time [21] plays a factor, the industry 
tends to stick with conventional methods and avoid the higher prices that come with new building 
solutions [22,23]. To finish, people should realized that society did not know enough about how cement 
production impacts climate change It is possible that efforts to cut down emissions may see less attention 
[24].With these problems in mind, enhancing old methods looks like a rapid and convenient alternative 
to using new ones of methods from the past to make concrete more environmentally friendly. Bringing 
in new machine learning and deep learning technologies, the research investigates the correct portions of 
key materials and estimates the necessary cement in a concrete mixtureon the concentration of reinforcing 
bars based on the 90-day, not the 28-day, target. Using this process lowers the use of Portland cement.By 
adding sustainable materials to concrete, it supports the growth of sustainable development in the 
construction industry. 
2.2 90-Day compressive strength approach 
Trying to improve the mechanical properties of concrete to meet construction schedules is a recent main 
priority search [25]. Most of these studies try to cut down the curing period to meet deadlines [26-30]. A 
situation like this, for example, Microwave heating, a new method, has become very popular with 
scientists who need faster curing of concrete may be used alone as a method or jointly with other 
approaches [31]. But nevertheless, the assembly of proper microwave systems Nonetheless, it would 
require major changes in the process used in the industry [32].now see an alternative to cut carbon 
emissions while still keeping the construction industry’s work minimally disrupted. Trying to design the 
concrete mix so that it reaches 90-days compressive strength. Even though the time it takes to build a 
building depends Dealing with area, the number of stories and architectural plans as factors, a typical 
floor construction schedule is proposed by the ACI 54 days which is roughly 318-19, are split between 
curing columns and then beams and slabs.  
As buildings grow taller above six floors, it takes more than 90 days for the concrete footing to gain the 
full desired strength and strength needed in the design which keeps the project safer and more 
environmentally sound. For taller buildings, not all the loads will all be applied until the final 
construction stages. The foundation a little while after it has been poured Concrete will become stronger 
based on mixture and environmental conditions within this period. In multi-story reinforced concrete 
buildings, conditions and curing method [33] mean that the usual time is more than 90days after 
concreting when the load bearing capacity test should be carried out. Pouring concrete footing hardens 
it up, so that it withstands heavy load before the structure is finalized. A 90-day star configuration is used 
for multi-story construction on mat footings, road pavement projects and bridge piers constructed with 
concrete. It can be expected that building strength leads to lower carbon emissions. 
2.3. Machine learning and concrete strength modelling 
Over the previous decade, much effort has gone into modelling how various types of alternative materials 
such as recycled aggregate, fiber scrap aggregate, silica fume, furnace slag and fly ash, affect the properties 
of concrete mixes [34,35,36]. Simple linear regression does not fit for explaining multiple materials being 
studied with diverse features [37] and advanced techniques [38].According to previous research, an ANN 
approach can accurately predict the compressive strength of both regular and special concrete made with 
pozzolans [39]. Yeh [40]op combined non-linear programming to .ANN. The strength of concrete after 
28 days was predicted using feed-forward neural networks having several layers [41].description of the 
concrete properties using its physical aspects features from the specimen plus the recipe for the concrete 
used. Table 1 shows the summary of related work. 
The conditions related to the environment were examined by Gupta etal.[42].Yeh was able to use ANN 
to model the unique nonlinear relationship found in highly complex materials’ slump. Ozturan etal. also 
applied ANN to 28-day strength prediction but limited their data collection to low and medium concrete 
strength. Alshihri etal.[43] looked into structural light weight concrete compressive strength by being able 
to predict it. The leaves thrived after being aged for 3, 7, 14 and 28 days. Aggarwal [44] proposed a way 
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to calculate the predicted 28-day compressive strength of self-compacted concrete. They developed an 
ANN by mixing existing studies and test results with bottom ash for the compaction of 
concrete[45].Literature has achieved great success in capturing the mechanical properties of concrete, but 
transferring them to engineering contexts is not as simple as many people might think. efforts into 
Applying these models on construction sites often runs into difficulties because of their complex nature. 
Table 1 shows the summary of related work (2025-2018). 
Table 1. Summary of Related Work (2025-2018) 

Year Research Title Methodology Key Contributions Limitations 

2025 
Machine Learning for 
Sustainable Concrete 
Mix Optimization 

Ensemble ML models 
(Random Forest, 
XGBoost) trained on 
large datasets of mix 
designs and 
environmental impact 

Improved 
prediction accuracy 
of concrete strength 
and sustainability 
metrics 

Dataset limited 
to specific 
regional 
materials 

2024 
AI-Driven Concrete 
Mix Design for High-
Rise Structural Safety 

Deep learning with 
CNNs on experimental 
and simulated data 

Automated 
optimization 
balancing strength, 
cost, and carbon 
footprint 

High 
computational 
cost, limited 
interpretability 

2023 
Hybrid Evolutionary 
and ML Algorithms for 
Concrete Mix Design 

Hybrid genetic 
algorithms combined 
with neural networks 

Efficient search for 
optimal mix designs 
under multiple 
constraints 

Requires 
extensive tuning 
of parameters, 
slow 
convergence 

2022 
Predictive Modeling of 
Concrete Strength 
Using ML Techniques 

Supervised ML 
regression models (SVM, 
Gradient Boosting) 

Accurate prediction 
of concrete 
compressive 
strength 

Did not consider 
environmental 
sustainability 
parameters 

2021 

Sustainable Concrete 
Mix Design Using 
Multi-Objective 
Optimization 

Multi-objective 
optimization with ML 
surrogate models 

Balanced trade-offs 
between cost, 
strength, and 
environmental 
impact 

Dataset size was 
small, limiting 
generalizability 

2020 
Data-Driven Concrete 
Mix Design Framework 
for Urban Construction 

Regression trees and 
random forests on urban 
construction datasets 

Adapted mix design 
to urban 
environment 
requirements 

Focused mostly 
on cost and 
strength, 
neglecting 
sustainability 
metrics 

2019 

Optimization of 
Concrete Mix Using 
Neural Networks and 
Genetic Algorithms 

Neural networks with 
GA for mix design 
optimization 

Enhanced mix 
performance 
prediction and 
optimization 

Model training 
required large 
datasets; limited 
to low-rise 
structures 

2018 

Machine Learning-
Based Compressive 
Strength Prediction of 
Concrete 

Support Vector 
Machines and Decision 
Trees 

Provided early 
prediction methods 
for compressive 
strength 

Limited to 
strength 
prediction, 
without mix 
design 
optimization 
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2018 
Eco-Friendly Concrete 
Mix Design Using AI 
Techniques 

Fuzzy logic combined 
with ML models for mix 
design 

Introduced 
sustainability 
considerations into 
mix design 

Implementation 
complexity and 
lack of real-world 
validation 

2018 

Concrete Mix Design 
Optimization Using 
Support Vector 
Regression 

SVR for predicting 
concrete properties 
based on mix ratios 

Demonstrated 
improved 
prediction accuracy 
over traditional 
methods 

Did not 
incorporate high-
rise building 
requirements 

 
The study performed regression modeling and ANN to set the optimum amount of cement needed to 
ensure concrete reached normal compressive strength in 90 days, rather than 28 days as usual. Since the 
dataset in this study has no alternative materials, we cannot explore the detailed relationship between its 
components. Therefore, regression models are likely to work better than in the literature. high 
accuracy[46]. Different types of regression algorithms are made to provide accurate predictions and give 
a simple way to address carbon emissions and one of history’s biggest challenges. 
 
RESEARCH METHODOLOGY 
The following section outlines how a system for concrete mix design using machine learning was 
developed for sustainable tall buildings. GBM and GA are combined at the heart of the proposed method 
in a framework that solves multiple objectives. The approach helps to save on cement by predicting its 
amount while still checking that the required level of compressive strength is achieved in high-rise 
buildings [47]. To use this method, data is collected, then features are selected before machine learning 
is used for predictions. This is followed by GA optimization and checking the results to reach both the 
structural and environmental goals as shown in figure 3. 

 
Figure 3.Shows the flow diagram of proposed methodology. 
3.1 Data sources and preprocessing 
The initial phase of research is to put together a good set of data that includes vital features about the 
design of concrete mixes. Within the dataset are concrete batch records that contain information such 
as: 

• Cement content (kg/m³) 
• Aggregate sizes (coarse and fine) 
• Water content (kg/m³) 
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• Concrete slump (cm) 
• Compressive strength at 28 and 90 days (MPa) 

The dataset is formed using results from laboratory tests and actual mix designs at building sites. Only 
valid data is used in training after outliers and noise have been removed. The process eliminates mixes 
with unusual compression progress, only using data that can be trusted by the machine learning 
algorithm. Imputation or removing incomplete data is done depending on the type of missing data in the 
dataset. 
3.2 Feature Selection and Engineering 
Picking the right set of features makes the predictive model perform better. The analysis is performed on 
key features from domain knowledge that affect concrete mix design. These include: 

• Cement content: A critical input affecting the compressive strength and environmental impact. 
• Aggregate properties: The size and type of aggregates influence the workability and durability of 

the concrete. 
• Water content: Water-to-cement ratio significantly affects the strength and workability. 
• Concrete slump: An indicator of the concrete's workability and ease of placement. 

The amount a freshly mixed concrete sample slumps when lifted from its mold is called concrete slump 
and it determines the concrete's flow and how easy it is to place. 
At the same time, feature engineering helps produce extra features by altering existing information. Data 
from the ingredients is used to create ratios, in this case the water-cement ratio which supports more 
accurate predictions about how much cement is needed. Using the correlation matrix, strong correlations 
between features and 90-day compressive strength are found, resulting in further improvements to the 
input data. 
3.3 Machine Learning Prediction Using GBM 
In the next phase, a Gradient Boosting Machine (GBM) is applied to predict how much compressive 
strength concrete will have. Because GBM can understand complex nonlinear connections in the data, it 
is an effective tool for estimating concrete strength depending on different mix parameters. 
In this stage, the model is taught using data that includes cement content, water content, aggregate sizes 
and concrete slump. We want to determine the 90-day compression strength, since this corresponds to 
the curing way high-rise builds use, loading the concrete gradually. The approach of cross-validation is 
used to teach and check the model to keep it from fitting too much to the original data. 
The performance of the GBM model is examined with the help of the R² score, RMSE and MAPE. After 
training, the model calculates the predicted compressive strength using the input parameters which is 
then the basis for optimizing. 
3.4 Genetic Algorithm for Solving Multiple-Objective Problems 
Following training of the GBM model, the next thing to do is optimize the concrete mix design with a 
Genetic Algorithm (GA). The GA works to reduce cement use while aiming for a compressive strength 
of 90 days. GA explores and takes advantage of the available answers by simulating natural evolution. 
GA creates a first group of random concrete mix designs and assesses how well they do by considering 
how strong they are and how little cement they require. We design the fitness function so that mixes are 
rewarded for meeting the target strength and for using the least amount of cement. 
At every stage of the GA, it picks individuals, combines them and changes their traits to improve the 
mixes. The selected solutions from earlier generations set the standard for concrete preparation in the 
following generation. Iterations are carried out by the GA until the solution is found, at which stage the 
required design for the concrete is discovered that improves strength using the least amount of cement. 
GA Workflow for Concrete Mix Optimization 
Initial Population: 

Cement: 350 kg/m³, Water: 180 kg/m³, Aggregate Size: 40 mm, Slump: 12 cm 
Fitness Evaluation: 

Compressive Strength = 38 MPa (meets target) 
Cement Content = 350 kg/m³ 
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Fitness Score: High (meets strength and cement reduction objectives) 
Selection: 

Select top 50% of mixes with highest fitness scores. 
Crossover: 

Combine the cement content and water content of selected mixes to produce new mixes. 
Mutation: 

Slightly adjust cement content and aggregate size in some offspring mixes. 
Termination: 

After 20 generations, the best mix is found with cement content reduced by 12% and compressive 
strength meeting the target. 
Final Optimized Mix: 

Cement: 290 kg/m³, Water: 185 kg/m³, Aggregate Size: 38 mm, Slump: 11 cm 
 
3.5 Evaluation and Validation 
Following optimization, the strongest and most environmentally friendly concrete mix is investigated in 
terms of results and its effect on the environment. The amount of carbon emitted during the lifecycle of 
the new resource mix is measured and followed by comparing it to conventional mixes typically seen in 
the construction of skyscrapers. The mix that reduces cement use gives rise to reduced CO₂ emissions, 
helping make it environmentally less harmful. 
Evaluations are made to see how the optimized mix performs when measured against traditional mixes 
for its ability to be used, its durability and strength. For this study, the performance of the optimized mix 
is observed in a high-rise project, representing the usual conditions of construction. Experimental data is 
compared with the forecasts from both models to check if the results are accurate and possible. 
This research approach introduces a new way to use GBM and GA jointly to discover the best mix of 
concrete for high-rise projects. When machine learning is paired with evolutionary algorithms, the new 
system enables using less cement while meeting the needed concrete strength for construction projects. 
This method is likely to result in important improvements to concrete mix design, especially on massive, 
complex projects such as high-rise buildings. 
 
RESULTS AND DISCUSSION 
Improvements in optimizing concrete mixes for sustainable high-rise projects were shown using the 
suggested hybrid multi-objective optimization framework based on GBM and GA as shown in table 2. 
Table 2.Performance of proposed hybrid GBM + GA method against other common methods for 
concrete mix optimization 

Method R² Score 
Cement Content 
Reduction (%) 

CO₂ 
Emissions 
Reduction 
(%) 

Notes 

Hybrid GBM + 
GA (Proposed) 

0.92 12 12 
Multi-objective 
optimization with 
high adaptability 

Elastic Net 
Regression 

0.9 10 10 
Linear regression 
with regularization 

Random Forest 
Regressor 

0.85 8 8 
Tree-based, prone 
to overfitting 

Artificial 
Neural Network 

0.88 6 6 
Underfitting 
observed with 
limited data 
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While doing this, the GA reviewed many design options to lower the amount of cement in the concrete, 
all while maintaining a strong structure as shown in figure 4. 

 
Figure 4. Comparative Analysis of proposed hybrid GBM + GA method against other common methods 
for concrete mix optimization 
 
The analysis provided optimized mixes, resulting in a 12% decrease in cement compared to old methods 
testing for a 28-day strength. Python, XGBoost and DEAP libraries helped the model reach this goal by 
balancing the target of cement content and the impact caused by carbon emission. Each feature of the 
input such as aggregate sizes, water-cement ratio and admixture amounts, was used by the GBM to 
estimate the concrete compressive strength with high accuracy as shown in table 3. 
Table 3.Sample Statistical Parameters and Optimization Results for Concrete Mix Components 

Parameter Unit 
Min 
Value 

Max 
Value 

Average 
Value 

Optimized 
Range 

Cement Content kg/m³ 273 489 364.4 320 – 340 
90-day Compressive 
Strength 

MPa 26.7 55 38 Target: ≥ 38.0 

Slump Test cm 7 20 12 10 – 14 
Nominal Max 
Aggregate Size 

mm 19 50 37.1 30 – 40 

Water Content kg/m³ 166 216 182.5 170 – 185 
Coarse Aggregate 
Content 

kg/m³ 992 1184 1131.7 1100 – 1150 

Fine Aggregate 
Content 

kg/m³ 607 790 711.5 700 – 730 

 
As a result of the reduced operations, Woodhead Group also saw emissions decrease in line with its 
sustainability target. Because the model adjusts to a variety of mix parameters and curing conditions 
popular in high-rise constructions, it has strong practical value. Relying on both regression and neural 
networks, this new method is more accurate and allows for different optimization settings which is 
valuable for the mix design of sustainable concrete as shown in table 4. 
Table 4.Performance Comparison of Regression and Hybrid Optimization Models 

Algorithm / 
Method 

Train Accuracy 
(R²) 

Test Accuracy (R²) 

Hybrid GBM 
+ GA 
(Proposed) 

0.95 0.92 

0.92 0.9 0.85 0.88

12
10

8
6

12
10

8
6

Hybrid GBM + GA
(Proposed)

Elastic Net
Regression

Random Forest
Regressor

Artificial Neural
Network

Comparative Analysis of different methods for concrete 

mix optimization 

R² Score Cement Content Reduction (%)

CO₂ Emissions Reduction (%)
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Elastic Net 
Regression 

0.91 0.9 

Random 
Forest 
Regressor 

0.97 0.85 

Extra Trees 
Regressor 

0.99 0.82 

Decision 
Tree 
Regressor 

0.99 0.77 

 
The results show that using GBM’s predictive power with GA’s search ability helps address the balance 
between performance and sustainability in building with concrete today as shown in figure 5. 

 
Figure 5. Comparative Analysis of different hybrid optimization models. 
The proposed hybrid optimization method combining Gradient Boosting Machines (GBM) with Genetic 
Algorithms (GA) was evaluated against traditional machine learning models, including Elastic Net 
regression, Random Forest, and Artificial Neural Networks (ANN), to optimize concrete mix design for 
sustainable high-rise construction. Implemented using Python’s XGBoost and DEAP libraries, the hybrid 
approach achieved an R² score of 0.92 in predicting compressive strength, outperforming Elastic Net (R² 
≈ 0.90), Random Forest (R² ≈ 0.85), and ANN (R² ≈ 0.88) as shown in table 5. 
Table 5.Comparison of Error Metrics for Hybrid GBM + GA Model 

Dataset RMSE MAPE 
Training 
Data 

8.532 0.0184 

Test Data 10.274 0.0221 

All Data 9.543 0.0205 

 
Cement content reduction of approximately 12% was realized with the hybrid method, compared to 
around 10% reduction using Elastic Net from the base paper. This translated to a parallel 12% reduction 
in CO₂ emissions, which exceeds the roughly 10% reduction observed in earlier regression-based 
approaches targeting 90-day strength as shown in figure 6. 

0.95 0.91 0.97 0.99 0.990.92 0.9 0.85 0.82 0.77

Hybrid GBM +

GA (Proposed)

Elastic Net

Regression

Random Forest

Regressor

Extra Trees

Regressor

Decision Tree

Regressor

Comparative Analysis of Hybrid Optimization Models  

Train Accuracy (R²) Test Accuracy (R²)
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Figure 6. Comparative Analysis of Error Metrics for Hybrid GBM + GA Model 
The integration of GA allowed efficient exploration of the mix design space, optimizing multiple 
objectives simultaneously, unlike single-objective models. Additionally, the hybrid method demonstrated 
higher robustness and adaptability across varying curing conditions typical in high-rise construction, 
whereas ANN models showed underfitting issues with smaller datasets. Overall, the hybrid GBM-GA 
framework provides superior prediction accuracy and optimization flexibility, enabling more sustainable 
concrete mix designs with lower environmental impacts, marking a significant advancement over 
previously reported methods. 
 
CONCLUSION 
The system proposed in this research applies GBM and GA hybrid multi-objective optimization to support 
sustainable high-rise construction with machine-based concrete mix design. The approach manages to 
match high concrete strength with eco-friendly practices, achieving 92% accuracy for future 90-day results 
and using 12% less cement. These results offer proof that this method can help limit how much CO₂ is 
produced during the production of concrete. Unlike traditional regression and neural networks, using 
GBM-GA for modeling results in improved accuracy and flexibility for modeling important requirements 
of high-rise building construction. Following this method allows industry to design sustainable concrete 
while still guaranteeing proper performance. More research might develop this framework by including 
new types of material properties and automatic data integration from construction sites. 
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