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Abstract: A new method is suggested here for detecting defects in construction by using PyTorch to 
implement a ViT-based semantic segmentation model. Problems such as cracks, corrosion and uneven 
surfaces on construction sites are challenging for people to check visually which is why new automated 
methods need to be used. Thanks to the self-attention mechanism, the ViT model is able to detect and 
locate faults on construction surfaces with great accuracy. Research shows that the new method delivers 
stronger results on average Intersection over Union (mIoU) and pixel accuracy compared to traditional 
CNNs and gives steady performance across diverse defects and conditions. Even though it requires careful 
training, the final model is fast at running and can be used right away at the work site. These results 
suggest that transformer-based networks could play a major role in developing quality control and 
monitoring applications in construction. 
Keywords: Computer Vision, Defect Detection, Construction, Vision Transformer, Semantic Segmentation, Deep 
Learning, PyTorch 
 
INTRODUCTION 
There is a big need for quality and safe structures in infrastructure which continues to be a challenge in 
the construction industry. Cracks, corrosion and other surface problems can cause a building’s structure 
to fail and require expensive repairs when identified too late [1]. The main method used to inspect defects 
is manual visual assessment, meaning it takes a lot of time, is difficult and introduces human error. For 
this reason, there is an increasing need for accurate, fast and automated ways to discover defects in 
construction as shown in figure 1. 

 
Figure 1.Computer vision in construction. 
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The latest developments in computer vision and deep learning make it possible to detect defects without 
human help. Many people have used CNNs to detect and categorize defects in images and they have 
achieved good results. Even so, CNNs tend to miss details about the big picture and long connections 
needed to analyze complex defects in construction materials [2]. 
This research reviews the use of Vision Transformer (ViT) models for defect detection by identifying 
feature areas in construction projects. Because ViTs use self-attention it becomes easier for them to 
explore every detail in an image and hence notice subtle and unusual errors that other networks might 
miss [3]. The goal of this study is to improve the accuracy and stability of both locating and classifying 
defects by harnessing ViT. 
The ViT-approach proposed here uses PyTorch and blends data preprocessing with good semantic 
segmentation methods to solve difficulties related to sunlight, rugged textures and noise typically 
encountered in construction environments [4]. With this, work improves automated inspection which in 
turn can help improve safety, lower inspection charges and guide faster maintenance in construction. 
 
RELATED WORK 
Autonomous defect finding with the help of computers has recently become more significant as 
improving inspection accuracy and efficiency is vital. To identify cracks and corrosion on surfaces, early 
methods mainly depended on techniques such as edge detection [5], thresholding and morphological 
operations. Since they require little CPU power and are easy to use, their weakness lies in being troubled 
by changes in noise, lighting and frequently complex structures seen in construction sites. Due to deep 
learning’s popularity, CNNs are now widely used in defect detection because they are excellent at 
extracting important features. Results in semantic segmentation show that methods such as U-Net and 
DeepLab are effective for finding cracks and analyzing corrosion [6]. Yet, CNNs normally deal only with 
nearby data details and may not be able to spot global contextual details which are important for finding 
irregular or hidden flaws as shown in figure 2. 

 
Figure 2.Evolution of Defect Detection Methods. 
Lately, transformer systems like Vision Transformers (ViTs) have shown superior performance in 
computer vision because they can model relationships between faraway elements within the same picture 
[7]. Although first used in natural language processing, ViTs have been applied to image segmentation 
and have achieved better results than traditional CNNs in difficult situations. Because ViTs are able to 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4,2025 
https://theaspd.com/index.php  
 

1914 
 

focus on every detail in an image at the same time, they can segment construction defects more precisely 
[8]. PyTorch, because it is open-source, supports quick and convenient development and training of 
complex models. 
This research adds to these improvements by adopting a ViT-based model for accurately segmenting parts 
of construction that are defective [9-10]. Bringing together ViT’s Multiple-Attention panels with PyTorch 
multi-modal data processors overcomes previous ways, improving the reliability and accuracy of defect 
detection. Table 1 shows the summary of related work. 
Table 1. Summary of related work (2018-2025) 

Year 
Reference / 
Title 

Methodology Key Contributions Limitations 

2025 [11] 

Deep Learning 
for Crack 
Detection in 
Concrete 
Structures 

CNN-based deep 
learning model 
with transfer 
learning 

High accuracy in 
crack detection; real-
time processing 
capability 

Requires large labeled 
datasets; struggles with 
varying lighting 

2024 [12] 

UAV-Based 
Visual 
Inspection 
Using Object 
Detection 

Drone imagery + 
YOLOv5 for defect 
localization 

Automated aerial 
defect inspection; 
high spatial coverage 

Limited by drone flight 
time and weather 
conditions 

2023 [13] 

Multi-Sensor 
Fusion for 
Structural 
Defect 
Identification 

Fusion of thermal 
imaging and RGB 
images + CNN 

Improved detection 
accuracy by 
combining 
modalities 

Higher computational 
cost; sensor calibration 
needed 

2022 [14] 

Semantic 
Segmentation 
for Surface 
Defect 
Detection 

U-Net architecture 
for pixel-level 
defect 
segmentation 

Detailed defect 
mapping on 
surfaces; adaptable 
to multiple defect 
types 

Performance drops on 
complex textures; 
requires pixel-level 
annotation 

2021[15] 

Automated 
Rebar Corrosion 
Detection in 
Concrete 

Image 
enhancement + 
SVM classification 

Effective early 
corrosion detection; 
low false positive 
rate 

Limited to visible 
corrosion; sensitivity 
to noise 

2020 [16] 
Real-time Crack 
Detection Using 
Mobile Cameras 

Lightweight CNN 
model optimized 
for mobile devices 

Real-time processing 
on edge devices; 
user-friendly 
application 

Reduced accuracy 
compared to full-size 
models 

2019 [17] 

3D 
Reconstruction 
for Structural 
Damage Analysis 

Structure from 
Motion (SfM) + 
defect extraction 

3D defect 
visualization and 
measurement; aids 
maintenance 
planning 

Computationally 
intensive; requires 
multiple image angles 

2018 [18] 

Traditional 
Image 
Processing for 
Surface Defect 
Detection 

Edge detection + 
thresholding 
techniques 

Simple and fast 
defect detection; low 
hardware 
requirements 

Poor performance on 
noisy images; limited 
generalizability 
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2018 [19] 

Machine 
Learning for 
Concrete 
Surface Crack 
Classification 

Feature extraction 
+ Random Forest 
classifier 

Effective feature-
based classification 
of crack types 

Requires handcrafted 
features; limited to 
crack detection only 

2023 [20] 

Transformer-
Based Models 
for Construction 
Defect 
Detection 

Vision 
Transformers (ViT) 
trained on 
construction 
defects 

High accuracy and 
robustness; captures 
long-range 
dependencies 

High training cost; 
needs extensive 
annotated datasets 

 
RESEARCH METHODOLOGY 
This research looks at building an automated system for catching flaws in construction surfaces by 
applying computer vision. The leading goal is to accurately pinpoint and mark out defects such as cracks, 
corrosion and problems with the surface in various construction materials [21].  

 
Figure 3.Flow Diagram of Proposed Methodology. 
We use the Vision Transformer (ViT) and the PyTorch framework to carry out semantic segmentation 
for this task [22]. The basic parts of the methodology include gathering and preparing data, designing the 
model structure and carrying out evaluations as shown in figure 3. 
3.1 Data Collection and Preprocessing 
The data includes a variety of high-resolution images taken at construction sites which show different 
defects in various lighting, weather and surface textures. To enhance how well the model works and how 
efficiently it can be used, it includes RGB images and thermal imaging where accessible. The first step is 
to line up and standardize each type of data so that each region is measured the same in every modality 
[23]. 
Image enhancement approaches are used to correct problems with noise, shadows and the lighting in the 
image. Histogram equalization and adaptive contrast adjustment improve how well defects are seen on 
the image. Experiments are done to apply augmentation such as rotations, flips, brightness adjustment 
and created noise to boost the number of images and prevent overfitting. All the images are made to fit 
the right size and style required by the Vision Transformer [24]. 
3.2 Vision Transformer Architecture for Semantic Segmentation 
The central part of the methodology is ViT which is a transformer model that pays attention to what’s 
local and what’s global in each image. In contrast to CNNs that use small, local fields of view, ViT collects 
image data as fixed-size patches which helps it find complex and difficult defect patterns [25]. 
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ViT supports semantic segmentation by teaming its encoder with a decoder that enhances and expands 
the patch representations to individual pixel-level class predictions. Because of this architecture, it’s very 
easy to identify boundaries of defects in models [26]. Combining cross-entropy and Dice losses helps the 
model increase both accuracy on each pixel and overlap with the actual character defects. 
3.3 Training and Optimization 
The ViT architecture is coded in PyTorch, allowing for both flexibility and strong GPU usage. To 
accelerate training and improve the outcome, we initialize weights from a pre-trained ViT model that 
handles many images. The model is improved using the Adam optimizer along with a rate scheduler that 
automatically varies the learning rate when training on the construction defect dataset [27]. 
Because the size difference between defect regions and the background is common in defect detection, 
weighted loss functions are employed to deal with this issue [28]. Batch normalization and dropout layers 
stop the model from relying too much on the training set and early stopping interrupts training if the 
model doesn’t improve on the validation set. 
3.4 Evaluation Metrics and Validation 
Performance for each model is evaluated using mean Intersection over Union (mIoU), pixel accuracy, 
precision, recall and F1 score, as standard for semantic segmentation tasks [29-31]. They show an overall 
score for how well the system detects, how accurately it defines areas and the ratio of false positives to 
false negatives. 
Cross-validation helps confirm that the model can be applied to several types of construction sites and 
different kinds of defects. Inference speed is measured to ensure the model works smoothly in real time, 
required for applications at sites [31-35]. 
3.5 Implementation and Deployment 
The last stage of training with PyTorch’s tools for model quantization and pruning minimizes the model 
size and computational load, so it is deployable on mobile units and drones. With the system’s 
architecture, real-time checking of flaws is easy for inspectors to confirm via a simple interface [36-37]. 
It mixes what is best about Vision Transformers with conditions found at construction sites, to deliver a 
scalable and accurate approach to defect detection [38]. 
 
RESULTS AND DISCUSSION 
Table 2 shows the proposed use of Vision Transformer (ViT) for semantic segmentation helped to detect 
defects on construction surfaces more accurately. Thanks to ViT built in PyTorch, the model understood 
complex structures as well as context at once, precisely locating and categorizing types of construction 
defects such as cracks, surface irregularities and corrosion. The lower bound of mIoU which is 85%, was 
achieved which is well above traditional CNN methods. The advantage comes from the ViT handling 
long-range interconnections and giving emphasis to important features wherever they appear in the input 
picture which proves helpful in the usual construction scenarios full of various colors and defects of many 
sizes. 
Table 2.Depicts  the Performance of Vision Transformer (ViT) model against traditional CNN-based 
models for defect detection in construction 

Model 
Mean IoU 
(%) 

Pixel 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

Training 
Time 
(hours) 

Inference 
Time 
(sec/image) 

Vision 
Transformer (ViT) 

86.3 92.7 89.5 87.2 88.3 12 0.45 

DeepLabV3+ 81.2 90.3 85 83.5 84.2 8 0.4 
U-Net 78.5 88.9 83.7 82.1 82.9 6 0.35 

 
The combination and preparation of data types from vehicles also made the system more resistant to 
noise and variations in lighting commonly seen in field environments. Because of how well PyTorch uses 
GPUs and how it turbo-charges models, the model was capable of making decisions in real time which 
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allowed us to deploy it on-site. Yet, the method requires using a lot of computing power for training and 
access to a large amount of labeled information to perform its best. Subsequent work should concentrate 
on adopting semi-supervised learning and shrinking the model size to handle these difficulties. The 
findings suggest that ViT-based semantic segmentation is a good approach for detecting construction 
defects automatically and accurately as shown in figure 4. 

 
 
Figure 4.Shows the performance of Mean IoU (%).  Figure 5. Shows the performance of 
Pixel Accuracy (%). 
ViT model achieved better results in spotting defects on construction surfaces than the available 
traditional alternatives. Performed with PyTorch, ViT recorded a mIoU result of 86.3%, compared to 
78.5% and 81.2% returned by the commonly used U-Net and DeepLabV3+ CNN models. The defect 
localization results of the ViT were more accurate than those of U-Net and DeepLabV3+ as shown in 
figure 5. Additionally, ViT obtained an F1 score of 88.3% which is a significant increase in both precision 
(89.5%) and recall (87.2%), compared to the lower F1 scores of the original models (all below 85%). 
Thanks to its ability to model distant features and capture global details, the ViT was able to discover 
subtle and unusual imperfections that are generally unnoticed by CNNs whose awareness is limited to 
the immediate environment as shown in figure 6. 
 

 
Figure 6.Shows the Performance comparison of Precision, Recall and F1 Score. 
Although it was more accurate, training a ViT model for 12 hours took much longer than a CNN model 
because it is more complicated. Still, the inference speed of 0.45 seconds per image was well-suited for 
use in close to real-time programs as shown in figure 7.The findings prove that using PyTorch with Vision 
Transformers gives a solid and practical answer for automated defect detection in construction, while 
remaining open to more training optimization as shown in figure 8. 
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Figure 7.Performance of Training Time.                      Figure 8.Performance of Inference 

Time. 
 
CONCLUSION 
A semantic segmentation approach using a ViT architecture was presented, using PyTorch to implement 
it for defect detection in construction. With this method, ViT captures both distant and local info well 
which helps identify matters such as cracks and variations in the surface. The results of our experiments 
revealed that ViT achieved better performance than traditional CNNs, recording higher mean 
Intersection over Union (mIoU) and pixel accuracy. Because the model is rather difficult and takes time 
to train, its use in field inspections is still practical for real-time purposes. The approach’s success 
demonstrates that transformer-based models can greatly improve defect detection for construction firms. 
The main priority for future work is to make training more efficient and look into semi-supervised 
learning because dreferenata is limited in many real-life applications. 
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