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Abstract: 
This paper presents a novel two-stage deep learning framework for high-resolution satellite image classification, 
combining Enhanced Super-Resolution Generative Adversarial Networks with InceptionV3-based transfer learning. 
Our approach addresses the critical challenge of low-resolution input imagery by first applying a modified ESRGAN 
architecture with Residual-in-Residual Dense Blocks to perform 4× super-resolution (128×128 to 512×512 pixels), 
achieving significant improvements in image quality (28.4 dB PSNR, 0.87 SSIM) while maintaining real-time 
processing speeds (18.2 ms/image). The enhanced images are then classified through a fine-tuned InceptionV3 model, 
demonstrating superior performance across seven land cover categories (agriculture, airplane, buildings, forest, golf 
course, river, and tennis court). Experimental results show a 14% average increase in F1-score compared to direct low-
resolution classification, with particularly dramatic improvements for small objects (airplanes: +15%) and 
geometrically complex classes (golf/tennis courts: +19%). The complete system operates at 55 FPS on an NVIDIA 
A100 GPU, proving its practical viability for real-time satellite image analysis. This work establishes that super-
resolution pre-processing can substantially boost classification accuracy of 95% without compromising deployment 
efficiency, especially for challenging fine-grained categories in remote sensing applications. 
Keywords: Super-resolution, satellite image classification, deep learning, remote sensing, InceptionV3. 
1. INTRODUCTION 
The rapid advancement of satellite imaging technology has led to an exponential growth in remote sensing 
data, creating unprecedented opportunities for land cover classification and environmental monitoring. 
However, a critical challenge persists: many operational satellites produce medium-to-low resolution 
imagery (typically 10-30m/pixel), which severely limits the accuracy of automated classification systems, 
particularly for small objects and fine-grained land cover categories. While deep learning approaches like 
InceptionV3 have shown remarkable success in high-resolution satellite image analysis, their performance 
degrades significantly when applied to low-resolution inputs, with reported accuracy drops of 20-30% for 
critical classes like urban infrastructure and small vehicles. This paper addresses this resolution-
classification gap through a novel two-stage deep learning framework that synergistically combines 
Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) with transfer learning-based 
classification. Our approach innovates beyond existing solutions in three key aspects: First, we develop a 
domain-optimized ESRGAN variant incorporating (1) spectral attention mechanisms for multispectral 
consistency, (2) lightweight Residual-in-Residual Dense Blocks (RRDBs) for computational efficiency, and 
(3) a hybrid loss function balancing perceptual quality and classification-driven features. Second, we 
establish the first systematic evaluation of super-resolution's impact across seven distinct land cover 
categories, revealing those certain classes (e.g., golf courses, tennis courts) benefit disproportionately (15-
19% F1-score gains) from resolution enhancement. Third, we demonstrate real-time operational viability 
(55 FPS on A100 GPUs) through careful architectural co-design of the SR and classification components 
- a crucial but often overlooked requirement for satellite monitoring systems. Our comprehensive 
experiments on a newly curated dataset show that the proposed framework achieves 14% average 
improvement in classification accuracy compared to state-of-the-art low-resolution baselines, while 
maintaining computational efficiency suitable for operational deployment. These advances open new 
possibilities for exploiting the vast archives of medium-resolution satellite imagery (e.g., Sentinel-2, 
Landsat) in applications ranging from precision agriculture to urban planning, where existing approaches 
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have been limited by resolution constraints. The paper's contributions are validated through, ablation 
studies quantifying each component's impact, comparative analysis against 5 baseline methods, and 
operational testing on simulated real-world deployment scenarios. The remainder of this paper is 
organized as follows: Section 2 reviews related work in super-resolution and satellite image classification. 
Section 3 details our methodology, including the modified ESRGAN architecture and integrated 
classification pipeline. Section 4 presents experimental results and analysis with ablation study, and 
Section 5 concludes with future research directions. 
2. LITERATURE REVIEW 
Super-resolution and deep learning-based classification have emerged as critical tools for improving 
satellite image analysis. However, most existing work treats these tasks independently, neglecting the 
potential benefits of an integrated pipeline for land cover classification. 
2.1. Super-Resolution in Remote Sensing 
Recent years have witnessed significant advancements in super-resolution (SR) techniques for remote 
sensing applications. The seminal work by Wang et al. (2018) introduced ESRGAN (Enhanced Super-
Resolution Generative Adversarial Network), which established new benchmarks in natural image super-
resolution through its innovative use of Residual-in-Residual Dense Blocks (RRDBs) and perceptual loss 
functions. Subsequent adaptations by Zhang et al. (2021) demonstrated the potential of ESRGAN for 
satellite imagery by incorporating spectral attention mechanisms, achieving a 15% improvement in PSNR 
over traditional interpolation methods. However, these studies primarily focused on generic image quality 
metrics rather than task-specific enhancements. 
The application of SR techniques specifically for classification tasks has been explored more recently. 
Yuan et al. (2022) demonstrated that SR pre-processing could improve urban land cover classification 
accuracy by 9-12%, while Chen and Li (2023) reported similar benefits for agricultural monitoring 
applications. Notably, these studies employed simpler SR architectures (SRCNN and SRGAN variants) 
and did not investigate the differential impact across diverse land cover categories. 
2.2. Deep Learning for Satellite Image Classification 
Transfer learning approaches using deep convolutional neural networks have become dominant in 
remote sensing classification tasks. The Inception architecture family, first introduced by Szegedy et al. 
(2016), has proven particularly effective due to its efficient use of computational resources through 
parallel convolutions. Zhu et al. (2019) demonstrated the effectiveness of InceptionV3 for medium-
resolution satellite imagery, achieving 88.7% accuracy on a 10-class land cover dataset. Recent work by 
Patel and Sharma (2023) highlighted the challenges of small object detection in satellite imagery, 
particularly for classes like vehicles and aircraft. Their findings suggest that resolution limitations 
significantly impact classification performance for such categories, with accuracy dropping by up to 25% 
for objects smaller than 20 pixels in width. 
2.3. Integrated SR-Classification Approaches 
The integration of SR with classification pipelines has emerged as a promising research direction. Liu et 
al. (2022) proposed a joint training framework that achieved 6-8% accuracy improvements on urban 
classification tasks. However, their approach suffered from computational inefficiency, with processing 
times exceeding 100ms per image. More recently, Wu et al. (2023) developed a lightweight SR module 
specifically optimized for drone imagery, demonstrating the feasibility of real-time operation (45 FPS) 
while maintaining classification accuracy. 
Despite these advancements, several critical gaps remain in the literature: 

1. Most SR studies focus solely on generic image quality metrics (PSNR, SSIM) rather than 
task-specific performance measures 
2. Existing classification approaches typically assume adequate input resolution, neglecting 
the potential of SR for challenging cases 
3. Limited research exists on the computational trade-offs of integrated SR-classification 
pipelines 
4. The differential impact of SR across diverse land cover categories remains poorly 
understood 
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Our work addresses these gaps through several key contributions: 
• Development of a modified ESRGAN architecture optimized for classification-driven 
super-resolution 
• Comprehensive evaluation of SR benefits across seven distinct land cover categories 
• Detailed analysis of computational efficiency and real-time operation capabilities 
• Demonstration of significant accuracy improvements (14% average F1-score) while 
maintaining 55 FPS throughput and an accuracy of 95%. 

This literature review establishes the theoretical and empirical foundation for our integrated SR-
classification pipeline, while highlighting the novel aspects of our contribution to the field of satellite 
image analysis. 
3. METHODOLOGY 
The proposed approach follows a two-stage pipeline: super-resolution enhancement followed by 
classification using InceptionNet. First, low-resolution satellite images from the train, test, and validation 
sets are up scaled using an Enhanced Super-Resolution GAN to recover fine-grained details. 
The proposed ESRGAN based super-resolution enhancement specifically addresses the challenges of our 
seven-class satellite dataset (agriculture, airplane, forest, buildings, golf course, river, tennis court) by 
employing a modified architecture with 10 RRDB blocks and a spectral normalized discriminator, 
optimized to preserve class discriminative features during 4× upscaling of 128×128 input patches. The 
generator is trained using a hybrid loss function (L1 + VGG19 perceptual + relativistic adversarial) on our 
domain specific data, ensuring enhanced textures for subtle class distinctions, particularly critical for 
separating spectrally similar categories like golf courses and tennis courts, while the subsequent 
InceptionV3 classifier benefits from these refined inputs, demonstrating a 12.7% improvement in F1-
score compared to direct classification of low-resolution images, with the most significant gains observed 
for small feature classes (airplanes: +15.2%, buildings: +13.8%). 
The data loading and pre-processing phase begins by initializing three separate data generators for the 
training, validation, and test sets, each rescaling pixel values to the range [0,1] for normalization. For the 
training data specifically, a series of augmentation techniques are applied to enhance dataset diversity and 
improve model generalization, including random rotations within ±20 degrees, horizontal and vertical 
shifts of up to 20% of the image dimensions, shear transformations of ±20%, zoom variations of ±20%, 
and random horizontal flips. All images across the three datasets are loaded in batches of 32 and 
uniformly resize to 128x128 pixels to ensure dimensional consistency, while their corresponding labels 
are automatically encoded as categorical vectors to facilitate multi-class classification. The augmentation 
parameters are carefully constrained to 20% of the image dimensions to preserve meaningful spatial 
relationships and prevent excessive distortion of critical features in the satellite imagery. This pre-
processing pipeline ensures the input data is properly standardized, augmented, and formatted for 
efficient training and evaluation of the deep learning model. 
Algorithm 1: Satellite Image Classification with Super-Resolution and InceptionNet 
Input: Seven class satellite images. 
Output: Super resolved image classified into seven classes.  

1. Initialize ImageDataGenerator for train, validation, and test sets 
2. Apply pixel normalization: I = I/255 (for all images) 
3. For training data only, apply augmentation: 
4. I = rotate (I, θ) where θ ~ Uniform (-20°,20°) 
5. I = translate (I, Δx, Δy) where Δx, Δy ~ Uniform(-0.2w,0.2w) 
6. I = shear (I, φ) where φ ~ Uniform (-0.2,0.2)  
7. I = zoom (I, z) where z ~ Uniform (0.8,1.2) 
8. I = flip(I) with probability 0.5 
9. Resize all images to 128×128 pixels 
10. For each low-resolution image I_LR: 

        I_HR = Generator(I_LR) 
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11. Model Architecture with  
  F = InceptionV3_frozen(I_HR), F ∈ ℝ⁸ˣ⁸ˣ²⁰⁴⁸ 

    z = GlobalAveragePooling(F) ∈ ℝ²⁰⁴⁸ 
 h = ReLU(W₁z + b₁), W₁ ∈ ℝ⁵¹²ˣ²⁰⁴⁸ 

        y = softmax(W₂h + b₂), W₂ ∈ ℝ⁷ˣ⁵¹² 
12.  Initialize: 

      Adam optimizer (α=0.001, β₁=0.9, β₂=0.999) 
      Loss: L = -∑ y_i log(ŷ_i) (categorical cross-entropy) 
    For epoch and each batch X_b, 

1)        Forward pass: ŷ = model(X_b) 
2)        Compute loss: L = -mean (∑ y_i log(ŷ_i)) 
3)        Back propagate: ∇W = ∂L/∂W 
4)        Update weights: W ← W - α·m̂/(√v̂ + ε) 

              where m̂ = m/(1-β₁ᵗ), v̂ = v/(1-β₂ᵗ) 
     13. Evaluate on validation set 

1)    Accuracy = (TP+TN)/(P+N) 
2)    Confusion matrix C where C_ij = # class i predicted as j 
3)    Precision_c = TP_c/(TP_c + FP_c) 
4)    Recall_c = TP_c/ (TP_c + FN_c) 
5)    F1_c = 2·(Precision_c·Recall_c)/(Precision_c+Recall_c) 

The Algorithm 1 implements a transfer learning approach using the InceptionV3 architecture for satellite 
image classification. First, it loads the pre-trained InceptionV3 model (trained on ImageNet) while 
excluding its top classification layers, and freezes all its weights to prevent updates during training, 
allowing the model to utilize learned feature extraction capabilities without modifying the original 
weights. The model is then extended with a custom classification head consisting of four key layers: a 
GlobalAveragePooling2D layer that reduces the spatial dimensions of the features to 1×1×2048, followed 
by a 512-unit Dense layer with ReLU activation for non-linear transformation, a Dropout layer with 0.4 
rate to prevent overfitting, and finally a 7-unit softmax output layer for class probability prediction 
corresponding to the seven satellite image categories. The model is compiled using the Adam optimizer 
with a learning rate of 0.001 and categorical cross entropy loss function, with accuracy as the evaluation 
metric. During training, the model processes batches of augmented training images for 100 epochs while 
simultaneously validating performance on the validation set. After training, the model's generalization 
capability is assessed on the test set, where both the test loss and accuracy are computed. Finally, class 
predictions are generated for the test set by taking the argmax of the output probabilities, which are then 
compared against the true labels for comprehensive performance evaluation. This implementation 
efficiently combines transfer learning with custom classification layers, making it particularly suitable for 
low-resolution satellite image analysis tasks. 
4. EXPERIMENTAL RESULTS AND ANALYSIS 
The research utilizes a satellite image dataset organized into three distinct subsets for training, validation, 
and testing. The dataset comprises 2,450 training images (350 samples per class), 700 validation 
images (100 per class), and 350 test images (50 per class), distributed across seven categories: Agriculture, 
Airplane, Forest, Buildings, Golf Course, River, and Tennis Court. All images are standardized to a 
resolution of 128×128 pixels and pre-processed with pixel normalization (scaled to [0,1]). The training set 
incorporates data augmentation techniques (random rotation, flipping, and shifts) to enhance model 
generalization, while validation and test sets remain unaugment for unbiased evaluation. 
Experiments were conducted on an NVIDIA DGX A100 system, equipped with 8× A100 GPUs (40GB 
memory each). The platform leverages CUDA 11.4 and cuDNN 8.2 for GPU acceleration, with the 
model implemented in Tensor Flow 2.8 using mixed-precision training (FP16/FP32) to optimize 
computational efficiency. The system’s parallel processing capabilities ensure rapid training cycles, with 
each epoch completing in approximately 2.3 minutes under the configured batch size of 32.  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4, 2025 
https://theaspd.com/index.php 
 

1467 
 

The experimental results demonstrate significant improvements through ESRGAN enhancement across 
three key dimensions as in Table 1 and visually demonstrated in Figure 1. For image quality, the super-
resolution module achieved 28.4 dB PSNR representing a 14% improvement over conventional bicubic 
up sampling, while maintaining high structural fidelity (0.87 SSIM), with efficient processing at 18.2 ms 
per image.  
Table 1: ESRGAN Performance Analysis. 

Metric 4x Upscaling (128 -> 512 
PSNR (dB) 28.4 ± 0.7 
SSIM 0.87 ± 0.03 
LPIPS 0.12 ± 0.04 
Inference Time 18.2 ms/image 

 
 
Figure 1: Visual Comparison of original image with super-resolved image. 
The model's performance was rigorously evaluated using standard classification metrics and visual 
analytics. The classification report revealed an overall accuracy of 95%, with detailed precision, recall, 
and F1-scores computed for each of the seven classes. Precision (the ratio of true positives to all predicted 
positives) and recall (the ratio of true positives to all actual positives) were calculated as  
Precision, P = TP/(TP+FP) and  
Recall, R = TP/(TP+FN)  
while the F1-score (the harmonic mean of precision and recall) was derived as  
F1 = 2*(P*R)/(P+R).  
These metrics demonstrated particularly strong performance for geometrically distinct classes like 
agriculture and airplanes, which achieved F1-scores of 0.97 and 0.99 respectively.  
The confusion matrix visualized in Figure 2 clearly showed the model's prediction patterns through its 
dominant diagonal elements, where each element C_ij represented the count of class i samples predicted 
as class j. The matrix revealed minimal off diagonal confusion, with the most frequent misclassification 
occurring between river and golf course (7% of cases), likely due to their similar structural features in 
satellite imagery. This comprehensive quantitative analysis, combined with the visual representation of 
the confusion patterns, provided robust evidence of the model's classification capabilities and its 
limitations in distinguishing between certain spectrally similar land cover categories. 
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Figure 2: Confusion Metrics across seven land cover classes. 
The classification results in Table 2 demonstrate strong performance across all seven land cover 
categories, with an overall accuracy of 95%. The model achieved near perfect classification for airplanes 
(precision=1.00, recall=0.98, F1=0.99) and agricultural areas (precision=0.98, recall=0.96, F1=0.97), 
indicating excellent discrimination of these distinct features. Building detection also performed 
exceptionally well (precision=0.96, recall=0.98, F1=0.97), while forest areas showed complete recall (1.00) 
but slightly lower precision (0.91), suggesting some false positive identifications of other green spaces as 
forest. Golf courses and tennis courts were classified with high reliability (F1=0.93 and 0.95 respectively), 
though river classification showed slightly lower but still robust performance (precision=recall=0.90, 
F1=0.90). The balanced metrics across all classes (macro and weighted averages both at 0.95) confirm the 
model's consistent performance without bias toward any particular category. These results, obtained from 
an evenly distributed test set of 50 samples per class (350 total), validate the model's effectiveness in 
distinguishing between various land cover types from satellite imagery, with particular strengths in 
identifying manmade structures and distinct natural features. 
Table 2: Classification Metrics across seven land cover classes, with support counts and aggregate 
measures. 

Class Precision Recall F1-Score Support 

Agricultural 0.98 0.96 0.97 50 

Airplane 1.00 0.98 0.99 50 

Buildings 0.96 0.98 0.97 50 

Forest 0.91 1.00 0.95 50 

Golfcourse 0.96 0.90 0.93 50 
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River 0.90 0.90 0.90 50 

Tenniscourt 0.96 0.94 0.95 50 

Accuracy   0.95 350 

Macro Avg 0.95 0.95 0.95 350 

Weighted Avg 0.95 0.95 0.95 350 

The model's predictive performance was visually validated in Figure 3 of randomly sampled test images, 
with each subplot displaying the input image alongside its true and predicted labels. Correct classifications 
(where true and predicted labels matched) were highlighted in green, while misclassifications appeared in 
red. This visualization revealed several key patterns: the model demonstrated particular strength in 
identifying distinct features like airplanes and agricultural fields, where all sampled instances were 
correctly classified. However, some confusion occurred between visually similar categories, most notably 
between golf courses and agricultural in one misclassified example, where both land use types share 
comparable textures and greenspace characteristics in overhead imagery. Buildings were consistently 
recognized across various architectural styles and densities. This qualitative assessment complements the 
quantitative metrics by providing concrete examples of both the model's strengths and areas for potential 
improvement in distinguishing between spectrally or texturally similar land cover types. 

 
Figure 3: Sample predictions with true and predicted labels. Correct classifications are shown in green, 
misclassifications in red. The model demonstrates strong performance on distinct features while 
occasionally confusing visually similar categories. 
The super-resolution enhancements translated directly to classification performance, yielding the most 
dramatic gains for small objects (airplanes: +15% F1-score) and geometrically complex classes (golf/tennis 
courts: +19%), while naturally distinct categories like forests maintained strong performance at 7% 
improvement, illustrated in Table 3. The complete system operates at 55 FPS on an A100 GPU, with the 
ESRGAN component adding just 18ms latency to the classification pipeline, making it practical for real-
time applications. These metrics collectively validate that the ESRGAN pre-processing provides 
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meaningful quality enhancements without compromising operational efficiency, particularly benefiting 
challenging small-feature and texture-sensitive classes in satellite imagery analysis. 
Table 3: Classification Improvement with ESRGAN 

Class F1(LR) F1(SR) ΔF1 
Agriculture 0.85 0.97 +14% 
Airplane 0.86 0.99 +15% 
Buildings 0.84 0.97 +16% 
Forest 0.89 0.95 +7% 
Golf Course 0.78 0.93 +19% 
River 0.81 0.90 +11% 
Tennis Court 0.80 0.95 +19% 
Macro Avg 0.83 0.95 +14% 

Ablation study: Our ablation study systematically evaluates the impact of key model components on 
classification performance. The full model (InceptionV3 with Global Average Pooling, 512-unit dense 
layer, and 0.4 dropout) achieves a 0.95 F1-score, serving as our baseline. Removing ImageNet pretrained 
weights results in the most significant performance drop (9.5% decrease in F1-score to 0.86), 
demonstrating the critical importance of transfer learning for feature extraction. Disabling data 
augmentation reduces performance by 4.2% (F1=0.91), particularly affecting minority classes, while 
removing dropout leads to a smaller but notable 3.2% decrease (F1=0.92), accompanied by increased 
validation loss, confirming its regularization benefits. The choice of Global Average Pooling over 
traditional flattening proves optimal, providing equivalent accuracy while reducing parameters by 80.6% 
(from 112.4M to 21.8M) and improving inference speed by 21.6%. Interestingly, reducing the dense layer 
size from 512 to 256 units shows minimal performance impact (ΔF1=0.01) with notable parameter 
reduction, suggesting a potential optimization path for resource constrained deployments. These 
experiments, conducted under controlled conditions with identical training protocols, validate our 
architectural decisions, with pretraining and augmentation emerging as the most critical factors for model 
performance, while the GAP/dropout combination optimally balances accuracy and computational 
efficiency. The results provide clear guidance for future optimizations and establish quantitative 
benchmarks for component contributions to overall system performance. Table 4 summarizes the 
advantages of our approach compared to existing methods,  
Table 4: Comparison with existing methods 

Method Avg. F1 
Improvement 

Processing Speed Class-Specific Optimization 

Bicubic + InceptionV3               Baseline 60 FPS No 
SRGAN (Wang 2018) +8% 32 FPS No 

ESRGAN (Zhang 2021)             +11% 28 FPS Partial 
Proposed approach            +14% 55 FPS Yes 

5. CONCLUSION AND FUTURE WORK 
This research presented a robust deep learning framework for satellite image classification, using 
ESRGAN and InceptionV3 with transfer learning and data augmentation to achieve strong performance 
across seven land cover categories. The model demonstrated an overall accuracy of 95%, with particularly 
high precision in detecting distinct features like airplanes (F1=0.99) and agricultural areas (F1=0.97). 
The confusion matrix revealed minimal misclassifications, primarily occurring between spectrally similar 
classes (e.g., golf courses vs. agricultural). Our ablation study confirmed the importance of pretrained 
weights (9.5% F1-score drop without them) and data augmentation (4.2% performance decrease when 
disabled), while Global Average Pooling (GAP) proved more efficient than flattening, reducing 
parameters by 80.6% without sacrificing accuracy. These findings highlight the effectiveness of our 
approach in automating land cover classification from low resolution satellite imagery. 
To advance this research, we will focus on two key directions:  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4, 2025 
https://theaspd.com/index.php 
 

1471 
 

(1) Enhanced feature discrimination through attention mechanisms (e.g., CBAM) to improve 
differentiation between spectrally similar classes like urban areas and wetlands, and  
(2) Efficiency optimization via model quantization and pruning for edge device deployment in real-time 
monitoring systems. These improvements will address current limitations in fine grained classification 
while enabling practical applications in resource-constrained environments. 
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