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Abstract— This paper aims in the development of Optical Character Recognition (OCR) technique in order to extract the text from 
image. It employs Tesseract-OCR coupled with OpenCV-Python and Pillow Python library for image preprocessing, text detection 
and extraction. The image processing algorithms include image to grayscale, image cleaning, image thresholding, and image edge 
detection that make text more readable and machine identifiable for the system to process. The PyTesseract then takes the extracted 
text, removes any unwanted spaces since this format can then be easily fed into different data processing pipelines. This approach 
accepts most popular image formats, including JPEG, PNG, TIFF, PSP, GIF. It also can solve problems of noisy or distorted or 
low-contrast images by using adaptive filters and contrast enhancement algorithms. Moreover, this system is intended for document 
scanning, such as the automation of data entry, text analysis in real-time, and for visually impaired individuals. It can therefore be 
extended for text translation, handwriting recognition and data extraction from invoices, forms, and other official documents. Further 
development may implicate the use of improved and developed models like the EAST for sentence detecting, CRNN or transformers 
and deploying OCR services as cloud platforms for extended processing. The extraction and processing of text from various image 
formats is a useful endeavor that can be applied in numerous industries and thus the scalability and efficiency of the current project 
work enhances its value. 
Keywords: Convolutional Neural Networks, Tesseract, Optical Character Recognition, Long Short-Term Memory, Text 
Extraction. 
 
I. INTRODUCTION  
Text recognition from digital images has become relevant and valuable in numerous areas where text from documents, 
for instance, is needed for data entry or recognition of text from real-world scenes and scenes captured on camera. 
The objective of this approach is to build a proficient OCR using the Tesseract- OCR, OpenCV-Python, and Pillow 
to detect and extract text correctly. The key component of this system is Tesseract-OCR, an open-source OCR engine 
that can identify both printed as well as handwritten data from scanned images or documents. Unfortunately, raw 
images may be noisy, distorted, or even have inferior contrast and may not be useful in properly extracting text. In 
response to these challenges, OpenCV is utilized in pre-processing the images through gray-scale conversion, 
thresholding and noise reduction so as to improve on the text detection clarity. Also, Pillow is used for image pre-
processing purposes, enhancing image quality to help for OCR enhancement. The proposed system follows a 
structured pipeline: first, input images are pre-processed to improve readability, then Tesseract-OCR extracts the text, 
and finally, post-processing techniques are applied to clean and structure the output. The Tesseract-OCR consists of 
Deep CNN which identifies the text. The extracted text is converted into a machine-readable format, making it 
suitable for various applications such as automated document digitization, intelligent data extraction, and business 
process automation. Due to the ability to automate texts of any complexity, this OCR-based solution can be applied 
widely throughout various sectors of the economy that require electronic document recognition, including education, 
healthcare, and law that involves working with extensive documentation. Due to the integration of computer vision 
and OCR approach, it presents a comprehensive, effective, and autonomous means of text detection this makes the 
project relevant to the contemporary scene.  
A. Preparations and Tasks 
 The major tasks that need to be executed for this project include a big number of important steps to extract text from 
images correctly. To this end, I first use OpenCV and Pillow to acquire and preprocess our images in order to improve 
image quality with techniques like grayscale conversion, noise reduction, and thresholding. Second, text detection 
and recognition is performed using PyTesseract, which reads text from processed images. It then posts processes 
extracted text to improve its accuracy by cleaning and formatting as unwanted characters and errors. Last but not the 
least, the recognized text can be studied, saved or implanted in different applications including document digitization, 
automated data entry and real- time text recognition since the system is reliable and efficient enough for practical 
usage.  
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B. Maintaining the Integrity of the specifications 
This approach extracts the text from images with the help of OCR technology. It uses Tesseract-OCR, OpenCV-
Python, and Pillow for image pre-processing, text detection and extraction. The system processes images efficiently by 
grayscale conversion, noise reduction, thresholding and edge detection to increase the text readability and recognition. 
In our last layer, we use PyTesseract to convert extracted text to machine readable form, and then it can seamlessly be 
integrated into any data processing workflow. It supports multiple image formats like JPEG, PNG, etc. and excels at 
noisy, distorted or low contrast images with the support of adaptive pre-processing techniques.For this project, Python 
3.8 is used with the latest stable version of Tesseract-OCR, OpenCV (cv2), Pillow, and NumPy libraries for image 
processing and matrix formulation. The main pipeline can also be expanded with optional deep learning-based 
improvements powered by either TensorFlow/Keras/PyTorch in case the images are complex. On the next, it works 
best for Windows, Linux, and macOS with the additional dependencies installed through pip. As for the hardware 
requirements, it is worthwhile to use quad-threaded Intel Core i5 or the AMD Ryzen 5 as a bare minimum alongside 
8 GB RAM and any dedicated or integrated graphics card since the enacting of the image is very important. Real time 
applications may require a better input image quality and thus, the use of a high-resolution camera or a scanner is 
recommended. For large scale processing a dedicated high performance computing platform is essential than is having 
a dedicated GPU, for instance, GTX/RTX and also dedicating an SSD for processing. This system has application to 
document digitization, automated data entry, real time text analysis, and assistive technologies for the blind. This can 
be extended for multilingual text recognition, handwriting analysis or structured data extraction from Invoices, forms 
and official documents. Future improvements might also involve incorporating deep learning-based OCR 
enhancements using EAST, CRNN or transformers; and incorporating cloud-based OCR services to process at scale. 
This project delivers a scalable and efficient approach for obtaining and processing text from a variety of image sources, 
making it beneficial across a broad range of industries.  
 
II. LITERATURE REVIEW 
In [1], a method is introduced that uses bidirectional Long Short-Term Memory (BiLSTM) networks to extract and 
understand text from images of medical lab reports. This solution is aimed at improving how such information can 
be shared through Electronic Health Records (EHRs). The approach is split into two main components: detecting 
where the text is and then recognizing what it says. The detection step uses small patches of the image and is trained 
to reach a recall rate as high as 99.5%. For the recognition step, the network combines features from different depths, 
which helps especially when dealing with multiple languages. This setup could support better integration of patient 
history and more active patient participation in healthcare decisions.In [2], the focus shifts to how synthetic text 
images can be created for training AI models. Traditional rule-based and learning-based methods often lacked the 
right kind of datasets, so the authors developed a new one called DecompST. This dataset includes detailed features 
like text structure, stroke masks, and background cleanup. Using DecompST, they built a system called the Learning-
Based Text Synthesis (LBTS) engine. It consists of TLPNet, which picks the best spots in the image for placing text, 
and TAANet, which adjusts how the text looks to fit the background. Their experiments show that LBTS generates 
training images of much better quality than previous techniques, helping improve text recognition in real-world 
images.In [3], the authors address a known limitation in CLIP (Contrastive Language-Image Pretraining) models—how 
similarity between text and images is calculated. By applying mathematical transformations like sine and sigmoid to 
the similarity scores, they fine-tune how the model understands connections between visual and textual data. They 
also simplify the model using DistilBERT for text and ResNet50 for images, keeping it efficient on limited hardware. 
Tested across ten datasets, the modified CLIP model performs noticeably better, especially on datasets like 
PatchCamelyon, FGVCAircraft, and COCO.The progression of text recognition techniques is broadly reviewed in 
[4], showing how the field has moved from handcrafted methods to learning-based and hybrid models. For instance, 
earlier systems designed for the Devanagari script relied on Legendre moment-based features and basic neural 
networks [5], which were later upgraded with CNNs, capsule networks, and transfer learning to achieve better accuracy 
and adaptability [6]. In the medical field, particularly with handwritten prescriptions, systems began using a mix of 
patch-based text detection and advanced recognition models that combine CRFs, BiLSTMs, and attention 
mechanisms to handle complex layouts [7].When it comes to recognizing vehicle license plates in different languages 
and formats, systems have successfully combined Tesseract OCR with adaptive thresholding, tailored for specific 
regional requirements [8]. Similarly, OCR for less common scripts like Javanese has addressed the unique challenge 
of segmentation using lightweight, Android-compatible models built with CNNs and Tesseract [9]. In lab reports, 
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multilingual text recognition has been enhanced through CRNNs and region-based detectors, with later 
improvements involving techniques that combine features from different layers of the model [10]. 
In the area of generative AI, research has shown that how a prompt is written directly affects the quality of the 
generated images in systems like DALL·E and GPT-3. To improve this, strategies like in-context learning and 
automatic prompt optimization have been proposed to help models generate clearer and more accurate results [11]. 
A broader look into this domain reveals how the shift from GANs to diffusion-based models like Imagen and Stable 
Diffusion has opened new possibilities, though limitations around multilingual support and ethical concerns still 
remain [13].For extracting structured data—such as parsing multilingual CVs—modern NLP techniques now favor 
Transformer-based models like BERT over traditional rule-based methods. These newer models offer better 
multilingual performance and allow clearer visualization of how information is interpreted by the AI [12]. Models like 
CLIP, which can link text and images through shared embeddings, have also been enhanced by tweaking the way 
similarity is calculated—showing that introducing more diversity into similarity matrices can further improve 
performance [14].Scene text detection has also advanced with the blending of CNNs and transformer models, often 
using Bézier curves for precise text localization and multi-scale fusion to better detect irregularly shaped text [15]. 
Supporting strategies, such as using radial wavelet entropy and Dense-SIFT descriptors, provide added resilience in 
messy or low-contrast environments by compacting features and combining results from different models [16]. 
To boost visual clarity, techniques like gamma correction have been re-examined using texture analysis tools like 
GLCM and Otsu’s thresholding method. However, since GLCM can slow down processing, optimized 
implementations using C or C++ have been developed for faster, real-time results [18].On the practical side, 
deployment-friendly OCR systems have been built using Laravel with Tesseract, making them suitable for web-based 
applications that need to process text quickly and reliably [23]. Another effective combination pairs YOLOv3 with 
Tesseract, where YOLO handles the task of identifying text regions and Tesseract handles the transcription—resulting 
in a more accurate end-to-end recognition pipeline [25]. 
 
III. SYSTEM ARCHITECTURE 

The following paper demonstrates a systematic approach to text extraction using OCR and presents the architecture 
of a system designed for this purpose. It comprises four key stages: It also covers Input, Preprocessing, OCR Processing, 
and Output Generation in a way that is both highly accurate and as efficient as is possible. Starting with the Input 
Layer, images containing text are fed into it from different channels such as scanned documents, photographs, 
screenshots, or received through email. The quality, resolution, and texts displayed on these images may differ. In 
order to increase the TEXT Accuracy, the Preprocessing Layer includes the conversion of the input image to grayscale, 
image filtering, binarization, and image contrast enhancement with the aid of OpenCV and Pillow. These post-
processes enhance and clean the image as well as optimize the image for text based on the assumption that the textual 
parts should be clear for extraction. After preprocessing, the cleaned image then goes through OCR Processing Layer 
for character, word, and line detection by using Tesseract-OCR. Tesseract then translates a processed image into 
machine readable form using pattern recognition and language models for better analysis. Nonetheless, in some cases, 
such as in text extraction from structured documents by scanning, the raw text might be distorted by issues like font 
style, rotation, or presence of noise that might need subsequent formatting such as spell check, punctuation check 
among others. Last but not the least in the Output Generation Layer is the optimized textual result of the process 
stored, viewed or written to text files, JSON or placed as records in a database for further utilization. This layered 
approach of structuring the system guarantees it a highly effective and efficient OCR-based text extraction which 
would be appropriate for use in functions such as automated document conversion, data entry services, real-time text 
processing across various business domains including education, healthcare, business, and other sectors.  
A. Input Layer 
The Input Layer is the first layer of the OCR-based text extraction system; it is tasked to acquire images as well as 
handle the image formats that are compatible by the system. Input can be entered by the users through tweeter, emails, 
photos, scanned documents, and screenshots. The variety of accepted formats include JPEG, PNG, TIFF, and BMP 
making the product versatile in many different applications. Moreover, the input images can be taken from real-time 
scenarios like camera and scanned images of hand written documents, making the system useful in use cases for 
instance automatic data entry and document scanning. Once an image has been inputted, the system runs a check on 
the particular file format to ensure it is supported together with the resolution required for the correct optical 
character recognition. Sometimes, images with low resolution are submitted which results in poor reading accuracy; 
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therefore, users are required to provide high-quality images if required. Additionally, if the image is characterized by 
mirrored or inclined text, it can later be subjected to decreeing during the preprocessing step.  
By effectively recognizing and accepting various formats of images and image sources, the system provides a substantial 
basis for the subsequent preprocessing and text extraction. With that, OCR process will be dependable, and the rate 
of recognition and extraction of text from images will increase hence enhancing the effectiveness.  
B. Pre-processing Layer 
Preprocessing has a significant role in the correct text’ recognition and usually is the first step in the OCR pipeline. 
Pictures taken in the raw formats can be quite simple, noisy, have poor illumination, contain distortions and complex 
backgrounds that interfere with the functional capabilities of the OCR software. In order to overcome these challenges 
various image enhancement techniques are performed by using OpenCV and Pillow. The first step simplifies image 
color data to support a better OCR engine process when working with single-channel images. Afterwards our system 
uses Gaussian blur or median filtering practices to clean up text while getting rid of unwanted image issues. To create 
a clear text-blob composite we apply thresholding which turns the image into black and white format by separating 
the background from text. People use Otsu’s thresholding and adaptive thresholding methods to change image 
brightness because these techniques react personally to every photo's specific visibility. When text appears at an angle 
in the image, skew removal adjusts it to run horizontally. The text structure can benefit from morphological methods 
which simplify thin characters and erase disturbing features. To help the OCR system read text better we resize and 
crop documents so the engine can find text easier. Through these pre-processing procedures, the system becomes 
much effective in detecting texts and reducing the textual OCR and text extraction errors.  
D. Output Layer OCR Processing Layer 
The OCR Processing Layer is the central part of the system as the primary recognition of text is performed using 
Tesseract-OCR through Py-Tesseract. After the image has been pre-processed, it proceeds to the OCR engine where 
the pixel patterns are identified to detect particular regions of text present on the image. The first step used by the 
system is the ability to segment characters, or rather divide text into distinct letters or words. Next, there is pattern 
recognition and feature extraction wherein the OCR engine checks which character was detected and matches it with 
the characters in its database that it learned in regard to different font types and writing styles.  For this purpose, along 
with the text image itself, language models and dictionaries are employed to improve the recognition accuracy since 
other techniques could give distorted or low contrast images for correct perception of the text being recognized. This 
is through applying post-processing techniques which include spell checking, format optimization, and noise removal. 
The identified text is then transformed to a structured form for subsequent use, this is done with a high degree of 
accuracy. This layer is useful in document capture that requires digitization, form/ data capture, real-time text capture 
making the system efficient in handling printed, scanned, and handwritten data.  
D. Output Layer 
The structure of how the final stage (the Output Layer) of the OCR based text extraction system processes the 
recognized text, stores the text, formats the text, and presents them to the user. Once text is obtained using Tesseract-
OCR, correcting errors, removing unwanted symbols, and improving readability is refined using post processing 
techniques. Types of output: The text can be shown on the screen for review right away or stored in file formats like 
TXT, CSV and JSON as required by the user. Further, the system offers to integrate with the database for long term 
storage and retrieval, appropriate for such applications as automated document archiving and searchable text indexing.  
For even more practical usability, the output can be passed through NLP tools to improve text organization, keyword 
identification, and analysis of sentiment. When the extracted text is from a scanned text, the system can properly lay 
out the paragraphs as well as the text formatting. In addition, in automated data entry applications the extracted data 
can be further input to the management systems without much effort. The flexibility of the Output Layer means that 
the recognized text can be deployed in numerous areas, such as document capture, forms processing, artificial 
intelligence, and more, making the system an effective means of transforming image-based text into useful and valuable 
digital data.  
 
IV. WORKFLOW 

The whole process of this OCR-based text extraction system is well-organized and systematic to achieve high-
performance results. It starts with the image acquisition step; wherein one implements an interface to load an image 
that contains the texts of interest. It accepts the format like JPEG, PNG, BMP, and TIFF for the organization of input 
sources, including documents scanned from other media, papers, and handwritten papers. Subsequently, the 
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preprocessing stage improves image quality with the help of the OpenCV and Pillow. This stage involves conversion 
into grayscale to enhance colour details, noise elimination for distortions, and binarization to enhance text intensity.  
Further, some preprocessing carried out include cropping, resizing and contrast enhancement to improve the image 
in terms of clarity for OCR. When the image is pre-processed, the system then proceeds to the text detection and 
recognition step with Py-Tesseract and Tesseract-OCR. First, the OCR engine locates the texts and recognizes the 
regions, segments the text into individual characters, and converts the digits into machine-readable texts. To enhance 
accuracy post-processing like spell-checking formats, and error identifying techniques are employed in order to reduce 
the general recognition errors. The raw text generated from this context can be used in several operations such as 
digitisation of documents, text analysis in real-time, AI-based content processing among others this make the operation 
highly efficient.  
 

 
        Figure.1 Workflow Diagram.  
 The OCR process blog diagram begins with an Input Image, this is a scanned document, Handwritten note or any 
image that contains text. To improve extraction results, the image is processed through the Preprocessing stage using 
OpenCV and the Pillow library. This step involves conversion of image to shades of grey thus eradicating all color 
information in the image and the second process that is thresholding whereby the image is converted to binary form 
in order to separate text appropriately. Other related processes like noise reduction, rescaling and contrast 
enhancement enhanced the quality of the image for purpose of OCRAfter a picture is pre-processed, it is sent to 
Tesseract-OCR where the technology reads the picture and extracts text from it. By applying this step, the software 
learns to read characters, words and lines and translate them into digital text. However, should the image have 
distortions, or if the font styles of the original document differ, or if the text was noisy then, the extracted text maybe 
have many errors. In order to increase the level of correctness, the recognized text is processed in the Post-Processing 
stage where all the obvious spelling, punctuation, and formatting issues are fixed. This makes the final output neat 
and mechanically readable with formatting more standardized. The output from the system can then be applied to 
document digitization, automated data entry, and content analysis, as well as real world applications. Through 
improved workflow, it helps in the systematic, efficient and accurate extraction of text from images and is useful in 
domains such as education, business automation, digital archiving, and healthcare Provider. The final step in the 
workflow is Text Output Generation, where the refined text is stored in a suitable format, such as a text file (.txt), 
JSON, or database entry. This output can then be used for document digitization, automated data entry, content 
analysis, and various real-world applications. The improved workflow ensures a systematic, efficient, and accurate 
extraction of text from images, making it useful in domains like education, healthcare, business automation, and 
digital archiving.The proposed methodology for text information extraction from images is based on a deep learning 
pipeline integrating traditional OCR techniques with a Deep Convolutional Neural Network (CNN) architecture. 
The hybrid pipeline utilizes OpenCV and Pillow for preprocessing, Tesseract-OCR for initial character recognition, 
and an enhanced CNN-BiLSTM-CTC framework for refined text recognition and sequence modeling. 
This section is divided into five major stages: 
1. Input Acquisition 
2. Image Preprocessing 
3. Feature Extraction using Deep CNN 
4. Sequence Learning using BiLSTM 
5. Output Generation using CTC Decoding 
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4.1 Input Acquisition 
The system supports standard image formats including JPEG, PNG, BMP, and TIFF. Input images are acquired from 
various sources such as scanned documents, mobile photographs, screenshots, or handwritten notes. Images are 
validated for resolution (ideally ≥ 300 DPI) to ensure text clarity before processing. The system is capable of processing 
real-time input as well as batch-mode images. 
Let the input image be denoted by: 

I ∈ RHxW 
where H and W are the height and width of the grayscale image respectively. 
1. Preprocessing Function 
The preprocessing pipeline transforms the raw image: 

I′ = P(I) 
Where P (⋅) is a composite function including grayscale conversion, noise filtering, thresholding, and contrast 
enhancement (e.g., CLAHE). 
2.  Feature Extraction via CNN 
Let the CNN be composed of L layers. Each convolutional layer applies a filter bank W(l)and bias b(l), followed by a 
non-linear activation ϕ: 

Fl = ϕ(W(l) ∗ F(l−1) + b(l)) 
With    

F(0) = I′ 
Where ∗ denotes the 2D convolution operation, and ϕ is typically the ReLU activation function. 
The final CNN feature map F(L)is reshaped into a sequence of feature vectors: 
     X = [ϰ1, x2, … , ϰT]   where xt ∈ Rd 
3. Sequence Modeling using BiLSTM 
The feature sequence X is passed through a Bidirectional LSTM which processes it in both forward and backward 
directions: 
Forward LSTM: 

h⃗ t = LSTM(xt, ht
⃗⃗  ⃗

−1) 
Backward LSTM: 

ht
⃖⃗ ⃗⃗ = LSTM(xt, ht+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) 
The hidden state at time step t is the concatenation: 

ht = [ht
⃗⃗  ⃗; ht

⃖⃗ ⃗⃗ ] 
4. Output Layer and Softmax 
Each hidden vector ht is passed through a fully connected layer followed by a softmax to obtain character probabilities: 

yt = softmax(W0ht + b0) 
Where: 

w0 ∈ RCd 
C = number of output classes (e.g., alphanumeric + blank) 

yt ∈ Rc 
5.  Connectionist Temporal Classification (CTC) Loss 
Let π=(π1,π2,…,πT) be a possible path through the output sequence, and let B(π) be the CTC mapping that removes 
blanks and repeated characters to form the final text label l. 
The probability of a label l given input X is: 

p(l|x) = ∑ ρ(π|x)

πϵB−1l

 

P(π|x) = ∏yt
πt

t

t=1

 

The model is trained to minimize the CTC loss: 
LCTC = − logP(l|x) 

6. Final Output 
The final recognized text l̂ is obtained using best-path decoding: 
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l̂ = B (arg max
π

P(π|X)) 

4.2 Image Preprocessing 
Preprocessing enhances the quality of the input images and improves the performance of the OCR system. Key steps 
include: 
Grayscale Conversion – Reduces computational complexity by converting images to single-channel grayscale. 
Noise Reduction – Applies Gaussian blur or median filtering to eliminate salt-and-pepper noise or smudges. 
Adaptive Thresholding – Uses Gaussian or Otsu thresholding to separate text from the background, especially useful 
under uneven lighting. 
CLAHE (Contrast Limited Adaptive Histogram Equalization) – Enhances local contrast, particularly useful for faded 
or aged documents. 
Skew Correction – Uses Hough Line Transform to detect and correct rotated text lines. 
Resizing and Cropping – Normalizes all images to a fixed resolution (e.g., 128x32) compatible with CNN input 
dimensions. 

 
Figure 2. Block diagram of proposed classifier 
4.3 Feature Extraction using Deep CNN 
The core of the system is a deep CNN network that automatically learns spatial text features from input images. The 
architecture includes: 
Conv Layer 1: 32 filters, 3×3 kernel size, ReLU activation 
Max Pooling 1: 2×2 pooling size 
Conv Layer 2: 64 filters, 3×3 kernel size, ReLU activation 
Max Pooling 2: 2×2 pooling size 
Conv Layer 3: 128 filters, 3×3 kernel size, ReLU activation 
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Flatten Layer: Converts 2D feature maps to 1D vector 
Dense Layer: 128 neurons, ReLU activation 
This feature extractor transforms pixel-level data into semantically rich features, enabling the network to distinguish 
fine-grained visual patterns [22]. 
4.4 Sequence Modeling using BiLSTM 
After spatial features are extracted, they are passed to a Bidirectional Long Short-Term Memory (BiLSTM) network. 
LSTM networks are effective for processing sequential data such as character strings. 
LSTM Layer 1: 128 units (bidirectional) 
Dropout Layer: Dropout of 0.25 for regularization 
LSTM Layer 2: 128 units (bidirectional) 
This stage captures dependencies across time, allowing the system to understand character order and predict entire 
words from connected strokes or overlapping characters. 
4.5 Output Generation using CTC Decoding 
The output from the BiLSTM is fed into a Connectionist Temporal Classification (CTC) decoder. CTC is particularly 
suited for unsegmented sequence labeling and enables the model to: 
Align predictions with ground truth sequences 
Skip over irrelevant frames 
Collapse repeated characters 
For example, the CTC decoder converts predictions like --llooopppeeedd-- into looped, making it ideal for handwritten 
and free-form inputs. 
4.6 Model Training and Optimization 
The model is trained using open-source datasets like IAM, IIIT-5K, and SynthText, which contain a diverse range of 
printed and handwritten samples. Key training parameters: 
Optimizer: Adam 
Loss Function: CTC Loss 
Batch Size: 32 
Epochs: 100 
Learning Rate: 0.001 (with ReduceLROnPlateau) 
Data Augmentation strategies like random rotation, zoom, blur, and contrast adjustments are applied to improve 
generalization. 
4.7 Post-Processing and Output 
Recognized text output is cleaned and structured using post-processing techniques such as: 
Spell Correction using Levenshtein distance 
Stopword Filtering for domain-specific content 
Export Formats: TXT, CSV, JSON 
This enables integration with downstream applications like form processing, document digitization, and archival 
search engine. 
 
V. EXPERIMENTAL RESULT 

 
Figure 2. UI Features 
The layout of this UI is planned so that it makes extracting text from pictures easy. Across the left side, you will find 
some basic buttons to handle images, extract their text, or select several photos to work together. There are also options 
for analyzing graphs, which may add details to what we discover in the text. Before using any other tools, the display 
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area lets users see the chosen image. It allows the extraction to be performed accurately and without 
misunderstandings. Extracted text is shown on the right, so users can check or use what the tool has collected. Because 
the area is automatically updated in real time, you can easily use the processed content. In the case of improvements, 
using some UI features can boost usability. Giving users access to CLAHE and Gaussian Blur as preprocessing choices 
from the interface could boost how well images are extracted. Applying software tools to fix automatic speech 
recognition mistakes would be helpful as well. If the program added a viewable overlay or adjusted the font of extracted 
text, it would make reading text on the screen much easier. 
 

 
 
Figure 3. Text Extraction from Image 
The image shows a text extraction tool that uses Tkinter, creating a simple method to handle and review any text 
detected in pictures. When a user loads an image or images, the system will first use grayscale conversion and make 
the image brighter, adding contrast. Then, it will apply noise reduction to make texts clearer. Curvature bias and 
preprocessing make the text within the image simpler for the OCR system to read and extract. After finishing 
preprocessing, the system goes on to spot text in the image and to separate it from non-text objects. Recognition and 
organization of characters into readable information is made possible by the OCR engine. All the extracted text is 
shown inside the application so that users can review and modify it. Besides text extraction, the interface helps users 
by permitting them to save the results. Many test runs in simulation trials help improve the data’s accuracy, and using 
visual tools like bar and line graphs allows you to study the main trends discovered in the texts. Also, the system allows 
studying relationships between images and text by using CLIP, along with different text encoders such as DistilBERT 
and ResNet50 to make the system more accurate. Using visual tools makes the steps that add accuracy and efficiency 
in the workflow easier to understand. 
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Figure 4. Thresholds Creation 
Creating thresholds, as shown as very important because it refines the image to make text look separate from the 
background before OCR processing. During this stage, the image is changed into several threshold versions to make 
sure it is clearly recognized in any lighting or background. Both global and adaptive techniques are part of the process. 
Global thresholding makes use of a fixed intensity to tell where the text ends and the background begins. This 
approach gives better results when the entire image is shone with consistent lighting. In case the background isn’t 
uniform, then adaptive thresholding is applied. OCR does this by chopping the image into smaller parts and changing 
the thresholds as needed to ensure that the text stays legible. Most times, people preprocess the image by applying 
CLAHE and Gaussian Blur to enhance its readability even more. CLAHE tries to reduce noise and at the same time 
boosts local contrast so that text edges can be made sharper. Using Gaussian Blur gives a better final result, since the 
text has cleaner lines after thresholding. For figure 3. thresholds creation, each image is turned into various threshold 
values to be checked against the obtained results. Repetition of the process helps decide on the best thresholding 
technique, which boosts the OCR’s accuracy. Due to your dedication to adjusting OCR, exploring more strategies 
such as Otsu’s or edge-based thresholding can help you achieve better results during text extraction. 

 
Figure 5. Thresholds Results 
This illustrates how all the thresholding techniques presented can differently affect how clear and contrasted the text 
is. Examples of these methods are converting the image into binary and adaptive methods that work depending on 
the picture’s brightness. Even though binary thresholding clears text, it sometimes gets rid of the finer details in the 
picture. Using the inverse function, the values are changed so text looks lighter when placed on a dark background. 
By limiting the values of pixels, truncation thresholding mute transitions and allows more colors and shades to be 
seen on the image. By keeping pixels that are brighter than a specified threshold, Tozero thresholding keeps the text’s 
structure and may slightly decrease contrast. With the inverse filter, higher values in pixels are filtered to zero. Thanks 
to Otsu’s method, automatically choosing the best threshold from pixel distribution, it is useful in any kind of lighting 
conditions. Adaptive techniques mean each area’s threshold is set separately, making it easier to correct lighting 
differences in a picture. These will work fine when there is a shadow or some inconsistent light in the document. 
Every kind of thresholding has certain disadvantages. Binary ways ensure understanding, but adaptive methods 
provide more ways to handle challenges. You should pick the right approach based on how the picture looks and the 
purpose of processing it, especially when carrying out OCR tasks. To make the image text extraction feature work well 
with different languages, we designed the system to support 50 widely spoken languages. This was done by creating a 
dictionary that maps standard language codes (like hi for Hindi or ta for Tamil) to the specific language codes used by 
Tesseract OCR (like Hindi or Tamil). We also downloaded and included all the necessary trained data files from the 
official Tesseract language repository, which are required for accurate recognition of each language. 
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Figure 6. Multi-Languages 
When a user loads an image, the system first analyzes the text to automatically detect which language is being used. 
Once the language is identified, the appropriate OCR language model is applied to extract the text with higher 
accuracy. For example, if the image contains Hindi text, the system uses the Hindi OCR model instead of the default 
English one. This makes a big difference in how well the text is recognized, especially for non-Latin scripts. 
After the text is extracted, it can also be translated into English using the Google Translate API. This allows users to 
understand content even if they don't know the original language. By combining language detection, OCR 
customization, and translation, the project becomes much more effective for real-world use—especially in regions where 
multiple languages are used in documents, signs, or scanned content. 
VI. SIMULATION RESULT 

To evaluate the robustness of the proposed Deep CNN-based OCR framework, a comprehensive comparison was 
performed against seven state-of-the-art architectures referenced in recent research. These include Tesseract OCR, 
CRNN Baseline, CRNN + Attention, Transformer OCR, VGG + BiLSTM, ResNet-CRNN, and CNN-RNN-CTC 
hybrids.Four key performance metrics—Accuracy, Precision, Recall, and F1-Score—were used to assess the models over 
a benchmark dataset composed of scanned documents, handwritten scripts, and synthetic text images [23, 24]. 
5.1 Comparative Model Performance 
The Proposed CNN Model, integrating advanced preprocessing (CLAHE, Otsu, and skew correction), deep CNN 
layers, a BiLSTM network, and CTC decoding, achieved the highest performance across all four metrics. It registered 
an accuracy of 92.3%, outpacing the popular Transformer OCR (91.2%) and ResNet-CRNN (91.5%) models. 
The precision score of 90.7% confirms that the model produced highly relevant and accurate outputs with minimal 
false positives. Its recall of 91.1% signifies excellent ability in retrieving actual characters, even from noisy or degraded 
documents. The F1-score of 90.9%, a harmonic mean of precision and recall, validates the model’s balanced and 
robust performance. 
Table 5.1: Performance Comparison of OCR Architectures 
Model Accuracy Precision Recall F1-Score 

Tesseract OCR 0.847 0.812 0.795 0.803 

CRNN Baseline 0.862 0.834 0.823 0.828 

CRNN + Attention 0.898 0.881 0.875 0.878 

Transformer OCR 0.912 0.894 0.901 0.897 

VGG + BiLSTM 0.887 0.859 0.848 0.853 

ResNet-CRNN 0.915 0.902 0.908 0.905 

CNN-RNN-CTC 0.902 0.879 0.884 0.881 

Proposed CNN Model 0.923 0.907 0.911 0.909 
 
5.3 Error Analysis 
Despite its strong performance, the proposed model exhibited minor misclassifications in: 
• Overlapping strokes in cursive handwriting 
• Blurry document scans with non-uniform lighting 
• Low-resource scripts with fewer training samples 
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These findings highlight the potential for improvement using attention mechanisms, transformer-based encoders, and 
multilingual pretraining. 

 
Figure 7. Line Accuracy Graph 
Figure 7 shows the comparison of accurate thresholding among the different techniques involved in OCR. The chart 
makes it clear that the Normal approach holds the same accuracy, whereas the Custom one brings substantial better 
results. Of all the techniques asked, Custom proves to have the highest accuracy as the accuracy curve goes through 
different methods. The graph shows that the accuracy increases in an obvious way as you switch to the Custom 
approach. Instead of traditional thresholding, the Custom method makes use of better tweaks that help improve the 
accuracy of text being extracted. The Custom approach does well at dealing with different types of images and text 
issues because of its strong performance. As a result, the new additions such as adaptive thresholding or enhanced 
noise reduction have boosted the method’s effectiveness. From Figure 5, it is evident that a custom-suited approach 
beats generic algorithms as it becomes more accurate. Naturally, the graph confirms the Coursera textbook conclusion 
that the Custom style is more accurate for OCR tasks. 
 

 
Figure 8. Accuracy Through Bar graph 
Through the bar graph in figure, the analysis examines how correctly each thresholding method finds objects in the 
dataset. Separate thresholding techniques such as Binary, Binary Inverse, Trunc, Tozero, Tozero Inverse, Otsu, Otsu 
Inverse, Adaptive Mean, Adaptive Gaussian, and Custom are shown on the x axis. Meanwhile, the y-axis shows the 
accuracy rate, going from 0 to 1. Each way of thresholding data is marked by a blue bar that allows you to assess how 
they perform. On the graph, it is obvious that some techniques are more accurate than others. The accuracy of the 
Custom thresholding method comes close to the maximum value, which shows that it has been optimized to do its 
best. The use of Otsu and Binary techniques proves they perform well for extracting text from files. Trunc and Tozero 
tend to miss their targets more, which means they do not seem capable of highly effective segmentation. Through bar 
graph in Figure 6, we find that picking the right thresholding technique matters a lot in OCR, because it affects the 
system’s ability to read text. Because the custom thresholding approach is highly accurate, it suggests that users can 
make special adjustments for each type of image. Such understanding gives both researchers and developers the power 
to tailor threshold settings for various uses and boost text extraction performance. 
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CONCLUSION 
OCR based text extraction system came out as a well-structured and an effective way in converting the images into 
text. Thanks to using OpenCV, Pillow, and Tesseract-OCR, the system is built on the multiple layers of input 
acquisition, preprocessing, OCR, and output. Elementary image processing methods like grayscale, noise level 
reduction, and binarization enlighten the textual content, and enhancing post processing like spell check and 
formatting clean the text material gathered. This project has practical use cases such as document scanning, form 
filling, and natural language processing – making it useful in industries like education, healthcare, and business 
processing. Improvements can be made in the future with the help of better models in OCR with the use of Artificial 
Intelligence, multilingual support can be added for a broader recognition capability and the processing can be done 
real-time in cloud. In general, this system seems to be effective, efficient and accurate in text extraction from images 
in a way that contributes towards the increases in automation and intelligent data analysis. 
 
FUTURE SCOPE 
There is much more that can be added on to this kind of project and applied to other fields of work., New possibilities 
of developing deep learning and other artificial intelligence-based approaches can help to increase the recognition 
accuracy for handwritten texts and difficult fonts. NLP integration alongside may enable realize additional useful 
knowledge from the text that has been identified. Developing for multiple languages and for real-time processing-based 
mechanisms can provide even more performance in sectors like automation, health care, and finance. Furthermore, 
utilizing cloud-based OCR services and incorporating mobile applications to offer text extraction can further the 
possibility and usefulness of the technology. 
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