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ABSTRACT: Effective automatic detection of multivariate and multi-class tumors is fundamental for accurately 
analyzing and handling diverse liver datasets. Current liver segmentation methods face significant challenges such 
as handling tumors of different modalities, shapes, and orientations, as well as issues with over-segmentation and 
incorrect tumor identification. Additionally, excessive randomness in segmented crossing areas can promote 
complication for the processing of segmentation as well as classification indicating to unreliable findings. To address 
these questions, we propose a new approach that incorporates advanced techniques for feature extraction, 
multivariate liver filtering, and ranking. Our solution utilizes capable classification methods under segmentation-
based for increasing the detection for various tumor types in large datasets. Nevertheless, the model of Multi-
Dimensional Liver and Tumor Segmentation and Classification developed is designed to accurately classify tumor-
segmented sections, achieving extreme true positive (TP) rates in addition exceptional run-time productivity, measured 
in milliseconds. We validate the MCMVLTSC model through extensive testing using a range of statistical metrics 
across different liver imaging databases. The findings demonstrate that our model consistently delivers superior 
performance in classification accuracy and runtime efficiency compared to traditional methods. 
INDEX TERMS: Detection, feature extraction, liver segmentation, ensemble classifiers. 
 

1. INTRODUCTION
Liver tumors are abnormal masses that develop as a result of liver cells growing uncontrolled. They can cause 
considerable damage to liver function, as well as threatening our lives. Liver tumors are either primary tumors i.e. 
hepatocellular carcinoma (HCC) or metastatic tumors from other organs. Hence, early and accurate diagnosis of liver 
tumors is important. Figure 1 illustrates the overall principle of the suggested framework, from image acquisition to 
segmentation, feature extraction, and final classification. Liver tumors arise from the unchecked proliferation of liver 
cells, leading to the formation of abnormal masses in the liver. In 2020, an estimated 297,000 cases of central nervous 
system (CNS) cancer were reported globally, positioning it as the 17th most common type of cancer. Although CNS 
cancer has a relatively low incidence, it is particularly lethal, ranking as the 12th leading cause of globally, deaths due 
to cancer are increasing. Factors like genetic predisposition, environmental pollutant exposure, and underlying 

mailto:ahammadklu@gmail.com
mailto:sandeep7887pande@gmail.com
https://orcid.org/0000-0003-0771-0788
https://orcid.org/0000-0001-5630-5637
https://orcid.org/0000-0003-1544-4862
https://orcid.org/0000-0002-5871-890X
https://orcid.org/0000-0002-6340-2993
https://orcid.org/0000-0002-1906-5539
https://orcid.org/0000-0002-2587-4164
https://orcid.org/0000-0001-6969-0423


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4,2025 
https://theaspd.com/index.php 

1405 

 

illnesses like acne and asthma may contribute to the growth of liver tumors. These tumors can obstruct the normal 
flow of fluids, increase pressure within the liver, and potentially inflict damage on liver tissues, leading to serious 
health complications. While benign tumors are generally less dangerous and often treatable, malignant tumors are 
more concerning due to their potential for propagation into various regions, including spines [1-3].  Imaging methods 
such as MRI scans are often utilized for detection of tumors; however, they didn’t deliver effective details about the 
tumor's extent or exact position. It is also important to note that liver cancers are often secondary, originating from 
cancers in other parts of the body. The liver, composed of various tissue types such as grey matter, white matter, and 
cerebrospinal fluid, can exhibit different symptoms based on the size and position of the tumors (as depicted in Figure 
1).  

 
Figure 1: Diversity in the shapes and orientations of liver tumors within extensive datasets. 
Liver imaging datasets often contain tumors of varied shapes, orientations, and intensities, making consistent 
segmentation and classification a challenging task. To address this, our proposed method integrates Ranking-Based 
Probabilistic Segmentation (RBPS) with Automated Feature Extraction techniques such as Multivariate Non-Linear 
Gaussian Estimation (MNGE) and hybrid CNN-SVM classification. This integrated approach enhances segmentation 
accuracy, reduces false positives, and supports robust classification of heterogeneous liver tumor datasets and 
principle of proposed framework is shown in the Fig. 2. Early liver tumor detection methods relied on rule-based 
thresholding, which lacked robustness for varying tumor appearances. Atlas-based and Markov Random Field (MRF) 
models introduced probabilistic segmentation but were computationally intensive and required manual input. 
Clustering techniques like Gaussian Mixture Models (GMM) and Fuzzy C-Means (FCM) offered improvements but 
struggled with complex tumor morphology and intensity variations. The emergence of deep learning, particularly U-
Net and CNNs, significantly enhanced segmentation accuracy. However, issues such as over-segmentation and high 
computational cost remained. Recent advances in probabilistic models like Hidden Markov Models (HMM), Theta-
Regulated GMM (TGMM), and ranking-based feature extraction improved spatial modeling, yet standalone use of 
these methods still faced limitations in precision and false-positive control. Our proposed framework builds on these 
advancements by integrating Ranking-Based Probabilistic Segmentation (RBPS), Multivariate Non-Linear Gaussian 
Estimation (MNGE), and CNN-SVM classification for efficient, accurate, and multi-class liver tumor detection [4-6]. 
 

 
Fig. 2. Principle of the Proposed Multi SVM Framework 
An enhanced U-Net model was proposed by Rela et al. (2022), which incorporated feature selection in order to 
provide improved CT-based liver tumor segmentation. A higher precision was achieved with their method, by 
incorporating a hybrid of deep learning along with feature engineering. Nonetheless, the model's reliance on crafted 
features affected its ability to adapt to new datasets, affecting its robustness for practical applications. Ayalew et al. 
(2021) demonstrated a Modified U-Net network for liver tumor segmentation based on a new class-balancing 
function. Although this produced greater accuracy for segmenting liver tumor-containing images, in addition to more 
incorrect positive results, the extraction process remained ineffective and overall resulted in poor classification 
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process. Kiani et al. (2020) designed and implemented a Deep Learning Assistant for the classification of 
histopathological images of liver cancer. The authors improved the accuracy of the classification; however, tumor 
morphological variation and high staining intensity were limiting contributors to the generalizability [1-3]. Liver 
tumors present challenges in differentiating from normal tissue due to overlapping intensities in imaging. While CT 
and MRI scans are common diagnostic tools, MRI is preferred for its safety and effectiveness in detecting liver tumors. 
MRI relies on the magnetic properties of hydrogen nuclei to examine tumors. For segmenting liver tumors, 
techniques such as atlas-based segmentation and model-based approaches like the Markov random field (MRF) are 
used, though MRF can be computationally expensive. To improve efficiency, clustering processes like Gaussian 
Mixture Models (GMM) and Fuzzy C-Means (FCM) are employed for initial segmentation, followed by MRF for 
refinement. Recent studies have explored various segmentation techniques, such as neuro-fuzzy approaches, Gradient 
Vector Flow, and multi-kernel SVM classification, to classify liver tissues and improve accuracy. These methods 
involve manual data collection, alignment features, and advanced algorithms like the Convolutional Neural Network 
(CNN) to enhance image processing and tumor identification. CNN, with its multiple layers, increases segmentation 
precision by breaking down images and classifying tumor regions. A two-step process is typically used in segmentation: 
removing image noise and identifying tissue features using the K-means algorithm [7-9].  Currently, many 
contemporary liver segmentation approaches do not adequately confront the issue of liver tumors with varied shape, 
aspect and modality features so over-segmentation and false positives will continue to be a significant problem. 
Standard segmentation methods, such as atlas-based methods or Markov Random Field (MRF), also tend to be 
expensive methods related to computation effort. Specifically, while not unreasonable, clustering methods, for 
example Gaussian Mixture Models (GMM) or Fuzzy C-Means (FCM), under-utilize and underperform as there are 
less reliable feature extraction methods. Moreover, CNN methods have increased accuracy in segmentation, but the 
methods still need to be improved on precision, methods efficiency, etc.  Here are the primary contributions of this 
study:  
• Design of a multivariate, multi-zone filtering technique for extracting tumor-specific features. 
• Implementation of a multivariate, multi-zone strategy for the extraction and segmentation of tumor features, 
focusing on the classification of diverse and variably shaped liver tumor regions. 
• In order to identify different types of tumors, the Multivariate Liver and Tumor Segmentation and Classification 
model was developed. 
 
2. LITERATURE REVIEW 
The detection and classification of liver tumors have seen significant evolution in recent years, transitioning from 
traditional segmentation approaches to more advanced deep learning and hybrid models.  Chen et al. (2023) 
leveraged deep learning for liver cancer mutation classification based on histopathology. The approach was effective 
for mutation prediction but lacked integration with imaging modalities like CT/MRI. Gregory et al. (2023) focused 
on imaging-based evaluation of liver tumor response. Their findings emphasized the importance of combining 
segmentation with response metrics for treatment planning. Rela et al. (2022) combined U-Net and deep neural 
networks with optimal feature selection for liver tumor detection in CT images. They reported better accuracy, but 
robustness to new datasets remained a concern. Sabir et al. (2022) proposed the ResU-Net for liver tumor 
segmentation in CT images. The integration of residual learning improved feature preservation, yet computational 
demand increased significantly [5-8]. Ayalew et al. (2021) enhanced the U-Net architecture by incorporating a class-
balancing function for liver segmentation. Although segmentation accuracy improved, the method produced 
increased false positives. Uma Maheshwari et al. (2021) explored machine learning models for facial expression 
analysis, which influenced feature engineering in biomedical imaging, but was not directly focused on liver tumor 
segmentation. Budak et al. (2020) proposed cascaded deep convolutional encoder-decoder networks for liver tumor 
segmentation. Their approach achieved high segmentation accuracy, but required large training data and 
computational resources. Kiani et al. (2020) presented a deep learning assistant for histopathological classification. It 
demonstrated improved human-AI collaboration but was constrained by staining variations affecting generalizability. 
Sun et al. (2019) introduced a deep learning-based classification approach for liver cancer histopathology using global 
image labels only. Their model improved classification but lacked segmentation capability. Rahman et al. (2019) 
conducted a comparative study of traditional machine learning algorithms (SVM, RF, NB) for liver disease prediction. 
While classification results were promising, the absence of image-based segmentation limited practical clinical utility. 
The findings and limitations are summarized in the Table 1 [9-12]. 
Table 1. Summarized Literature 
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Year Author(s) Methodology Dataset 
Used 

Features 
Used 

Input / 
Output 

Key 
Findings 

Limitations 

2019 Sun et al. DL with global 
labels 

Histopat
hology 

Image-
level 
features 

Histopat
hology 
→ Class 

Accurate 
classificati
on w/o 
segmentat
ion 

No 
segmentation
; limited 
clinical 
insight 

2019 Rahman et 
al. 

ML Classifiers 
(SVM, RF) 

Structur
ed 
clinical 

Blood, 
age, 
enzymes 

Data → 
Predicti
on 

Useful for 
liver 
disease 
prediction 

Not imaging-
based 

2020 Budak et al. Cascaded 
Encoder-
Decoder 

CT Scan 
Dataset 

Image 
textures 

CT → 
Segment
ation 

High 
segmentat
ion 
accuracy 

High training 
cost 

2020 Kiani et al. DL assistant for 
pathology 

Histopat
hology 

Morpholo
gical 
features 

Histolog
y → 
Labels 

Boosted 
human-AI 
accuracy 

Sensitive to 
staining 
variability 

2021 Ayalew et al. Modified U-Net 
+ balancing 

CT Liver 
Dataset 

Pixel class 
weighting 

CT → 
Mask 

Better 
segmentat
ion with 
new 
balance 
method 

False 
positives 
increased 

2021 Uma 
Maheshwari 
et al. 

ML for feature 
extraction 

Facial 
image 
dataset 

Statistical 
features 

Image 
→ 
Emotion 

Insights 
for feature 
selection 
in imaging 

Not liver-
specific 

2022 Rela et al. U-Net + Feature 
Selection 

CT Liver 
Images 

Selected 
CNN 
features 

CT → 
Segment
ation 

High 
segmentat
ion 
precision 

Low 
generalizatio
n on new data 

2022 Sabir et al. ResU-Net CT 
Images 

Residual 
image 
features 

CT → 
Tumor 
boundar
ies 

Better 
preservati
on of 
tumor 
shape 

Heavy 
computation 

2023 Chen et al. DL + mutation 
prediction 

H&E 
Histopat
hology 

Mutation 
+ Image 

Slide → 
Mutatio
n label 

Histopath
ology + 
genomics 

No imaging 
segmentation 

2023 Gregory et 
al. 

Imaging tumor 
response 

Clinical 
imaging 

Tumor 
volume, 
intensity 

CT/MR
I → 
Evaluati
on 
metric 

Used for 
evaluating 
treatment 
response 

Focused on 
evaluation, 
not detection 

 
The progression from rule-based approaches to deep learning and hybrid architectures indicates significant gains in 
segmentation precision and classification robustness. However, existing models face challenges in generalizing across 
diverse datasets and maintaining low false positive rates. Moreover, few studies focus on integrating segmentation 
with real-time clinical decision support. Our proposed RBPS-MNGE framework addresses these challenges by 
combining probabilistic segmentation, multivariate feature extraction, and hybrid CNN-SVM classification, ensuring 
higher accuracy and lower computational cost. 
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3. MULTIVARIATE APPROACHES TO LIVER SEGMENTATION 
Filtering is essential in liver image processing for tasks such as extracting features, reducing noise, and compressing 
data. Sparse filtering is a traditional method used to eliminate sparse noise from datasets. However, to capture more 
complex data structures and relationships, a more advanced approach is necessary. Multivariate non-linear Gaussian 
estimation (MNGE) addresses this need by offering a method to model non-linear relationships more effectively than 
sparse filtering. MNGE estimates parameters in a non-linear Gaussian framework, providing flexibility in modeling 
complex data patterns. Combining MNGE with sparse filtering creates a robust non-linear Gaussian model, 
improving the accuracy and depth of data analysis.  

Figure 3: Proposed Framework 
Figure 3 illustrates the workflow where multi-variate image data is processed through a filtering and feature extraction 
pipeline. This pipeline utilizes various ranking methods to select crucial features for a multi-class, multi-variate 
segmentation approach. The filtering process aims to enhance the accuracy of analysis by removing noise and non-
essential features from liver image datasets. Initially, the process involves computing the non-linear Gaussian (NLG) 
value for each feature. This is followed by assessing the observed versus expected frequencies of each feature, 
calculating the chi-squared values, and determining the total chi-squared statistic under required data values. Features 
with lower chi-squared values with common knowledge records are discarded. Resulting filtered dataset is then ready 
for further analytical or modeling tasks, with the approach adjusted based on the dataset and specific goals.   
3.1 Ranking Approach for Multi-variate Features 
To effectively segment liver images and accurately identify and delineate liver tissues, multi-variate joint probabilistic 
feature extraction is essential. These sophisticated techniques use probabilistic models to improve the accuracy of 
segmentation results. The Hidden Markov Model (HMM), which analyzes liver pictures as a series of visible features 
and hidden states, is one prominent method. Within this approach, the seen features are the values of the pixels, and 
concealed regions reflects liver’s anatomy. HMM helps divide the liver into different areas by examining the 
probability distributions of hidden states that are obtained from these features. Theta-Regulated Gaussian Mixture 
Model (TGMM), which considers liver pictures as a composite of many Gaussian distributions, is an additional 
method. Each distribution corresponds to different liver tissue types. TGMM computes the probability distribution 
of the image based on observed data, facilitating accurate segmentation of various tissue types. According to this 
paradigm, the hepatic image can be represented as a graph with edges denoting spatial connections and pixels acting 
as nodes. A prior distribution that captures the statistical and spatial properties of liver tissues is combined with a 
likelihood function in the TMRF model to assess how well observed data fit this prior. With this integration, the 
liver tissue probability distribution may be precisely computed by the TMRF model, facilitating correct segmentation. 
All things considered, these probabilistic feature extraction methods play an important function in the segmentation 
of liver imagery, using complex models to accomplish precise tissue identification and segmentation. 
3.2 Proposed Methodology 
The U-Net model, highly regarded for its performance in image segmentation, particularly for tumor detection, 
features a distinctive U-shaped structure. This structure is divided into two main segments: the encoder and the 
decoder. During the encoding phase, the input image is processed through several layers. The image is first convolved 
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with filters that have biases (b_l) and learnable weights (w_l). This convolution extracts the image's key local patterns 
and characteristics. An activation function (f_l), which introduces non-linearity after convolution, helps the model 
comprehend intricate patterns in the data. This function's output is represented by the symbol (c_l). The image is 
down-sampled using a pooling technique with particular parameters to preserve important features while reducing 
the image's spatial dimensions (as illustrated in Figure 4).  
The proposed method is based on probabilistic segmentation and ranking-based feature extraction. The probability 
of a pixel  belonging to a tumor region is calculated as 

P(T ∕ I) =
P(I T⁄ )P(T)

P(I)
                                                        (1) 

 Where P(T ∕ I) is the posterior probability of tumor presence given an image I , P(I T⁄ ) is the likelihood, 
P(T) is the prior probability, and P(I) is the evidence. 
 To recover its original spatial resolution, the down-sampled image (c_l) is up-sampled during the decoding 
step. To further improve the feature details, the image is convolved using filters (w_u) once more after upsampling. 
This dual-path architecture allows U-Net to effectively capture and reconstruct detailed features, making it a robust 
model for precise segmentation tasks. 

Figure 4: U-net MSVM features 
4. ANALYSIS OF EXPERIMENTAL FINDINGS 
In this work, we made multiple experimental attempts to improve liver tumor detection accuracy. The first phase 
consisted of evaluating conventional, non-deep learning segmentation schemes such as primarily Gaussian Mixture 
Models (GMM) and Fuzzy C-Means (FCM), however the tumor boundaries detected were found to not be very 
satisfactory. Therefore, the second phase began with using the Modified U-Net with feature selection to highly 
improve segmentation scheme accuracy. To enhance feature extraction from the dataset, we utilized Multivariate 
Non-Linear Gaussian Estimation (MNGE) for noise reduction and increased tumor boundary clarity. Optimization 
methods were also tested including Adam, SGD, and RMSprop and the Adam was the most stable method for 
reaching optimum. Subsequently, the potential for stronger models was examined using dataset augmentation modes 
that included rotation, flipping, and intensity scaling operations. The final iteration of the model, utilizing a 
combination of probabilistic ranking-based segmentation integrated with hybrid CNN-SVM classification, found the 
ideal balance between classification accuracy (96.4%) and computational efficiency. Though performance was 
improved, there were some roadblocks in the output, including false positives in overlap of tumor regions, and 
corresponding compression of computational cost. To help mitigate these effects bounding box association 
refinement and revelation run-time optimization methods were examined [13]. With an emphasis on important 
evaluation metrics including precision, accuracy, recall, and F-measure, this section offers the suggested methodology 
and the experimental findings. To perform the segmentation and classification tasks, the study used a variety of 
imbalanced datasets. 600 CT scans total—half of which were of healthy livers and the other half of which were of liver 
cancer—were included in the collection. At least 300 of the scans showed hepatocellular carcinoma (HCC), while the 
remaining 300 showed liver cancers that had spread to other organs. Every image was assigned a 30 by 30 pixel region 
of interest (ROI). ROI was extracted from the entire liver in cases of healthy liver images, however it was focused on 
MET or HCC-affected regions in cases of malignant liver images. These ROIs were used to target abnormal liver 
regions associated with primary (HCC) or secondary (MET) liver cancer in order to detect tumors. The number of 
input ROIs (IROIs) varied from 1 to 5 to fulfill various performance objectives, even though each image only 
contained one ROI. Based on these goals, subsets of the data were separated into training and testing. A variety of 
primary and secondary liver cancers were gathered utilizing different scanning techniques for these datasets. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4,2025 
https://theaspd.com/index.php 

1410 

 

 
Figure 5: Variability in the Dimensions of Liver Tumors 

 
Figure 6: Detection of Liver Tumors in Multiple Orientations and Shapes Using Automated Methods

 
Figure 7: Automated Detection Techniques for Liver Tumors 
 

 
Figure 8: Automated Detection Techniques for Liver Tumors 

 
Figure 9 : Analysis of Dice Similarity Coefficient Variability 
The Dice Similarity Coefficient (DSC) is frequently employed to gauge the accuracy of segmentation algorithms. A 
higher DSC indicates a closer match between the predicted and actual segmented regions. Nonetheless, the significance 
of DSC can vary depending on the specific dataset and application. To gain a full understanding of the effectiveness 
of liver tumor detection methods, it is essential to also evaluate other metrics, including precision, recall, and F-
measure, rather than relying solely on DSC [14]. 
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Table 1: Compartive analysis of proposed approach 

Liver heterogeneous DB. CV=10 
 

Accuracy 93.2 93.2 93.9 94.3 96.4 95.8 

Sensitivity 93.8 93.3 93.2 96.3 96.3 95.2 

Recall 93.6 93.6 93.2 94.2 96.3 95.11 

Precision 92.4 93.5 93.3 94.2 96.3 95.3 

Runtime(ms) 3405 3281 3231 3156 3258 2145 

The evaluation of liver tumor detection is based on several metrics, including Sensitivity, Accuracy, Precision, Recall, 
Run time (in ms), using  heterogeneous liver collection using verification ten times (CV=10). The following details 
offer an interpretation of these metrics based on the reported values:  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Compartive analysis of proposed multi-variate 
 
5. CONCLUSION 
This research proposed a multi-class liver tumor recognition framework that outlines Ranking-Based Probabilistic 
Segmentation (RBPS) together with Automated Feature Extraction. Merging Multivariate Non-Linear Gaussian 
Estimation (MNGE), ranking-based probabilistic segmentation, and hybrid CNN-SVM classification, the proposed 
approach outperforms existing methods with 96.4% Dice Similarity Coefficient (DSC) with improved accuracy (and 
fewer false positives). The inclusion of U-Net and Theta-Regulated Gaussian Mixture Model (TGMM) led to 
improved segmentation and robustness to changes in tumor morphology. Additionally, the framework provided 
excellent classification accuracy compared to conventional methods, while consuming less computational time 
overall.In future, research should examine real-time clinical applications and incorporation into oncologist decision-
support systems. Advancements may also include self-supervised learning and the use of pre-trained transformer-based 
models and multi-modal imaging (CT, MRI, PET) for enhanced generalizability. It would also be beneficial to apply 
explainable AI (XAI) techniques to allow for better interpretability of our models, which can support clinical decision-
making and progress AI-driven liver tumor diagnostics. 
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