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Abstract 
The need for robust data security mechanisms is growing with increasing reliance on wireless networks 
for mission-critical communication. While most approaches for wireless data security concentrate on a 
static cryptographic implementation or protocol-level defenses that show static responses to dynamic 
threat environments, they have become increasingly vulnerable against evolving attack vectors like 
spoofing, worm holes, and denial of service when talking about the networking scenario. As such, 
traditional validation frameworks lack statistical rigor and cannot quantify the resilience of protocols 
under varying network conditions. To fill in the gaps, this work introduces a comprehensive multi-layered 
security architecture incorporating five novel analytical models that directly address the prime concerns 
of wireless data security. The Graph Neural Cryptonet (GNC-Net) is performatively integrated 
cryptography-related functions within the protocol to realize encrypted, trust-aware routing tables. An 
Adaptive Statistical Defense Engine (ASDE) integrates Bayesian data drift detection for real-time network 
traffic anomaly identification. The Quantum-Encoded Multipath Protocol Selector (QEMPS) provides 
simulated quantum key distribution for securing dynamic multipath routing sets. The Cross-Entropy 
Protocol Evaluation Model (CEPEM) provides an opportunity to analyze, in statistical terms, comparing 
protocol resilience against threat through distribution divergence analysis. Finally, the Hybrid 
Algorithmic Synthesizer using Evolutionary Security Heuristics (HASEH) generates barrier-free automatic 
secure routing algorithms through evolutionary programming, combining optimizations with 
performance and resilience. The collaborative web of these methods empowers a series of actions oriented 
toward proactive threat mitigation, adaptive protocol synthesis, and statistically validated security 
optimization. Experiments show a gain in packet integrity (+38%), decreased attack surface (–45%), and 
increased anomalous detection latency of <1.6s. The suggested framework sets the stage for secure-and-
adaptive development in statistically solid wireless networks, pushing the state of the art in wireless data 
protection sets. 
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INTRODUCTION 

In the last few decades, with an ever-increasingpace in wireless networks, the contemporary conversation 
systems have undergone an unparallel transformation in the digital space, with real-time data exchange 
in the mobile, sensor-based, and ad-hoc environments now possible. But as the reliance on wireless 
infrastructure has grown, so have the security challenges associated with it. Compared to the theoretical 
sciences of data communication, wireless is kept in an exposed medium for conceivable eavesdropping, 
and infiltration of man In-the-Middle information, manipulation of a route to an unauthorized person, 
and denial of service. Under these circumstances, providing confidentiality, integrity, and availability for 
such data is researchable. Most of the routine frameworks do not employ dynamic protocols adaptable to 
sudden threats. Meanwhile, the earlier generation of solutions finds itself incapable of self-adaptation or 
statistically justifying its power in a state of flux caused by simultaneous changes to network topologies 
and the occurrence of real-time attacks. The lack of context-driven intelligence on routes is in tandem 
with poor or no statistical modeling of threats, causing robustness and scalability to become two obsolete 
attributes for existing solutions. 
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This research thus endeavors to ground itself on some of these limitations and propose a fresh and 
integrated security architecture whereby artificial intelligence, statistical modeling, and synthesis of 
protocols could eventually bind together an extremely resilient wireless security model. The architecture 
includes GNC-Net (Graph Neural Cryptonet) for encrypted routing based on trust; the Bayesian Adaptive 
Statistical Defense Engine (ASDE) for real-time anomaly detection; and finally, a Hybrid Algorithmic 
Synthesizer using Evolutionary Security Heuristics (HASEH) that will automatically generate secure 
routing protocols. They will be enhanced with the Quantum-Encoded Multipath Protocol Selector 
(QEMPS) and the Cross-Entropy Protocol Evaluation Model (CEPEM), which shall make dynamic 
routing decisions and provide statistically sound evaluation metrics. This layered intelligence framework 
ensures that the system does not only repair already exploited and known weaknesses but also foresees 
and guards against not-yet-known provocative actions, guaranteeing in-built evolution of the security 
paradigm. The evolved model sets a greater challenge for secure wireless communication integrating 
adaptive intelligence with formal statistical validation into high competition for security performance in 
real-life scenarios. 

ITERATIVE EMPIRICAL LITERATURE REVIEW 

Advances in machine learning, cryptographic innovations, and physical layer schemes have revolutionized 
wireless network security. Any existing research has picked up data protection issues across a range in 
wireless settings, from intrusion detection to trust modeling, routing optimization to privacy 
preservations. The current review will present recent inputs from various studies to provide the 
background for the proposed intelligent multilayered wireless data security model process. Machine-
learning-based predictive models have a great potential for evaluating the security risk for transmissions. 
Huang et al. [1] proposed a machine-learning-driven framework for wireless networks in security risk 
prediction with a strong adaptive classification emphasis. However, their work is more concentrated on 
security risk prediction of transmission, which does not incorporate cryptographic or routing 
mechanisms, both important for end-to-end security consideration. Li et al. [2] widened the scope to 6G 
wireless sensor networks for medical data with AI-assisted risk identification. While showing promise, it 
is still limited to medical data and not providing enough emphasis on dynamic routing resilience and 
multipath trust models. There have been several frameworks analyzing key agreement and secure data 
reconciliation. Devi and Kumar [3] provided a key reconciliation-based framework for wireless sensor 
networks (WSNs) emphasizing on authentication and minimal overhead. Nevertheless, their approach 
does fairly well under static environments but falters when high mobility or continuous threat landscapes 
come into play. Vankdothu et al. [4] considered multicast scalability under heterogeneous WSNs with 
optimization toward timestamps. However, the model itself does not adaptively synthesize routing 
strategies based on security feedback, thus limiting responses to complex attacks. A hybrid of security 
models has been developed with the application of deep learning. Ramu et al. [5] proposed a deep 
learning-infused model that considers energy efficiency and data protection very tradeingly. Although 
their results show improvements for energy utilization, their architecture is devoid of integrated modeling 
of statistical drift and synthetic realization of cryptographic protocols, two features that are central for the 
proposed framework process. Su and Zhang [6] put together a comparative methodological analysis and 
unveiled weaknesses of existing WSN security paradigms. Their analysis thus supports the necessity for 
integrated, cross-layered systems as advanced in this work process. 

The process has special emphasis on new encryption techniques. Banga et al. [7] Jarugu defended 
ChessCrypt, an S-box cryptography method using chess-based nonlinearities to augment wireless security 
in smart cities. While it certainly enhances randomness, it does not follow through with the context-aware 
routing adaptations. Active eavesdropping detection and physical layer security were achieved by Li and 
Dou [8], adding a new layer for detection of interception. However, their approach would not evolve the 
routing diversity set based on entropy. Chandra and Soni [9] put joint strategies for data collection and 
energy where they coupled wireless charging with routing efficiency sets. They have done a great job with 
energy harvesting, but they do not deal with the overall threat models or statistical anomaly detection 
process. Likewise, Samha [10] optimized the routing for Earth observation data but concentrated 
primarily on routing metrics, rather than integrated security sets. Hybrid approaches for cryptography 
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have gained traction. Anusuya Devi and Sampradeepraj [11] implemented a hybrid AES-RSA model for 
WSNs demonstrating improved confidentiality. However, this robust protocol lacks dynamic adaptability 
to protocol-level attacks. Senthilraja et al. [12] proposed dynamic vulnerability scanning for IoT-enabled 
WLANs, a major step towards foregone defenses. However, without data-driven model synthesis, such 
systems will remain reactive process-wise. Fatima et al. [13] put forward a blockchain and PUF-based 
authentication scheme specially designed for wireless medical sensor networks. While it is considered very 
secure, blockchain infrastructure introduces latency and scalability issues with rapidly changing 
topologies. Sethuraman et al. [14] presented IT2FLS-RSA, a fuzzy logic-driven protocol that enhances 
QoS in WSNs. The limitation, in this case, is computational complexity and lack of emphasis on entropy 
evaluation in route decision-making process. Helmy [15] explored combinations of cryptography and 
steganography for multimedia security sets. Although novel, the model cannot be applied to real-time 
routing adaptations. Pooja et al. [16] similarly developed a three-phase hybrid cryptographic algorithm 
but lacks support for trust modeling and adaptive routing synthesis. They have also looked into data 
aggregation and digital twin approaches. Zhang et al. [17] proposed a privacy-preserving aggregation 
scheme for WSN digital twins. However, the paper focuses more on integrity rather than real-time 
adaptability or entropy optimizations. Affane et al. [18] used Hidden Markov Models (HMMs) to detect 
attacks in WSNs. Their findings support dynamic anomaly detection but do not couple with adaptive 
routing at the protocol level. Wei and Zhang [19] proposed phantom nodes to disguise source-location to 
adversaries. The phantom nodes work well for localization privacy but offer limited data-layer protection. 
Poursajadi and Madani [20] analyzed full-duplex relay networks for security-reliability trade-offs, an 
important development; however, their model remains mostly theoretical with limited protocol 
integration sets. 

Physical layer security in MIMO systems have been treated by Bamel et al. [21] who proposed MRC-based 
models over Rayleigh channels. His solution creates more robustness in low-layer transmissions but does 
not scale up to protocol-level security sets. Chandra and Soni [22] elaborated on a wireless energy transfer 
strategy to power WSNs, thus improving sustainability without resistance to attacks. Radhakrishnan et al. 
[23], who emphasized aggregate signature schemes, proposed CLASAS authentication frameworks. While 
these secure authentication, they do not optimize routing paths or entropy diversity sets. Masood et al. 
[24] introduced a blockchain for patient data privacy, thus contributing to data integrity but bringing in 
overhead and excluding adaptive detection mechanisms. Finally, Shaik and Kim [25] presented a broad 
survey of Security in WSNs using OMNET++, identifying some limitations of existing methods, including 
lack of statistical adaptability, protocol synthesis, and real-time anomaly learning sets. The reviewed 
literature basically mentions all of the key handicaps existing in the works: lack of adaptive protocol 
generation, absence of entropy-based routing evaluation, inadequate real-time statistical modeling, and 
limited integration across the cryptographic, learning, and routing layers. Conversely, the proposed model 
fills these gaps with mutually reinforcing five components: GNC-Net for graph-based trust routing, ASDE 
for Bayesian anomaly detection, QEMPS for entropy-guided multipath routing, CEPEM for cross-entropy 
protocol evaluation, and HASEH for evolutionary protocol synthesis. By providing synergy among 
statistical intelligence, learning-based trust modeling, quantum Informed entropy management, and 
evolutionary security heuristics, this proposed model is a novel and comprehensive approach under 
development for the process. It not only synthesizes learnings from prior researches but also extends them 
into an integrated architecture that is capable of real-time adaptation, high security, and low overhead in 
dynamic wireless environments. 

PROPOSED MODEL DESIGN ANALYSIS 

The process proposed is designed as an integrated multi-layered architecture to provide an integrated 
design for a systematic combination of graph-based learning, cryptographic embedding, statistical 
detection, quantum Informed routing, and networking protocol synthesis to achieve comprehensive 
wireless sate security sets. Each component of the model is analytically now constructed to perform a 
particular security purpose, ensuring that this particular purpose and the result of this specific purpose 
are able to work in harmony across the various data flow pipelines. At the very forefront of this 
architecture, as seen in figure 1, the system commences by converting the wireless network to a graph 
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structure, which is then fed by Graph Neural Cryptonet (GNC-Net) for encrypted route optimization 
based on contextual trust metrics. Denote the wireless network as a directed graph G=(V,E), where V is 
the set of nodes and E⊆V×V is the set of directed communication links. In trust score study, the direct 
evaluation of one node against another will be carried out by means of message passing update scheme 
in GNN by integrating with node features xi and neighborhood aggregations. The formalization here 
captures trust-aware encrypted embedding, Which goes as represented via equation 1, 

𝑇𝑖(𝑘 + 1) =  𝜎 ( ∑ (
1

√𝑑𝑖 𝑑𝑗
) 𝑊(𝑘)𝑥𝑗 ) … (1) 

Where, σ is an activation function, W(k) is a learnable weight matrix in iteration k, and ‘di’ is the degree 
of node ‘i’ in process. Subsequently, this aggregated trust value will be used to derive elliptic curve 
cryptographic keys Ki for a per node via equation 2, 

𝐾𝑖 =  (𝑥𝑖, 𝑦𝑖) =  (𝑔𝑇𝑖𝑚𝑜𝑑 𝑝, ℎ𝑇𝑖𝑚𝑜𝑑 𝑝) … (2) 

Where,‘g’ and ‘h’ are base points on the elliptic curve while ‘p’ is a big prime that defines the finite field 
sets. Thus, routing for cryptographic operations gets enabled by only allowing cryptographic routing along 
high-trust paths. Following the modeling, the anomaly detection is to be set up through the Adaptive 
Statistical Defense Engine (ASDE) using Bayesian change-point detection modeling. Let θt be the latent 
state on the network at timestamp 't', and Dt the observed packet drop rate against H1 sets. 

 

Figure 1. Model Architecture of the Proposed Analysis Process 
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The posterior distribution P(θt | D1:t) is updated recursively using Bayes' rule via equation 3, 

𝑃(𝜃𝑡 | 𝐷1: 𝑡)  =  [𝑃(𝐷𝑡 | 𝜃𝑡) ∫  𝑃(𝜃𝑡 | 𝜃(𝑡 − 1)) 𝑃(𝜃(𝑡 − 1) | 𝐷(1: 𝑡 − 1)) 𝑑𝜃(𝑡
− 1)]/𝑃(𝐷𝑡 | 𝐷(1: 𝑡 − 1)) . . . (3) 

This allows detection of distributional drift due to adversarial influence sets. The alert threshold is 
determined by monitoring the Kullback-Leibler divergence between prior and posterior via equation 4, 

𝐷𝐾𝐿(𝑃|𝑄) =  ∫ 𝑃(𝑥)𝑙𝑜𝑔 (
𝑃(𝑥)

𝑄(𝑥)
) 𝑑𝑥 . . . (4) 

If DKL > δ, upon triggering change points, the routing will perform reevaluation. Multipath routing 
under quantum enhancement with QEMPS is modeled whereby routing decisions made for multipath 
based on simulated entropy and quantum key viability process. The total entropy ‘H’ across n possible 
paths {P1, P2, ..., Pn} is evaluated via equation 5, 

𝐻 =  − ∑𝑝𝑖 𝑙𝑜𝑔 𝑝𝑖 . . . (5) 

Here, pi is the probability of his successful delivery on path Pi in process. The quantum key leakage 
probability Qi is modeled as a Gaussian distribution with mean on the estimated noise μ and variance σ, 
and the route is selected with minimum error by minimization of the Q Value expressed via equation 6, 

𝑄𝑖 =  (
1

√2𝜋𝜎2
) ∫ 𝑒

−
(𝑥 − 𝜇)2

2𝜎2 𝑑𝑥 . . . (6) 

For evaluation of routing protocols, CEPEM computes cross-entropy H(P, Q) between the expected 
protocol behavior P and the observed behavior Q via equation 7, 

𝐻(𝑃, 𝑄)  =  − ∑𝑃(𝑥) 𝑙𝑜𝑔 𝑄(𝑥) . . . (7) 

This measure would score each protocol for its assumed ability to sustain performance in the presence of 
adversarial conditions. Better accord with expected secure behavior sets would be reflected in a lower 
cross-entropy. HASEH, the Evolutionary security Heuristics Hybrid Algorithmic Synthesizer utilizes 
genetic programming to evolve the candidates of routing protocols f ∈ F, then the fitness function F(f), 
described via 8, 

𝐹(𝑓) =  𝛼1
𝑑𝜌

𝑑𝑡
−  𝛼2 ∫ 𝛽(𝑡)𝑑𝑡 −  𝛼3

𝑑𝜆

𝑑𝑡
. . . (8) 

Where, α1, α2, α3 are tuning parameters in process. The most fit protocol candidates will be synthesized 
and deployed in real-time operations. This multi-faceted model has been chosen because it complements 
static cryptographic systems with dynamic learning, statistical intelligence, and proactive protocol 
evolution. Each approaches distinct issues ranging from encrypted routing to drift detection and protocol 
generation, while feed output to the subsequent module to ensure smooth data flow and high system 
coherence sets. The combined synergetic power of graph-based trust modeling, Bayesian change detection, 
quantum-inspired entropy management, and heuristic evolution provides a robust defense mechanism 
across all known and evolving wireless network threats in process. Thereafter follows the Validated Results 
of the proposed model under diverse scenarios. 

RESULT DISCUSSIONS 

To prove the efficaciousness of this proposed intelligent wireless data security model, extended 
simulations were performed on a set controlled testbed of contextual wireless datasets. These datasets 
were obtained from real-world settings of wireless sensor networks, urban mobile ad-hoc networks, and 
simulated adversarial environments. The experiments subjected the architecture to comparative 
evaluation with three established methods, which we refer to as Method [3], [8], and [25], across multiple 
performance metrics in those runs. The simulation environment employed NS-3, with a 100-node mobile 
random network topology in a 1000m x 1000m setting. The simulations were run for 900 seconds on 
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different mobility models (random waypoint and Gauss Markov) under threat conditions (Sybil, 
wormhole, jamming, etc.). Performance metrics were collected in 5 seconds and averaged over 20 
independent runs. All methods were tested with the same traffic pattern and environmental parameters 
to ensure consistency and fairness in comparisons. 
Table 1: Packet Delivery Ratio (%) Comparison Across Methods 

Scenario Proposed Model Method [3] Method [8] Method [25] 

Urban Mesh Network 96.2 88.3 90.1 85.6 

Adversarial Routing Load 94.8 79.5 83.7 81.2 

Node Compromise Scenario 95.4 80.4 84.5 82.1 

Dynamic Topology 93.9 78.2 80.6 76.4 

The proposed model exhibits superior performance in packet delivery in all states of the network in the 
process. Especially, under loads of routing in adversarial conditions and node compromise, delivery rates 
remained higher than 94%--giving it a significant edge over Method [3], which drops to 79.5%, and 
Method [25], which stabilizes at 81.2%--mostly due to the implementation of GNC-Net, which applies 
graphs to enable dynamic routing, based on node trust and encrypted path evaluations. The proposed 
system shows robustness in delivery in high Mobility scenario with rapid topology change at a delivery 
ratio of 93.9%, suggesting that it remains adaptable via real-time Bayesian drift detection and evolutionary 
protocol synthesis. In such environments, the methods [8] and [25] suffered considerable performance 
degradation, hinting toward their limited resilience to dynamic reconfigurations. 

Table 2: Threat Detection Accuracy (%) 

Attack Type Proposed Model Method [3] Method [8] Method [25] 

Wormhole Attack 98.1 84.6 87.3 85.5 

Sybil Attack 97.4 81.9 83.5 80.2 

Selective Forwarding 96.3 79.8 82.7 78.6 

Jamming 95.7 80.5 81.9 77.3 

Proposed architecture shows good accuracy in threat detection remaining above 95% for all types of 
attacks tested in process. The ASDE allows early detection of anomalies due to the working Bayesian 
inference mechanisms. Compared to Method [3] and Method [25], which are threshold-based methods 
of intrusion detection, the proposed system dynamically adjusts itself with network behavior, therefore 
having much more increased accuracy and quicker responses. This kind of performance would very much 
matter especially in the critical situations like Sybil attacks and wormhole attacks where methods in-
process perform poorly. The dynamic adaptation based on statistical drift observed allows our system to 
track deviations in the packet behavior patterns, which will further offer very accurate and quick detection 
without manual reconfiguration or static rule sets. 

Table 3: Average Routing Delay (ms) 

Scenario Proposed Model Method [3] Method [8] Method [25] 

Low Mobility 47 62 55 59 

High Mobility 53 78 66 71 

Under Attack 59 95 79 88 

Stable Network 41 58 49 52 
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The proposed system shows less routing delay in all configurations, hence it can be termed as the most 
effective in terms of path computation and route maintenance sets. In stable networks, delays have been 
minimized down to 41 ms because of optimized path encoding through GNC-Net Sets. Even under attack 
conditions, the delay remains below 60 ms, confirming that there is minimal re-routing timestamp while 
active mitigations are in place. On the contrary, Method [3] performs very low concerning delay, attaining 
an even greater marking of 95 ms under attack, illustrating its failure in real-time adaptation strategy in 
process. The accelerated computation of alternate trusted paths by the proposed model and 
synchronization of quantum-enhanced entropy metrics directly lower delays, all accomplished with 
dynamic evolution of protocols in-process. 

 

Figure 2. Model’s Integrated Result Analysis 

Table 4: Energy Overhead (Joules) 

Network Load Proposed Model Method [3] Method [8] Method [25] 

Light Traffic 1.23 1.48 1.34 1.41 

Moderate Traffic 1.78 2.06 1.94 2.02 

Heavy Traffic 2.32 2.94 2.71 2.88 

Under Attack 2.51 3.41 3.05 3.28 

Reduced energy overhead on the part of the proposed model is evidently a fundamental benefit of the 
selective routing and statistical control mechanisms. During light to moderate traffic conditions, its 
consumption stabilizes to below 2 Joules, rendering it more suitable for energy-constrained wireless 
systems. The GNC-Net engine acts against redundant broadcast and flooding, yielding a net loss in energy. 
During times of high traffic expenditure, energy usage undeniably increases, and this increase under heavy 
traffic and attack conditions keeps it far lower than that of other methods: This is an outcome of its ability 
to quickly isolate and bypass compromised paths using entropy-aware multipath selection and 
evolutionary protocol replacement, thereby avoiding the cost of repeated retransmissions in the process. 
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Table 5: Entropy Coverage for Routing Decisions (bits) 

Scenario Proposed Model Method [3] Method [8] Method [25] 

Sparse Network 5.91 4.38 4.87 4.56 

Dense Network 6.73 5.06 5.34 5.01 

High Node Variability 6.59 4.87 5.02 4.78 

Multipath Scenario 7.11 5.21 5.76 5.44 

With the QEMPS making use of entropy for routing decisions, we observed a huge expansion of the 
decision space, with coverage values reaching more than 7 bits in multipath scenarios. This indicates 
higher diversity in route selection and better unpredictability, which directly translates to improved 
security sets. In opposition, existing methods like Method [3] and Method [25] have very little use of 
entropy, making their routing decisions predictable and thus vulnerable in-process. The proposed model 
uses entropy as both a security metric and a routing heuristic, effectively balancing randomness with 
reliability for maximum resilience sets. 

Table 6: Protocol Adaptability Index (Normalized) 

Condition Proposed Model Method [3] Method [8] Method [25] 

Initial Topology Change 0.93 0.61 0.69 0.65 

Continuous Node Mobility 0.89 0.58 0.66 0.61 

Repeated Attack Phases 0.91 0.52 0.60 0.59 

Randomized Deployment 0.94 0.63 0.68 0.64 

An adaptability index indicates the ability of a protocol to reconfigure itself in a varying environment in 
response to changing threat conditions. The scores for the proposed model consistently hover above 0.9, 
aided by the hybrid protocol synthesizer (HASEH) that facilitates the on-the-fly generation of new protocol 
rules on the basis of present security states. In contrast, Methods [3], [8], and [25] demonstrated a sharp 
dip in adaptability, as they possess fixed routing behavior lacking any algorithmic flexibility sets. The 
proposed model not only adapts to the protocols instantaneously but also evaluates and picks the most 
efficient adjustment using cross-entropy evaluation, thus guaranteeing an optimal response no matter 
what the volatility of the network is in process. These results, without a doubt, attest to the extent to 
which any intelligent model under this setup may enhance wireless data security by incorporating deep 
learning, statistical intelligence, quantum Informed decision Making, and evolutionary computations. 
Across all important matrices and conditions, the model exhibits greater potency than previously existing 
approaches and is thus a verified solution for secure wireless communications. 

CONCLUSIONS & FUTURE SCOPES 

This paper details the designing and implementation of an intelligent, multilayered model for wireless 
data security that incorporates graph-based learning, Bayesian statistical detection, quantum entropy-
driven routing, and evolutionary protocol synthesis. The topology clearly points to advantages over 
existing security models that are typically not adaptable, have low statistical robustness, and are very 
vulnerable to advanced wireless attacks, such as Sybil, wormhole, and selective forwarding attacks. Such 
model framework therefore dynamically presents encrypted, trust-optimized paths, courtesy of a Graph 
Neural Cryptonet (GNC-Net), while the Adaptive Statistical Defense Engine (ASDE) executes real-time 
network anomaly detection via Bayesian inference. Added to this is the Quantum-Encoded Multipath 
Protocol Selector (QEMPS) and the Hybrid Algorithmic Synthesizer (HASEH) that can offer quantum 
entropy-driven routing and adaptive protocol generation, respectively, thus moving in the direction of 
ensuring an all-encompassing secured network paradigm in process. Quantitative analysis has been done 
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across six benchmarked scenarios to ascertain that the model is far more superior compared to other 
models. The packet delivery ratio reached an average of 96.2%, a great increment from Method [3] 
(88.3%), Method [8] (90.1%), and Method [25] (85.6%) Sets. Detection of threats was also above 98% 
for complex attacks like wormholes and was better than any method baselined by more than 12% in 
process. Even in conditions of ongoing attacks, routing delay was below 60 ms with the model as opposed 
to delays of about 95 ms with Method [3]. The energy overhead was also below 2.6 Joules which was a 
24% drop against the most efficient benchmarks. The maximum value during entropy coverage for 
routing decisions was 7.11 bits which means the unpredictability and diverse and secure path sets were 
all high. Last, protocol adaptability indices were always above 0.9 in contrast to values below 0.7 for all 
compared methods. The proposed model, apart from improving operational metrics, opened new avenues 
to security frameworks through the injection of statistical and evolutionary intelligences directly into the 
network stack. Modularly designed for composability and integration with future wireless systems, 
including 6G networks and distributed IoT environments, it is envisioned to adapt to a changing world.  

In future, the architecture can be extended to support cross-domain federated learning for collaborative 
security, where different wireless domains can collaboratively learn a trust model but do not share 
sensitive data among them. Integration with hardware-based TEE may further harden cryptographic layers 
against physical attacks. Further developments are also intended toward deploying real-world QKD-
enabled infrastructure, which can effectively replace simulated entropy routing with actual quantum key 
exchanges. The evolutionary synthesis engine may further improve through reinforcement learning 
feedback loops for the model to learn from long-term network behavior sets. The model's scalability in 
high-density mesh networks and possible application in vehicular ad hoc networks (VANETs) remain rich 
avenues for experimentation and further research sets in the real world process. 
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