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Abstract— Environmental pollution is a severe menace to the health of people and ecology, which 

requires smart and active measures. The idea of developing a clever pollution tracking system that 

incorporates Artificial Intelligence (AI) to manage environmental risks in real-time is discussed in the 

present paper. The suggested system consists of sensor networks, machine learning, and cloud-based 

analytics that will allow monitoring, predicting, and responding to air and water pollution levels in real 

time. Simulated urban deployments have shown the model to be very efficient in both prediction 

accuracy and system responsiveness, indicating potential at scale urban and industrial application. The 

ultimate goal of this work is to reduce the gap between environmental monitoring and automated 

decision-making that will have a positive effect on sustainability and people health. 

Keywords— AI in environmental monitoring, pollution tracking, real-time risk management, machine 

learning, smart city, environmental sensors, air quality prediction, water pollution detection, anomaly 

detection, environmental sustainability. 

 

I. INTRODUCTION 

The problem of environmental degradation especially through air and water pollution has become 

widespread to touch on human health, biodiversity, and a stable climate. Increasing rate of 
industrialization, urbanization, automobile emissions, and informal solid waste disposal have led to great 
increments in the quantity of toxic substances in our ecosystems. Manual sampling accompanied by 
laboratory-based analysis is not only time-consuming but also reactive in nature as a means of traditional 
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pollution monitoring methods. They do not always offer real time insights that can be used to make 
timely interventions and as such, restrict the extent to which proactive management of environmental 
risks can go [4]. The emergence of the smart cities and the Internet of Things (IoT) presents an unrivaled 
potential to change how pollution is dealt with and observed. A combination of embedded sensors, cloud- 
based analytics, and artificial intelligence (AI) have the potential to routinely deliver high-resolution 
environmental measurements in real-time, potentially leading to the real-time anomaly detection and 
supportive of timely decision-making. Here, AI will act as the brain of the intelligent pollution monitoring 

system, transforming enormous flows of data into knowledge and forecasts. This integration enables the 
AI to recognize patterns of pollution, predict possible risks and promote sustainable urbanization 
decision-making. The air quality indices (AQI) of most metropolitan cities around the world are often 
above the secure levels, causing respiratory disorders, cardiovascular dysfunctions, and even earlier deaths. 
Water bodies on the same note are confronted with the pressure of industrial effluent, sewage spill and 
agricultural overflow. The stakes are especially high in third world countries in which the regulatory 
framework and pollution monitoring infrastructure is either not mature or spotty in its enforcement. The 
demand is high on an automated, scalable, and smart pollution tracking system that can be operational 
in a variety of open environments with a minimum of human interaction [12-14]. The edge computing, 
deep learning, and machine learning (ML) recent developments have permitted systems togiants to 
process enormous amounts of environmental data in real-time. As a case in point, Long Short-Term 

Memory (LSTM) networks have shown to be very useful in time-series prediction, notably when the 
application concerns air pollutant concentrations. These models can be used not only to predict but also 
to identify abnormal events, e.g., industrial leaks or car smog bursts, often before they develop into 
emergencies when used in conjunction with anomaly detection models, such as autoencoders or one-class 
SVMs. With the implementation of such technologies into a cohesive system, smart pollution tracking 
will become not a passive monitoring tool, but an active risk prevention tool. Besides, government 
agencies and environmental organizations frequently experience limitations in spatial extensiveness and 
the resolution of their observation networks. The micro-scale variations in pollutant concentrations that 
can be due to differences daily variations in traffic, construction activities, or weather conditions cannot 
be captured by fixed stations [3]. This gap can be closed with mobile, low-cost sensor networks on vehicles, 
drones, or infrastructure in the street. Together with an AI-based processing, they create a powerful 
ecosystem that is capable of capturing and interpreting dynamic pollution situations in real-time. The 

social value of real time tracking systems of pollution is enormous. Advance alerts of unsafe levels of 
pollution can assist people in taking precautionary measures, including staying indoors or using air filters. 
At a bigger scale, urban authorities can rely on real-time intelligence to provide warnings, manage traffic, 
industrial emissions or act on an emergency basis in the event of chemical spillages or water pollution. 
Moreover, the system stores historical pollution data that can be utilized to optimize urban zoning rules, 
establish environmental compliance and develop long term pollution abatement plans [15].Irrespective 
of the opportunity, there are some obstacles to introducing AI-based systems of pollution monitoring. 
These are the trustworthiness and sustainability of sensor systems, the computational expense of real-time 
computation, and the explainable AI models which could be relied on by the governmental entities. The 
technical challenges also consist of data heterogeneity, data latency, and sensor calibration errors. 
Nevertheless, most of these limitations are being overcome with the faster maturity of cloud computing 

and 5G networks. The paper introduces an end-to-end and scalable system of smart pollution tracking 
that combines real-time sensor measurements with predictive models built through deep learning and 
deployed on the cloud together with visualization tools [2]. It not only focuses on the technical design 
and model performance but also focuses on the practical aspect of implementing such a system in urban, 
and semi-urban scenarios. The proposed framework will transform the way environmental risks are 
managed, as it will follow the aims of sustainability and take advantage of modern technology. 

 
NOVELTY AND CONTRIBUTION 

The proposed study incorporates a number of innovative features that set it apart form the current 
research on the environment monitoring and pollution control. Instead of the traditional approach based 
on the periodic data acquisition and offline analysis, the proposed framework comprises real-time sensing, 
AI-based forecasting, and autonomous risk response in the same operational paradigm. Such a high degree 
of integration contributes to a major improvement of predictive, detection and response capabilities of 
the system to pollution incidences before they develop into full-blown environmental or health disasters. 
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Among the major contributions is the fact that it utilizes a hybrid AI model, which integrates LSTM 
networks, which are used in time-series prediction, with anomaly detection based on autoencoders used 
in the case of unusual spikes in pollution. Such a two-pronged technique does not only have the capacity 
to forecast future pollution trends with a high degree of accuracy but is also effective in indicating sudden 
environmental threats, e.g. chemical spills or industrial release, that do not conform to predicted patterns. 

Most of the research has been done either on prediction or anomaly detection separately, but this 
framework brings the two together to create a more reliable and context-sensitive solution [6]. The use of 
a multi-layered sensor network providing fixed and mobile data acquisition is also another novelty. The 
use of IoT-enabled sensors on both city fixed infrastructure and mobile platforms, such as vehicles and 
drones, enables the system to provide spatially comprehensive coverage, which is consistent with the 
regular issue of monitoring blind spots. This attribute proves useful specifically in large or topographically 
complicated regions where polluting situations can be very localized and challenging to monitor with 
fixed systems only. The proposed study also suggests an architecture that is integrated with cloud, which 
can not only process data in real time, but also show the trends of pollution, risk and health of sensors 
through interactive dashboards. This enables the environmental agencies and public administrators to 
formulate evidence-based choices within a small amount of time without involving technical 

intermediaries. Another feature of the dashboard is the provision of a pollution data dashboard to the 
citizens in real-time via mobile applications or web portals, which can also be used as a form of public 
awareness. In addition, the system will have a feedback loop to constantly learn, where the AI model will 
renew itself with new data and changing pollution patterns. This makes the model accurate and adaptive 
in various seasons, cities, and source of emissions. Less frequent human interventions also make the 
system more sustainable in long-term perspective because of the self-updating mechanism [9]. 

 
In short, the main contributions of this work are: 

• An integrated AI framework of forecasting and anomaly detection to ensure correct and timely 

risk notification. 

• Combined fixed and mobile sensor systems to achieve high resolution real-time mapping of 
pollution. 

• Stakeholder engagement visualization and alert system that is cloud based and easy to use. 

• Adaptive and context aware pollution prediction using self-learning feedback mechanism. 

• proven scalability in terms of deployment in smart city and environmental protection projects. 
All of these advancements make the framework a cutting-edge technology in the sphere of AI-based 
environmental surveillance, which can find practical implementation in city planning, industrial 
oversight, and population health management [10]. 

 

II. RELATED WORKS 

In 2024 D. B. Olawade et al., [11] introduced the environmental surveillance and artificial intelligence 

are two fields that have grown closer in the recent years due to the demand in real-time and reliable 

information to base ecological preservation and city management on. Traditional pollution monitoring 

systems have been based on fixed, expensive infrastructure, with little spatial resolution and weak 

capabilities of adapting to the dynamic environments. Consequently, the transition to real-time, smart, 

and distributed monitoring with the help of AI and IoT has become one of the primary innovation fields. 

A notable part of the previous research is devoted to machine learning algorithms applied to predicting 

air quality indices (AQI) and concentrations of particular pollutants, e.g., PM2.5, PM10, CO, NO 2 , and 

O 3 . Several regression models such as decision trees, support vector regression, and random forests have 

been applied to predict the short-term pollution level. Such models are generally robust when trained on 

large datasets, however, they tend to fail on the temporal dependence and sudden increases of pollution 

levels, making them not useful in real-time applications. Also, they generally lack interpretability and 

dynamic flexibility, both of which are important to risk-averse environmental uses. In 2025 T. Miller et 

al., [1] suggested the recurrent neural networks (RNNs) and especially Long Short-Term Memory (LSTM) 

models have also been used in time-series predictions of air pollution to capture the temporal dynamics 

more sufficiently. Such models can capture longer term dependencies in data which makes them useful 

in making more accurate predictions on an hourly or daily basis. They have found use particularly in the 

modeling of seasonal patterns and day to day cycles in pollutant concentrations. Nonetheless, LSTM 
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models are computationally expensive and need to be re-trained constantly to fit fluctuating atmospheric 
situations and urban activity styles, which may be a limitation in wide-scale implementations. Besides air 
quality forecast, research has been done on application of classification and clustering methods in 
detection of water pollution. These methods are commonly based on measurements by sensors that 
measure physical, chemical and biological parameters like pH, turbidity, dissolved oxygen, conductivity 
and heavy metals presence. The algorithms including k-means clustering, Naive Bayes classifiers, and 
multilayer perceptrons have been employed to identify the anomalies or to categorize water samples as 

clean, moderately polluted, and highly contaminated. Nonetheless, such systems have a tendency to rely 
on laboratory-tagged data and might fail to perform under field circumstances involving noisy, incomplete 
sensor readings. A second direction of research interest is hybrid models that can use a combination of 
AI methods to achieve better performance on a variety of objectives - e.g., hybrid approaches to forecasting 
that also detect anomalies. Such models are especially applicable in environmental surveillance where 
trends are of interest as well as outliers. LSTM predictors have been combined with anomaly detection 
models (e.g. autoencoders, isolation forests and one-class SVMs) to identify sudden increases in pollution 
caused by industrial processes, traffic congestion or natural disasters. Such methods have demonstrated 
the ability to reduce false alarms and still be very sensitive to unusual environmental events. In 2025 S. 
Kumari et al., [5] proposed the regardless of these developments, several of the current studies are 
constrained with regard to real-time implementation and reliability of operation. As an illustration, some 

systems are designed based on fixed datasets and lack real-time sensor streams integrations. Others do not 
have automatic alert generation, visualization or integration into municipal decision-making processes 
mechanisms. Also, the majority of the solutions are tried in either controlled conditions or pilot studies 
of small scale, which hinders the scalability to actual city settings. Also commonly mentioned limitations 
in current implementations are sensor calibration, data loss because of connectivity problems and energy 
efficiency. It has also been investigated how AI can be used together with geospatial technologies to 
improve the spatial resolution of monitoring pollution. Remote sensing information (satellite images) 
and ground based sensor networks have been utilized together to give a more detailed environmental 
monitoring. AI models have also been employed to interpolate (usually with kriging and inverse distance 
weighting) data gaps to generate pollution heatmaps at the city and regional scale. Although these 
techniques provide a macro- Perspective of the environment patterns, they are commonly deficient in 
real- time responses and limited by the temporal resolution of the satellite orbits. A different vein of 

related effort has been on developing cloud based systems to collect and process environmental data. 
Such platforms enable the aggregation, cleaning andanalysis of the large streams of data generated by 
distributed sensors in near real-time. Cloud computing has ablely enhanced the capability to compute 
high-frequency data and accommodate web-based visualizations as well as dashboards. Nonetheless, a 
variety of them continue to rely on manual management and human monitoring, thus making it possible 
to introduce delays and decrease responsiveness of the systems in cases of critical situations. 

 

III. PROPOSED METHODOLOGY 

The proposed framework integrates real-time sensor acquisition, edge-level preprocessing, Al-driven 

prediction, anomaly detection, and cloud-based visualization into a unified environmental monitoring 

and risk management system. The system architecture is structured in modular layers, each 

mathematically modeled for precision and performance [7]. 

Data Acquisition and Preprocessing 

Environmental data are collected from multiple loT sensors measuring pollutants such as PM2.5, PM10, 

CO, NO2, and SO2. Each sensor reading at time 𝑡 is represented as a feature vector: 

 
x  = [𝑥(1), 𝑥(2), … , 𝑥(𝑛)] 
𝑡 𝑡 𝑡 𝑡 

where 𝑛 represents the number of pollutant metrics. 

To ensure noise reduction, a simple moving average filter is applied: 
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𝑡 

1 
𝑥 𝑡̂ = 

𝑘 
∑ 

𝑖=𝑡−𝑘+1 

𝑥𝑖 

This denoised vector 𝑥ˆ𝑡 feeds into the Al engine for predictive analysis. 

• Forecasting Using LSTM Neural Network 

The forecasting model uses a multi-layer LSTM network. Given a sequence of T timesteps, the LSTM 

generates future pollution values. The cell state update is governed by: 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐‾𝑡 

where: 

• 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) is the forget gate 

• 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) is the input gate 

• 𝑐˜𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

The final output is predicted as: 

𝑦 𝑡̂+1 = 𝑊𝑦 ⋅ ℎ𝑡 + 𝑏𝑦 

• Anomaly Detection via Autoencoder 

To capture sudden pollution spikes, an autoencoder reconstructs the input and flags high reconstruction 

error instances as anomalies: 

𝑥ˆ𝑡 = 𝐴𝐸(𝑥𝑡), Error 𝑡 = ‖𝑥𝑡 − 𝑥ˆ𝑡‖2 

If Error 𝑡 > 𝜃, the data point is flagged as anomalous, where 𝜃 is a learned threshold. 

• Spatiotemporal Mapping 

Sensor data from multiple nodes is interpolated to estimate pollutant levels over unsampled locations 

using Inverse Distance Weighting (IDW): 

∑𝑛 𝑤𝑖(𝑥0) ⋅ 𝑍(𝑥𝑖) 
𝑍(𝑥 ) =  𝑖=1  

 
with weights: 

𝑛 
𝑖=1 𝑤𝑖(𝑥0) 

 

𝑤𝑖(𝑥0) = 
‖𝑥 

1 

− 𝑥𝑖‖𝑝 

𝑝 is the power parameter typically set to 2 . 

• Pollution Risk Index Calculation 

To normalize various pollutant concentrations into a unified risk score, a weighted pollution risk index 

(PRI) is calculated: 

𝑛 
𝑥(𝑗) 

𝑃𝑅𝐼𝑡 = ∑ 𝛼𝑗 ⋅  𝑡  
𝑇𝐿𝑉𝑗 

𝑗=1 

0 ∑ 

0 
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𝑡 = 𝑡 

 
Where: 

• 𝛼𝑗 = pollutant-specific weight 

• 𝑇𝐿𝑉𝑗 = threshold limit value for pollutant 𝑗 

• Alert Generation Rule 

If PRI exceeds a critical risk threshold 𝛿, the system activates warnings: 

1, if 𝑃𝑅𝐼 > 𝛿 
Alert { 

0, otherwise 

Self-Learning Module 

The AI model includes a feedback mechanism to adapt over time. Let prediction error be: 

𝐸𝑡 = |𝑦𝑡 − 𝑦ˆ𝑡| 
 

If 𝐸𝑡 > 𝜖, the model triggers retraining: 

 

 

where 𝜂 is the learning rate. 

System Evaluation Metric 

 

 

Δ𝑊 = −𝜂 ⋅ ∇𝑊𝐸𝑡 

To evaluate accuracy, Root Mean Square Error (RMSE) is used for predicted pollutants: 

 
 

1 
RMSE = √ 

𝑇 

∑ (𝑦𝑡 − 𝑦ˆ𝑡)2 
𝑇 
𝑡=1 

 
Anomaly detection precision is calculated as: 

True Positives 
Precision = 

 
• Deployment and Visualization 

 
 

True Positives + False Positives 

The final data and predictions are streamed into a cloud dashboard with GIS-based visual overlays and 

realtime alert panels. The update cycle 𝜏 is dynamically computed based on system load: 
 

 

 

 

Where: 

• 𝐷 = Data volume 

• 𝜆𝑠 = sensor update rate 

• 𝜇 = system processing speed 

𝜏 = 
𝐷 

 
 

𝜆𝑠 ⋅ 𝜇 
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FIGURE 1: REAL-TIME AI-DRIVEN POLLUTION MONITORING WORKFLOW 

IV. RESULT & DISCUSSIONS 

The suggested AI-based environmental surveillance system was evaluated in a series of trials conducted in 
various city areas, each furnished with decentralized sensor nodes. These nodes dealt with pollutant 
indicators such as PM2.5, PM10, CO 2, and NO 2 in real-time. The resulting data was displayed in the 
cloud-based dashboard, and its predictive correctness, anomaly reaction, and the regularity of the alerts 
were observed in the course of a consecutive 30 days. The initial step of analysis entailed determining the 
trend forecast capability of the LSTM model on these important pollutants. Figure 2 demonstrates that 
the system could effectively predict pollution concentration levels 4 hours before. A blue line indicates 

real data, and a red dotted line shows LSTM predictions. The similarity in the observed and modeled 
values shows that the system is apt to deal with time-series prediction with minimum error, especially in 
PM2.5 and NO 2, where the variance was within +-8 percent in high-traffic-density areas. This real time 
forecast is important in scheduling municipal level responses like managing the traffic flow of vehicles or 
scheduling industrial emissions. 

 
FIGURE 2: PREDICTED VS. ACTUAL POLLUTANT LEVELS (LSTM MODEL) 

Predicted PM2.5 (µg/m³) Actual PM2.5 (µg/m³) 
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Predicted vs. Actual Pollutant Levels 
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Reconstruction Error Baseline CO₂ (ppm) Actual CO₂ (ppm) 
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Autoencoder-Based Anomaly Detection Metrics 

 

Regarding anomaly detection, the combined autoencoder-based model was very responsive to sharp 
increases of pollutants, e.g., due to unreported construction work or evening traffic jams. Figure 3 
visualizes the output of the anomaly detection system and shows that shaded red portions represent the 
instances the model classified as environmental anomalies. The elevated values of the sensor data of CO 
2 and PM10 at those times correlated with independent ground-truth checks based on surveillance and 
weather reports. These findings support the need to have a hybrid AI model that is capable of not only 
predicting the trends but also addressing unforeseen pollution incidents. Detection rate was uniform 

among the locations and the rate of false alarm was below 4%, which verified the reliability of 
reconstruction-error threshold calibration. 

 

FIGURE 3: ANOMALY DETECTION RESULTS DURING TRAFFIC HOURS 

 

When the performance of the system was compared to two other models, Model A (a traditional 
regression based predictor) and Model B (a simple neural network without feedback adaptation), the 
results were considerable. Our system did better than others in all pollutants as shown in Table 1: 

Forecasting Accuracy Comparison Across Models. The accuracy of PM2.5 predictions was up to 91.2 
percent, compared to the highest competing model at 82.4 percent. In the case of NO 2, the accuracy 
increased in 78.5 percent to 88.6 percent which underscores the effect of recurrent memory layers and 
adaptive learning embedded in our architecture. There is also an observable increase in the reliability of 
PM10 and CO 2 prediction in the table especially during varying weather patterns. 

 

TABLE 1: FORECASTING ACCURACY COMPARISON ACROSS MODELS (%) 

Pollutant Proposed Model Model A Model B 

PM2.5 91.2 82.4 85.1 

PM10 88.7 80.3 82.5 

CO₂ 85.6 77.9 80.0 

NO₂ 88.6 78.5 81.2 

 

 

In assessing the real time alert system incorporated in the model, the deployment tests showed that 
the system was capable of generating early warnings. The dashboard system has been observed in 10 
various event-driven scenarios. In 9 out of 10, messages were delivered earlier than pollution reached the 
critical threshold, making it possible to act in advance. The relation between the pollution threshold 
violation and the time of the system alert is described in Fig. 4. The histogram indicates the time (in 

https://www.theaspd.com/ijes.phpa


International Journal of Environmental Sciences 

ISSN: 2229-7359 
Vol. 11 No. 5s, 2025 

https://www.theaspd.com/ijes.phpa 

1374 

 

 

19 

Alert Accuracy (%) Lead Time (Minutes) 

3 2 1 

0 

16 
20 

Alert Lead Time vs. Risk Severity 

17 

80 

 
60 

 
40 

93.2 100 
98.7 96.5 

120 

 

minutes) difference between the alert creation and the violation of critical AQI limits, most alerts being 

received 10-20 minutes before. Such lead time, even on edge devices, is invaluable in fast-response 

applications in city and industrial policy control. 

 

FIGURE 4: ALERT TIMING VS. AQI BREACH TIMING 

The other key area that was tested was the system up-time and energy efficiency of the units deployed. 
The sensor nodes on the network drew an average power of 4.1W and enough to last the entire month 
with less than 2 percent data loss. Compared to those in Table 2: System Deployment Efficiency Metrics, 

our system needed a lot less power than legacy systems due to edge processing and efficient 
communication standards. Moreover, the cloud updating periods were adjusted dynamically to prevent 
the saturation of bandwidth and, as such, provide seamless flow of data even at the busiest time of the 
day in terms of its accumulation. 

TABLE 2: SYSTEM DEPLOYMENT EFFICIENCY METRICS 

Metric Proposed System Legacy System 

Power Consumption (W) 4.1 8.7 

Data Loss (%) 1.8 6.2 

Uptime (%) 98.7 91.3 

Cloud Sync Delay (ms) 210 680 

The performance advantages and practical scalability of the suggested smart pollution tracking system are 

confirmed in the comparison tables and diagrams. The AI-based model uniting forecasting, anomaly 
detection, alert generation, and deployment reliability can be a feasible solution to smart cities 
environmental governance in the future. More to the point, the real time processing capability (sensor to 
dashboard) mirrors the operability of the architecture. The figures generated out of the experiment results 
highlight the extent to which the AI elements are resilient to changes in the environmental settings [8]. 

 
V. CONCLUSION 

The proposed study develops an AI-based system of intelligent pollution monitoring, focusing on real- 
time risk reduction and data-powered decision-making. The incorporation of machine learning into the 
IoT sensor network and cloud computing provide precise pollution forecasting and real-time notifications 
to interested parties. The simulation study proves the significant increase of responsiveness and predictive 
accuracy over traditional approaches.The framework has potential application in municipal planning, 
industrial safety, as well as environment protection projects. The proposed model will be extended in 
future by accommodating waste and noise pollution, energy efficiency in sensor networks and integration 
of federated learning to maintain data privacy across regions. 
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