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ABSTRACT 

Brain tumors pose significant diagnostic challenges and demand efficient, automated solutions. This research investigates 

the application of Convolutional Neural Networks (CNNs), focusing on the VGG16 architecture and its frozen-layer 

variant, for brain tumor detection from MRI scans. A total of 7,023 MRI images were utilized, preprocessed using the 

Multivariate Fast Iterative Filtering (MFIF) technique, and further enhanced through data augmentation methods 

including rotation and flipping. The models were trained with the Adamax and SGD optimizers, set to learning rates of 

0.001 and 0.0001, respectively. The frozen-layer VGG16 model attained a training accuracy of 99.98% and a test 

accuracy of 98.12%, along with AUC scores of 1.0 and 0.9994. Evaluation metrics such as Accuracy, Precision, Recall, 

F1-score, and ROC analysis confirmed that both data augmentation and layer freezing contribute significantly to improving 

classification outcomes, with an overall average accuracy of 98%. 

Keywords: Brain Tumor, Convolution Neural Network, VGG16 Model, VGG16 Frozen Layer, Data Augmentation, 

 Performance Evaluation.  

 

1. INTRODUCTION 

Detecting and classifying brain tumors is a vital area of research, where numerous machine learning and deep 

learning methods are being developed to improve diagnostic precision. Accurate and early identification of 

brain tumors remains a key objective in medical imaging. This initiative plays a pivotal role in combating 

neurological diseases. Among the available imaging techniques, Magnetic Resonance Imaging (MRI) stands out 

as one of the most effective and widely used methods. It excels in capturing detailed anatomical information 

with unmatched clarity [1], [2]. Deep learning techniques can automatically learn complex patterns from large 

datasets of MRI images, enabling them to detect brain tumors with high accuracy. This opens up an exciting 

opportunity to make brain tumor diagnosis faster and more accurate [3]. The primary objective of this research 

is to investigate the application of deep learning methods for the detection and classification of brain tumors. 

The study concentrates on three common categories: gliomas, pituitary tumors, and normal brain tissue, using 

MRI scans as the basis for analysis [4]. 

Neurological disorders such as strokes, brain hemorrhage, multiple sclerosis, and brain tumors pose significant 

challenges to patients and healthcare professionals alike. The timely and exact diagnosis of these conditions is 

important for initiating appropriate treatment and improving patient outcomes. Brain tumors pose a serious 

threat to human health and are among the most challenging medical conditions. Timely and precise diagnosis 

is crucial for successful treatment and improved patient prognosis. MRI scans are considered the most reliable 

way to diagnose brain tumors [5]. 

Although significant progress has been made in imaging techniques and diagnostic methods, accurately 

identifying and classifying brain tumors—especially gliomas and pituitary tumors—continues to be a complex 

and demanding task. Traditional methods often depend on radiologists manually interpreting the scans. This 

process can be inefficient and subjective and lead to differences in opinions between experts [6]. In this regard, 

the rise of deep learning models offers significant potential to automate and streamline tumor detection and 

analysis, enabling earlier diagnosis and contributing to better clinical outcomes. 

2. RELATED WORKS 
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Detecting brain tumors early and accurately is essential for better patient outcomes. Acting quickly can 

significantly boost survival rates and improve quality of life. Traditional diagnostic methods rely heavily on 

manual inspection of medical imaging data. Traditional methods are often time-intensive and susceptible to 

human error, prompting growing interest in advanced machine learning solutions. Among these, 

Convolutional Neural Networks (CNNs) have demonstrated strong potential in enhancing both the precision 

and accuracy of brain tumor detection [7] CNNs like VGG16 have shown strong performance in image 

recognition, including medical imaging. This section highlights studies using VGG16, especially with frozen 

layers, for detecting brain tumors. For instance, the potential of a CNN-based approach for segmenting tumor 

diseases from MRI images is demonstrated in [8], achieving remarkable segmentation accuracy. For instance, 

CNN-based methods have demonstrated remarkable accuracy in segmenting gliomas from MRI scans [9]. 

Furthermore, deep learning models have been effectively utilized to differentiate between various types of brain 

tumors, underscoring the versatility of CNNs in medical diagnostics [10]. Moreover, the combination of 

AlexNet with other CNN architectures, such as VGGNet, ResNet, and InceptionNet, has been investigated to 

enhance detection performance through the ensemble method [11]. While results are encouraging, building 

reliable and general models for brain tumor detection is still challenging due to class imbalance, limited 

labeled data, and variation in medical images, calling for continued research and improvement [12]. 

Overcoming these challenges demands a holistic strategy that includes data augmentation, sophisticated 

regularization methods, and the integration of multi-modal imaging data [13]. This research paper focuses on 

analyzing the use of these models in detail. It highlights their strengths, limitations, and possible future 

applications. By bringing together insights from existing studies, the paper aims to improve diagnostic 

accuracy. It also seeks to support the growing use of artificial intelligence in medical practice [14]. Table 1 

shows some of the results from the previous study on the multi-classification of brain tumor diseases. 

Table 1: Survey of Multiclass Classification Approaches from 2017 Onward 

S. 

No. 

Model Pros Cons Dataset Year Accuracy Ref. 

1. CNN Balanced analysis, 

critical thinking, 

structured argument 

Time- 

consuming, 

depth of 

analysis, dataset 

limitation 

Kaggle 

brain 

MRI, 

3,064 

2017 91.43% [15] 

2. Deep 

CNN 

High accuracy, 

segmented free 

approach, data 
augmentation, 

Limited dataset, 

computational 

resources 

T1- 

weighted, 

3064 

2019 96.13% [16] 

3. VGG19 High accuracy using 

five-fold cross- 

validation, 

Innovative approach 

using transfer 

learning and block- 

wise fine tuning, 

Minimal 
preprocessing 

lacks normal 

brain Images, 

dataset 

limitation, 

complex fine- 

tuning 

CE-MRI 

T1- 

weighted, 

3,064 

2019 94.82% [17] 

4. Alex and Innovative approach, model Potential BRATS 2019 98.91% [18] 
 Google high accuracy, overfitting, 2013,    

  detailed computational 2014,    

  methodology, use of complexity, Lack 2015,    

  transfer leaning, of real-time 2016, and    

   application, ISLES    

   future work 2018    

   needed, s 1,300    
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5. ResNet50 

+ Adam 

optimizer 

High accuracy, 

comprehensive 

evaluation, data 

augmentation 

Computational 

resources, 

limited dataset 

Benchmar 

k MRI, 

3,.064 

2019 99% [19] 

6. CNN+ 

SVM 

High accuracy, 

effective 

combination, robust 

evaluation 

Data limitation, 

computational 

complexity, 

classifier 

requires more 

tuning on real 
images 

BRATS 

2013, 

BRATS 

2015, and 

OPEN, 

3,064 

2020 95.82% [20] 

7. U-Net 

with 

ResNet50 

High accuracy, 

advanced technique, 

Comprehensive 
approach. 

Computational 

complexity, 

Generalizability, 
limited dataset 

Figshare 

MRI, 

3,064 

2020 99.6% [21] 

8. Densenet 

201 

High accuracy, 

innovative 

technique, 

comprehensive 
approach 

Data limitation, 

computational 

cost, feature 

reduction 
limitation 

BRATS20 

18 and 

BRATS20 

19, 
620 cases 

2021 95% [22] 

9. DCNN Multiscale approach, 

high accuracy, No 

preprocessing needed 

Limited dataset, 

model 

architecture and 

training process 

are complex, 

instances of false 

positive 

T1-CE 

MRI, 

3,064 

2021 97.3% [23] 

10. ResNet50 

and 

Densenet 

201 

Innovative approach, 

advanced techniques, 

moderate accuracy 

The dataset is 

limited in size 

and requires the 

use of a single- 

step feature 

selection 

method without 

combining 

multiple 

features, 

challenging to 

implement, 

specific and 

small dataset 

BRATS20 

19, 

335 

2021 87.8% [24] 

11. CNN Maximum accuracy, 

automated diagnosis, 

no segmentation 

needed 

Small dataset, 

training deep 

CNN from 

scratch is 

complex, 

optimising the 

hyperparameters 

can further 

improve it. 

Figshare, 

Radiopaed 

ia, 

REMBRA 

NDT, 

3,295 

2021 100% [25] 
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12. Deep 

ResNet 

Novel approach, high 

accuracy, ant colony 

optimization 

technique, 

comprehensive 

evaluation 

Limited scope, 

quite complex, 

generalization, It 

needs 

optimization 

and a larger 

dataset 

Name and 

size of 

dataset is 

missing 

2023 98.69% [26] 

13. GAN, 

Transfer 

Learning 

Innovative approach, 

high accuracy, data 

augmentation 

Complexity, 

limited scope, 

small dataset, It 

needs 

optimization 

and a larger 

dataset 

Open- 

source 

MRI, 

3,064 

2024 99.51% [27] 

14. CNN Innovative approach, 

Harris Hawks 

Optimization, high 

accuracy, edge 

detection 

Limited scope, 

complexity, 

small dataset. It 

needs 

optimization 

and a larger 

dataset 

Kaggle 

Brain 

MRI, 

3,064 

2023 98% [28] 

15. Transfer 

learning, 

ResNet50 

Modified ResNet50, 

Maximum accuracy, 

comprehensive 

evaluation 

Complexity, 

limited scope, 

insufficient 

details about 
datasets 

Kaggle 

Brain 

MRI, 

3,064 

2023 100% [29] 

16. TL-based 

CNN 

High accuracy, five- 

fold cross validation, 

efficiency, 

comprehensive 

evaluation 

Complexity, 

limited scope, 

small dataset, 

optimising the 

hyperparameters 

can further 

improve it. 

Figshare, 

T1- 

weighted 

MRI, 

3,064 

2023 99.02% [30] 

17. DCNN High accuracy, 

comprehensive 

evaluation, 

Innovative approach, 

used two datasets, 

Complexity, 

limited scope, 

generalization, 

optimising the 

hyperparameters 

can further 

improve it. 

Two 

public 

MRI 

dataset of 

872 

patients, 

Exact size 

of dataset 
not given 

2023 98.90%, 

99.29% 

[31] 

18. 3ACL 

(Attention 

-CNN- 

LSTM) 

Novel 3D deep 

learning, high 

accuracy, used two 

datasets, practical 

application 

Hardware 

requirements, 

complexity, 

generalization. 

The dataset lacks 

normal brain 

Images 

BRATS 

2015 and 

BRATS 

2018, 

620 cases 

2023 98.90%, 

99.29% 

[32] 

19. DCNN High accuracy, 
innovative approach, 

Time-consuming 
I-HGS 

Gold- 
standard 

2023 99.89%, 
99.72%, 

[33] 
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  comprehensive 

evaluation, three 

datasets used 

algorithm, 

complexity, 

generalization, 

size of all 

datasets are 

missing 

MRI, 

exact size 

not 

specified 

 99.88%  

20. Deep 

transfer 

learning 

High accuracy, 

innovative approach, 

use five-fold cross 

validation, practical 

application 

Limited dataset 

and system 

efficiency, 

complexity, 

limited scope 

Kaggle 

Brain 

MRI, 

7,023 

2024 99.75% [34] 

21. DCNN High accuracy, 

minimal 

preprocessing, hybrid 
approach 

Limited dataset, 

complexity, 

generalization 

T1- 

weighted 

MRI, 

3,064 

2024 99.75%, 

97.98%, 

94.75% 

[35] 

22. Optimize 

d ML 

algorithm 

s 

High accuracy, 

innovative approach, 

optimization 

technique, time 
consuming 

complexity, 

generalization, 

computational 

complexity 

Figshare, 

SARTAJ, 

and 

Br35H, 
7,023 

2024 97.15% [36] 

23. Multipath 

CNN, 

SVM 

classifier 

High accuracy, 

improved metrics, 

reduced complexity, 

robust validation 

Limited scope, 

dependency on 

datasets, size of 

datasets missing. 

Used two 

MRI 

datasets, 

exact size 

is not 
given 

2024 98.3%, 

98.2%, 

99.1% 

[37] 

24. Hybrid 

mechanis 

m, 

VGG16 + 

Inception 

High accuracy, 

optimization, Data 

augmentation, Public 

dataset 

Computational 

Demands, Lack 

of Explainability, 

Generalizability, 

Integration 

Challenges, 

Dataset 

Limitations 

T1- 

weighted 

MRI, 

3,064 and 

4,278 

before and 

after 

balancing 

2024 98.64% [38] 

3. METHODOLOGY IMPLIED: 

Figure 1 illustrates the key stages of the proposed methodology. 
 

Figure 1: Workflow of the Proposed Approach. 

3.1 Brain Tumor Dataset Description: 

This study uses an MRI dataset from Kaggle, combining Figshare, the SARTAJ dataset, and Br35H, totaling 

7,023 brain scan images. The scans are classified into four groups: glioma, meningioma, pituitary tumor, and 

no tumor—the latter sourced only from Br35H. The data is organized into training and testing folders, each 

with four subfolders by class [39]. Figure 2 shows sample MRI images, and Table 2 outlines class-wise details. 
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Figure 2: Brain Tumor MRI Dataset Samples 

Table 2: Summary of Sartaj MRI dataset 

S. No. Sub-Class No. of Samples Description 

1 Glioma 1,621 Affected 

2 Meningioma 1,757 Affected 

3 Pituitary 1,6451 Affected 

4 No Tumor 2,000 Normal 

(Unaffected) 

3.2 Data Preprocessing and Model Training Evaluation: All MRI images were resized to 240×240×3 pixels for 

uniformity. To reduce complexity and improve processing speed, RGB images were converted to grayscale. The 

MFIF technique was applied during preprocessing to enhance image quality by reducing noise and sharpening 

important features [40]. The dataset was then split into training (80%), validation (10%), and testing (10%) 

sets. VGG16, a widely used CNN model for image classification, served as the core model in this study. 

Training was performed over several epochs with early stopping to prevent overfitting [41] Model performance 

was monitored using validation data, assessing metrics such as accuracy, precision, recall, and AUC-ROC. This 

helped fine-tune the model and ensure it could generalize well to new data [42]. Finally, both the original and 

frozen-layer versions of VGG16 were evaluated on the test set using key metrics like loss, accuracy, precision, 

recall, and AUC-ROC. This step assessed how well the models classified brain tumor types and their potential 

for real-world clinical use [43]. Figure 3 presents an overview of the study's methodology. 
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Figure 3: Flowgraph of the study 

3.3 Training Configuration: The model was trained for 30 epochs with a batch size of 32. Adamax and SGD 

optimizers, using learning rates of 0.001 and 0.0001 respectively, were applied to update weights during 

training. ReLU activation added non-linearity to help the model learn complex features, while softmax was 

used in the output layer for class probability prediction. Core to this setup is the 2D convolution operation, a 

key element in CNNs widely used for processing image data [44]. Given an input image 𝐼m and a kernel 𝐾a, 

the 2D convolution procedure can be represented scientifically as follows: 

𝐶(𝑖, 𝑗) = (𝐼𝑚 ∗ 𝐾𝑎)(𝑖, 𝑗) = ∑𝑚 ∑𝑛 𝐼𝑚(𝑚, 𝑛). 𝐾𝑎(𝑖 − 𝑚, 𝑗 − 𝑛) (1) 

Gere: C(𝑖, 𝑗) signifies the value at position (𝑖, 𝑗) in the output feature map. 𝐼m(𝑚, 𝑛) shows the pixel figure of 

the input image at position (𝑚, 𝑛). (𝑖 − 𝑚, 𝑗 − 𝑛) highlights the rate of the kernel at position (𝑖 − 𝑚, 𝑗 – 𝑛). 

The double summation is performed over all valid positions of the filter/kernel in the input image. ‘∗’ denotes 

the convolution operation. 

ReLU is a basic non-linear activation function defined as: 

𝑅𝑒𝐿𝑈(𝑦) = max (0, 𝑦) (2) 

ReLU replaces negative inputs with zero while keeping positive values unchanged, adding non-linearity to help 

the network learn complex patterns. Its derivative is 1 for positive inputs and 0 for negatives. 

Softmax is a widely used activation function in neural networks, especially for multi-class classification. It’s 

typically applied in the output layer to convert raw model scores into probabilities for each class. Given an 

input vector z with K elements (where K denotes the total classes), it is defined as: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) = 
𝑒𝑧𝑖 (3) 

𝑖 𝐾 
𝑗=1 

𝑒𝑧𝑗 
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Here: Softmax(𝑧)i represents the ith component of the output probability vector. 𝑒i Euler’s number 

(approximately 2.71828). 𝑧i defines the ith component of the input vector. The denominator sums the 

exponential of all elements in the input vector. 

3.4 VGG16 Architecture Layers: VGG16 consists of 13 convolutional layers and 3 fully connected layers, 

organized into blocks with max-pooling layers to downsample feature maps [45]. Table 3 outlines the layer-wise 

architecture of the VGG16 model. 

Table 3: The VGG16-CNN layers description 

Layer(s) Output Shape Param# 

input_layer (InputLayer) (--, 240, 240, 3) 0 

1st_conv1 (Conv2D) (--, 240, 240, 64) 1,792 

1st_conv2 (Conv2D) (--, 240, 240, 64) 36,928 

1st_pool (MaxPooling2D) (--, 120, 120, 64) 0 

2nd_conv1 (Conv2D) (--, 120, 120, 128) 73,856 

2nd_conv2 (Conv2D) (--, 120, 120, 128) 147,584 

2nd_pool (MaxPooling2D) (--, 60, 60, 128) 0 

3rd_conv1 (Conv2D) (--, 60, 60, 256) 295,168 

3rd_conv2 (Conv2D) (--, 60, 60, 256) 590,080 

3rd_conv2 (Conv2D) (--, 60, 60, 256) 590,080 

3rd_pool (MaxPooling2D) (--, 30, 30, 256) 0 

4th_conv1 (Conv2D) (--, 30, 30, 512) 1,180,160 

4th_conv2 (Conv2D) (--, 30, 30, 512) 2,359,808 

4th_conv2 (Conv2D) (--, 30, 30, 512) 2,359,808 

4th_pool (MaxPooling2D) (--, 15, 15, 512) 0 

5th_conv1 (Conv2D) (--, 15, 15, 512) 2,359,808 

5th_conv2 (Conv2D) (--, 15, 15, 512) 2,359,808 

5th_conv2 (Conv2D) (--, 15, 15, 512) 2,359,808 

5th_pool (MaxPooling2D) (--, 7, 7, 512) 0 

VGG16 with Frozen Layer Algorithm: 

VGG16Frozen Layer (input_shape, num_classes) Input (input_shape) 

for layer in vggf.layers[:-5]: #Set 5th block as trainable print(layer.name) 

layer.trainable = False #Othar than 5th as non-trainable return to model 

The above algorithm iterates over all but the last 5 layers of the model. Prints the name of each layer being 

iterated over, which can help identify the layer architecture or confirm which layers are being frozen. The 

concept of freezing a layer in TensorFlow is given in web document. The following layers are frozen or non- 

trainable: 

input_layer_1, 1st_conv1, 1st_conv2, 1st_pool, 2nd_conv1, 2nd_conv2, 2nd_pool, 3rd_conv1, 3rd_conv2, 

3rd_conv3, 3rd_pool, 4th_conv1, 4th_conv2, 4th_conv3 

3.5 Data augmentation: Data augmentation helps create a more diverse training dataset, which can improve 

the model's robustness and generalization. It is mostly valuable when the quantity of existing training data is 

restricted [46]. Table 4 presents the data augmentation methods applied in this study. 

Table 4: Parameters for the data augmentation process used in this work. 

S. No. Param. Value S. No. Param. Value 

1. Horizontal_flip True 5. Width shift range 0.1 

2. Vertical_flip True 6. Height shift range 0.1 

3. Shear range 0.2 7. Rotation 90o 

4. Zoom range 0.2    
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𝑖=1 

3.6 Hyper-parameter (Fine-Tuning) used in these two models: Fine-tuning VGG16 for brain tumor 

classification involves several steps. This process typically includes preparing the dataset, adjusting the VGG16 

architecture for the specific task, and then training the model. Figure 4 illustrates the block diagrams of the 

VGG16 and frozen-layer VGG16 models, including fine-tuning and applied hyperparameters [47]. Table 5 

provides the details of the hyperparameter settings used during training. 

Table 5: Hyperparameters and fine-tuning used in this implementation 

Hyper-parameters VGG16 VGG16 with Frozen Layer 

Loss function categorical_crossentropy categorical_crossentropy 

Optimizer Adamax SGD 

Epochs 30 30 

Batch_size 32 32 

Learning_rate 0.001 0.0001 

Momentum Nil 0.9 

A small learning rate, like 0.0001, allows for finer, more precise updates, which is beneficial when fine-tuning a 

model. 

Momentum (0.9) helps accelerate convergence by allowing the optimizer to maintain the direction of previous 

gradients. This helps avoid getting stuck in local minima and smooths out oscillations during updates. 
 

Figure 4: VGG16 and VGG16 with Freeze Layers models for the classification of brain tumour disease 

3.7 Early Stopping and Performance Metrics: To avoid overfitting and improve training, early stopping and 

learning rate reduction were used [48]. Early stopping was triggered if validation accuracy didn’t improve for 3 

epochs. If accuracy plateaued for 2 epochs, the learning rate was reduced by 0.1 to help the model converge 

more smoothly. After training, the VGG16 model was evaluated using several key performance metrics [49], 

[50], including: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 

(4) 

 

(5) 

(6) 

 

(7) 

𝐿𝑜𝑠𝑠 = − ∑𝐶 𝑦𝑖 ∗ log[𝑦 𝜄] (8) 

Here, c represents the number of classes, yᵢ is the true probability for class i, and ŷᵢ is the predicted probability. 

The AUC-ROC offers a summary of the model's ability to distinguish between classes across different 

thresholds [43]. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
(9) 
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𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
(10) 

 

 

The ROC curve illustrates the balance between true positives and false positives. 

4. RESULTS AND DISCUSSION 

The experimental findings demonstrate the strong performance and reliability of both the standard VGG16 

model and its frozen-layer variant in detecting brain tumors from MRI scans. Achieving a training accuracy of 

99.97% and an AUC of 1.0, the model effectively learns and captures complex patterns from the training data. 

Table 6 summarizes the average training and validation accuracy, loss, and AUC values recorded at epoch 30. 

Notably, the model also generalizes well to unseen data, with a test accuracy of 98.12% and a test AUC of 

0.9994. 

Table 6: Average Training and Validation Accuracy, Loss, and AUC for CNN Models with and Without Data 

Augmentation 

CNN-Model Train Test 

Accuracy Loss AUC Accuracy Loss AUC 

VGG16 69.06% 0.8751 89.63% 67.76% 0.8947 88.93% 

VGG16 with 

Augmentation 

94.45% 0.1429 99.59% 89.25% 0.3549 98.14% 

VGG16 Frozen 

Layers 

99.80% 0.0204 99.99% 96.72% 0.0750 99.90% 

VGG16 Frozen 

Layers with 

Augmentation 

99.98% 0.0069 100.00% 98.12% 0.0571 99.94% 

Figure 5 shows the average training performance of various CNN models based on VGG16 architecture, 

evaluated by accuracy, AUC, and loss. The VGG16 model with data augmentation achieved the highest 

performance, with 94.45% accuracy and a notable AUC improvement compared to the standard VGG16 

model. Freezing layers in VGG16 maintained almost similar accuracy and AUC, while applying both 

augmentation and freezing layers yielded consistently high values for accuracy and AUC, demonstrating the 

effectiveness of augmentation in boosting model performance while minimizing loss. 
 

AVERAGE TRAIN PERFORMANCE OF CNN MODELS 

 Accuracy  AUC  Loss 

 

 

 

 

 

 

 

 

 

 

 

VGG16 VGG16 WITH 

AUGMENTATION 

VGG16 FROZEN LAYER VGG16 FROZEN LAYER 

WITH AUGMENTATION 

Figure 5: Average training performance of the VGG16 and VGG16 with Freeze Layers models for the 

classification of brain tumour disease 

Similarly, Figure 6 presents the average validation performance of CNN models based on the VGG16 

architecture, evaluated by accuracy, AUC, and loss. The VGG16 model with augmentation achieved the 

highest validation accuracy (89.25%) and AUC, outperforming the standard VGG16 model and confirming 
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the benefit of data augmentation in generalizing model performance. Models with frozen layers also showed 

stable accuracy and AUC, indicating that freezing layers, especially when combined with augmentation, 

contribute to maintaining strong generalization with reduced loss. 
 

AVERAGE TEST PERFORMANCE OF CNN MODELS 

 Accuracy  AUC  Loss 

 

 

 

 

 

 

 

 

 

 

 

VGG16 VGG16 WITH 

AUGMENTATION 

VGG16 FROZEN LAYER VGG16 FROZEN LAYER 

WITH AUGMENTATION 

Figure 6: Average test performance of the VGG16 and VGG16 with Freeze Layers models for the classification 

of brain tumour disease 

Table 7 displays the training and validation metrics—loss, accuracy, precision, and recall—for both CNN 

models: VGG16 and its frozen-layer version, tested with and without data augmentation. For the VGG16 

model, several key trends are observed: the top-left graph shows a clear drop in both training and validation 

loss, suggesting effective learning with minimal signs of overfitting. The top-right graph highlights a steady rise 

in accuracy, with validation accuracy leveling off around 0.70. Precision, shown in the bottom-left graph, 

initially varies but eventually settles close to 0.9, indicating improved consistency in correct predictions. Recall 

climbs quickly and stabilizes around 90%, with training and validation values remaining closely matched— 

showing the model maintains strong sensitivity across epochs. Similar patterns were observed in the other 

models, as reflected in the table. 

Table 8 presents the classification report, confusion matrix, and ROC curve for each brain tumor category— 

glioma, meningioma, no tumor, and pituitary—across all models. These evaluation tools offer a comprehensive 

view of model performance by detailing precision, recall, F1-score, and accuracy for each class. The ROC curve 

helps visualize how well the model distinguishes between true and false positives. The confusion matrix further 

breaks down the predictions, showing how often the model correctly or incorrectly labeled each class, offering 

valuable insight into its strengths and weaknesses. Table 9 provides a comparison of the CNN models based on 

their average accuracy and ROC scores across all four categories. 

Table 7: Performance of training progress and validation: Loss, Accuracy, Precision, and Recall of CNN-Model 
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Table 8: Classification report, Confusion Matrix and ROC curve of the different CNN-Models 

CNN-Model Classification Report, Confusion Matix and ROC Curve 

VGG16 Classification Report 

precision recall f1-score support 

glioma 0.53 0.12 0.19 162 
meningioma 0.46 0.62 0.53 164 

No Tumor 0.91 0.97 0.94 200 
pituitary 0.69 0.91 0.79 175 

accuracy 0.68 701 
macro avg 0.65 0.66 0.61 701 

weighted avg 0.66 0.68 0.63 701 

Confusion Matrix ROC Curve 
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 VGG16  

 
 

 

 
 

 

 

 
AUC glioma: 0.84 

AUC meningioma: 0.81 

AUC No Tumor: 0.99 

AUC pituitary: 0.92 

VGG16 with 

Augmentation 

Classification Report 

precision recall f1-score support 

glioma 0.90 0.85 0.88 200 

meningioma 0.78 0.82 0.80 200 

No Tumor 0.98 0.96 0.97 200 

pituitary 0.91 0.93 0.92 200 

accuracy 0.89 800 

macro avg 0.89 0.89 0.89 800 

weighted avg 0.89 0.89 0.89 800 

Confusion Matrix ROC Curve 
VGG16 Augmented 

 

 

 

 

 

 

 

 

 

AUC glioma: 0.99 

AUC meningioma: 0.95 

AUC No Tumor: 0.99 

AUC pituitary: 0.99 

VGG16 

Frozen Layer 

Classification Report 

precision recall f1-score support 
glioma 0.97 0.93 0.95 162 

meningioma 0.92 0.96 0.94 164 
No Tumor 1.00 0.98 0.99 200 

pituitary 0.98 0.98 0.98 175 
accuracy 0.97 701 

macro avg 0.97 0.97 0.97 701 
weighted avg 0.97 0.97 0.97 701 

Confusion Matrix ROC Curve 

http://www.theaspd.com/ijes.php


International Journal of Environmental Sciences  

ISSN: 2229-7359 
Vol. 11 No. 4, 2025 

https://www.theaspd.com/ijes.php  

1312  

 

 VGG16 Frozen  

 
 

 

 
 

 

 

 

AUC glioma: 1.00 

AUC meningioma: 1.00 

AUC No Tumor: 1.00 

AUC pituitary: 1.00 

VGG16 

Frozen Layer 

with 

Augmentation 

Classification Report 

precision recall f1-score support 

glioma 0.99 0.98 0.99 200 

meningioma 0.96 0.96 0.96 200 

No Tumor 0.99 1.00 1.00 200 

pituitary 0.98 0.98 0.98 200 

accuracy 0.98 800 

macro avg 0.98 0.98 0.98 800 

weighted avg 0.98 0.98 0.98 800 

Confusion Matrix ROC Curve 
VGG16 Frozen Augmented  

 

 

 
 

 

 

 

 

AUC glioma: 1.00 

AUC meningioma: 1.00 

AUC No Tumor: 1.00 

AUC pituitary: 1.00 

Table 9: Comparison of Different CNN Models Based on Average Accuracy and ROC across All Four Classes 

CNN-Models Average Accuracy Average ROC 

VGG16 68% 0.89 

VGG16 with 

Augmentation 

89% 0.98 

VGG16 Frozen Layer 97% 1.00 

VGG16 Frozen Layer with Augmentation 98% 1.00 

Figure 7 compares different CNN models based on average accuracy and ROC across all four classes. 
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COMPARISON GRAPH OF DIFFERENT CNN MODELS 

 Average Accuracy  Average ROC 

 

 

 

 

 

 

 

 

 

 

 

 

VGG16 VGG16 WITH 

AUGMENTATION 

VGG16 FROZEN LAYER VGG16 FROZEN LAYER 

WITH AUGMENTATION 

Figure 7: Comparison graph of different CNN models based on average accuracy and ROC curve across all 

four classes 

Comparative Analysis: 

A detailed comparative evaluation of various deep learning and hybrid approaches applied to the Kaggle Brain 

MRI dataset [39]. The comparison is based on key attributes, including the choice of CNN architectures, 

optimization techniques, dataset size, batch size, and average accuracy. Table 10 provides a summary of these 

findings. 

Table 10: Comparative analysis of the proposed method against recent techniques: A detailed evaluation of 

performance metrics and methodologies. 

Method CNN-Model Optimizer Dataset Batch Size Year Avg. Accuracy Ref. 

Deep 

Learning and 

Transfer 

Learning 

ResNet152 

VGG19 

DenseNet169 

MobileNetv3 

Adam 

(learning 

rate = 

0.001) 

Kaggle 

Brain 

MRI, 

7,023 

128 2024 98.5% 

96% 

96.75% 

96% 

[34] 

Hybrid CNN 

with ML 

DenseNet201- 

SVM 

Inceptionv3-SVM 

ResNet50-SVM 

Proposed hybrid 

Adam 

(learning 

rate = 

0.001) 

Kaggle 

Brain 

MRI, 

7,023 

32 2024 96.87% 

95.3% 

96.3% 

97.15% 

[36] 

Deep 

Learning 

Optimized CNN Adam 

(learning 

rate = 

0.001) 

Kaggle 

Brain 

MRI, 

7,023 

32 2024 95% [51] 

Image 

Enhancement 

and CNN 

VGG16 

ReNet50 

VGG19 

Proposed-CNN 

Adam 

(learning 

rate = 

0.001) 

Kaggle 

Brain 

MRI, 

7,023 

32 2024 95% 

94.75% 

94.83% 

97.84% 

[52] 

Multi-fused 

CNN with 

Auxiliary 

Layer 

MFR-CNN Adam 

(learning 

rate = 

0.00001) 

Kaggle 

Brain 

MRI, 

7,023 

16 2024 94% [53] 

CNN with 

Fine-tune 

VGG16 with and 

without 

augmentation 

Adamax 

(learning 

rate = 

0.001) 

Kaggle 

Brain 

MRI, 

7,023 

32 --- 68% (without 

Augmentation) 

89% (with 

Augmentation) 

In 

this 

paper 
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CNN with 

transfer 

learning 

VGG16 Frozen 

Layer with and 

without 

augmentation 

SGD 

(learning 

rate = 

0.0001 

Kaggle 

Brain 

MRI, 

7,023 

32 -- 97% (without 

Augmentation) 

98% (with 

Augmentation) 

In 

this 

paper 

 

Figure 8 presents sample prediction outcomes from the VGG16 model with frozen layers. Four input images, 

each representing one category, display prediction probabilities close to 100% for their respective classes. Each 

subplot shows the input image, its actual label, and the model's predicted probability distribution across the 

four possible classes. The input image is labeled as “pituitary”. The model correctly classifies it with 100% 

confidence in the pituitary class, indicating strong certainty in its prediction. The input image is labeled as “No 

tumor”. The model predicts “No tumor with 100% confidence, accurately identifying the absence of a tumor. 

The input image is labeled as “glioma”. The model classifies it as “glioma” with 100% certainty, showing a 

highly accurate prediction. The input image is labeled as “meningioma”. The model predicts “meningioma” 

with 99.99% confidence, nearly perfect in its prediction. 

Overall, this figure demonstrates the model’s high accuracy and confidence in predicting the correct tumor 

class for each sample, with minimal ambiguity across different tumor types. 
 

Figure 8: The prediction results for the VGG16 model with frozen layers, without any data augmentation, are 

provided for each input class. The image displayed represents the input to the model. 

5. CONCLUSION WITH FUTURE DIRECTION: 

This study employed a dataset of 7,023 MRI images classified into four brain tumor categories and evaluated 

the performance of VGG16 and VGG16 with frozen layers. Models were trained using 30 epochs and 

optimized with Adamax and SGD. The frozen-layer VGG16 with augmentation achieved the highest 

performance, with 99.98% training accuracy and 98.12% test accuracy, along with perfect AUC scores. Data 

augmentation and layer freezing significantly boosted accuracy—up to 30.74% in training and 28.96% in 
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validation—demonstrating the effectiveness of these techniques. The findings affirm the potential of CNN- 

based models, especially VGG16 variants, for robust and automated brain tumor detection. Future work may 

explore larger datasets, advanced augmentation strategies, and other CNN architectures for further 

improvement. 

REFERENCES: 

[1] A. Chattopadhyay and M. Maitra, “MRI-based brain tumour image detection using CNN based deep learning 

method,” Neuroscience Informatics, vol. 2, no. 4, p. 100060, Dec. 2022, doi: 10.1016/j.neuri.2022.100060. 

[2] Md. S. I. Khan et al., “Accurate brain tumor detection using deep convolutional neural network,” Comput Struct 

Biotechnol J, vol. 20, pp. 4733–4745, 2022, doi: 10.1016/j.csbj.2022.08.039. 

[3] S. Maqsood, R. Damaševičˇius, and R. Maskeliū¯nas, “Multi-Modal Brain Tumor Detection Using Deep Neural 

Network and Multiclass SVM,” Medicina (B Aires), vol. 58, no. 8, p. 1090, Aug. 2022, doi: 

10.3390/medicina58081090. 

[4] H. H. Sultan, N. M. Salem, and W. Al-Atabany, “Multi-Classification of Brain Tumor Images Using Deep Neural 

Network,” IEEE Access, vol. 7, pp. 69215–69225, 2019, doi: 10.1109/ACCESS.2019.2919122. 

[5] I. Abd El Kader, G. Xu, Z. Shuai, S. Saminu, I. Javaid, and I. Salim Ahmad, “Differential Deep Convolutional 

Neural Network Model for Brain Tumor Classification,” Brain Sci, vol. 11, no. 3, p. 352, Mar. 2021, doi: 

10.3390/brainsci11030352. 

[6] M. Z. Khaliki and M. S. Başarslan, “Brain tumor detection from images and comparison with transfer learning 

methods and 3-layer CNN,” Sci Rep, vol. 14, no. 1, p. 2664, Feb. 2024, doi: 10.1038/s41598-024-52823-9. 

[7] J. Amin, M. Sharif, A. Haldorai, M. Yasmin, and R. S. Nayak, “Brain tumor detection and classification using 

machine learning: a comprehensive survey,” Complex & Intelligent Systems, vol. 8, no. 4, pp. 3161–3183, Aug. 

2022, doi: 10.1007/s40747-021-00563-y. 

[8] R. Ranjbarzadeh, A. Bagherian Kasgari, S. Jafarzadeh Ghoushchi, S. Anari, M. Naseri, and M. Bendechache, 

“Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain 

images,” Sci Rep, vol. 11, no. 1, p. 10930, May 2021, doi: 10.1038/s41598-021-90428-8. 

[9] S. Deepak and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Comput 

Biol Med, vol. 111, p. 103345, Aug. 2019, doi: 10.1016/j.compbiomed.2019.103345. 

[10] A. M. Alqudah, “Brain Tumor Classification Using Deep Learning Technique - A Comparison between Cropped, 

Uncropped, and Segmented Lesion Images with Different Sizes,” International Journal of Advanced Trends in 

Computer Science and Engineering, vol. 8, no. 6, pp. 3684–3691, Dec. 2019, doi: 

10.30534/ijatcse/2019/155862019. 

[11] M. Havaei et al., “Brain tumor segmentation with Deep Neural Networks,” Med Image Anal, vol. 35, pp. 18–31, 

Jan. 2017, doi: 10.1016/j.media.2016.05.004. 

[12] Z. Liu et al., “Deep learning based brain tumor segmentation: a survey,” Complex & Intelligent Systems, vol. 9, no. 

1, pp. 1001–1026, Feb. 2023, doi: 10.1007/s40747-022-00815-5. 

[13] W. Chen, B. Liu, S. Peng, J. Sun, and X. Qiao, “S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation,” 

2019, pp. 358–368. doi: 10.1007/978-3-030-11726-9_32. 

[14] D. Ueda et al., “Fairness of artificial intelligence in healthcare: review and recommendations,” Jpn J Radiol, vol. 

42, no. 1, pp. 3–15, Jan. 2024, doi: 10.1007/s11604-023-01474-3. 

[15] J. S. Paul, A. J. Plassard, B. A. Landman, and D. Fabbri, “Deep learning for brain tumor classification,” in Medical 

Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, SPIE, Mar. 2017, p. 

1013710. doi: 10.1117/12.2254195. 

[16] H. H. Sultan, N. M. Salem, and W. Al-Atabany, “Multi-Classification of Brain Tumor Images Using Deep Neural 

Network,” IEEE Access, vol. 7, pp. 69215–69225, 2019, doi: 10.1109/ACCESS.2019.2919122. 

[17] Z. N. K. Swati et al., “Brain tumor classification for MR images using transfer learning and fine-tuning,” 

Computerized Medical Imaging and Graphics, vol. 75, 2019, doi: 10.1016/j.compmedimag.2019.05.001. 

http://www.theaspd.com/ijes.php


International Journal of Environmental Sciences  

ISSN: 2229-7359 
Vol. 11 No. 4, 2025 

https://www.theaspd.com/ijes.php  

1316  

[18] J. Amin, M. Sharif, M. Yasmin, T. Saba, M. A. Anjum, and S. L. Fernandes, “A New Approach for Brain Tumor 

Segmentation and Classification Based on Score Level Fusion Using Transfer Learning,” J Med Syst, vol. 43, no. 

11, Nov. 2019, doi: 10.1007/s10916-019-1453-8. 

[19] S. A. Abdelaziz Ismael, A. Mohammed, and H. Hefny, “An enhanced deep learning approach for brain cancer 

MRI images classification using residual networks,” Artif Intell Med, vol. 102, Jan. 2020, doi: 

10.1016/j.artmed.2019.101779. 

[20] V. K. Bairagi, P. P. Gumaste, S. H. Rajput, and K. S. Chethan, “Automatic brain tumor detection using CNN 

transfer learning approach,” Med Biol Eng Comput, vol. 61, no. 7, pp. 1821–1836, Jul. 2023, doi: 

10.1007/s11517-023-02820-3. 

[21] T. Sadad et al., “Brain tumor detection and multi-classification using advanced deep learning techniques,” Microsc 

Res Tech, vol. 84, no. 6, pp. 1296–1308, Jun. 2021, doi: 10.1002/jemt.23688. 

[22] M. I. Sharif, M. A. Khan, M. Alhussein, K. Aurangzeb, and M. Raza, “A decision support system for multimodal 

brain tumor classification using deep learning,” Complex and Intelligent Systems, vol. 8, no. 4, pp. 3007–3020, 

Aug. 2022, doi: 10.1007/s40747-021-00321-0. 

[23] D. G.-O. F.J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, “A Deep Learning Approach for Brain 

Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network,” Healthcare, vol. 9, 

no. 2, p. 153, 2021, doi: https://doi.org/10.3390/healthcare9020153. 

[24] A. Aziz et al., “An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification,” Computers, 

Materials & Continua, vol. 69, no. 2, pp. 2653–2670, 2021, doi: 10.32604/cmc.2021.018606. 

[25] W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, “Deep CNN for Brain Tumor Classification,” Neural Process Lett, 

vol. 53, no. 1, pp. 671–700, Feb. 2021, doi: 10.1007/s11063-020-10398-2. 

[26] H. Mehnatkesh, S. M. J. Jalali, A. Khosravi, and S. Nahavandi, “An intelligent driven deep residual learning 

framework for brain tumor classification using MRI images,” Expert Syst Appl, vol. 213, p. 119087, Mar. 2023, 

doi: 10.1016/j.eswa.2022.119087. 

[27] M. A. Kumaar, D. Samiayya, V. Rajinikanth, D. R. Vincent P M, and S. Kadry, “Brain Tumor Classification Using 

a Pre-Trained Auxiliary Classifying Style-Based Generative Adversarial Network,” International Journal of 

Interactive Multimedia and Artificial Intelligence, vol. 8, no. 6, p. 101, 2024, doi: 10.9781/ijimai.2023.02.008. 

[28] S. Z. Kurdi, M. H. Ali, M. M. Jaber, T. Saba, A. Rehman, and R. Damaševičˇius, “Brain Tumor Classification Using 

Meta-Heuristic Optimized Convolutional Neural Networks,” J Pers Med, vol. 13, no. 2, p. 181, Jan. 2023, doi: 

10.3390/jpm13020181. 

[29] A. K. Sharma et al., “Brain tumor classification using the modified ResNet50 model based on transfer learning,” 

Biomed Signal Process Control, vol. 86, p. 105299, Sep. 2023, doi: 10.1016/j.bspc.2023.105299. 

[30] B. S. Abd El-Wahab, M. E. Nasr, S. Khamis, and A. S. Ashour, “BTC-fCNN: Fast Convolution Neural Network 

for Multi-class Brain Tumor Classification,” Health Inf Sci Syst, vol. 11, no. 1, p. 3, Jan. 2023, doi: 

10.1007/s13755-022-00203-w. 

[31] M. A. HAQ, I. KHAN, A. AHMED, S. M. ELDIN, A. ALSHEHRI, and N. A. GHAMRY, “DCNNBT: A NOVEL 

DEEP CONVOLUTION NEURAL NETWORK-BASED BRAIN TUMOR CLASSIFICATION MODEL,” 

Fractals, vol. 31, no. 06, Jan. 2023, doi: 10.1142/S0218348X23401023. 

[32] F. Demir, Y. Akbulut, B. Taşcı, and K. Demir, “Improving brain tumor classification performance with an effective 

approach based on new deep learning model named 3ACL from 3D MRI data,” Biomed Signal Process Control, 

vol. 81, p. 104424, Mar. 2023, doi: 10.1016/j.bspc.2022.104424. 

[33] M. M. Emam, N. A. Samee, M. M. Jamjoom, and E. H. Houssein, “Optimized deep learning architecture for brain 

tumor classification using improved Hunger Games Search Algorithm,” Comput Biol Med, vol. 160, p. 106966, 

Jun. 2023, doi: 10.1016/j.compbiomed.2023.106966. 

[34] S. K. Mathivanan, S. Sonaimuthu, S. Murugesan, H. Rajadurai, B. D. Shivahare, and M. A. Shah, “Employing 

deep learning and transfer learning for accurate brain tumor detection,” Sci Rep, vol. 14, no. 1, p. 7232, Mar. 

2024, doi: 10.1038/s41598-024-57970-7. 

http://www.theaspd.com/ijes.php


International Journal of Environmental Sciences  

ISSN: 2229-7359 
Vol. 11 No. 4, 2025 

https://www.theaspd.com/ijes.php  

1317  

[35] S. E. Nassar, I. Yasser, H. M. Amer, and M. A. Mohamed, “A robust MRI-based brain tumor classification via a 

hybrid deep learning technique,” J Supercomput, vol. 80, no. 2, pp. 2403–2427, Jan. 2024, doi: 10.1007/s11227- 

023-05549-w. 

[36] M. Celik and O. Inik, “Development of hybrid models based on deep learning and optimized machine learning 

algorithms for brain tumor Multi-Classification,” Expert Syst Appl, vol. 238, p. 122159, Mar. 2024, doi: 

10.1016/j.eswa.2023.122159. 

[37] S. Khoramipour, M. Gandomkar, and M. Shakiba, “Enhancement of brain tumor classification from MRI images 

using multi-path convolutional neural network with SVM classifier,” Biomed Signal Process Control, vol. 93, p. 

106117, Jul. 2024, doi: 10.1016/j.bspc.2024.106117. 

[38] M. Aljohani et al., “An automated metaheuristic-optimized approach for diagnosing and classifying brain tumors 

based on a convolutional neural network,” Results in Engineering, vol. 23, p. 102459, Sep. 2024, doi: 

10.1016/j.rineng.2024.102459. 

[39] Nickparvar and Msoud, “MRI dataset,” Kaggle:https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor- 

mri-dataset, Sep. 2021. 

[40] S. Sharma, A. Shedsale, and R. R. Sharma, “Multivariate Fast Iterative Filtering Based Automated System for 

Grasp Motor Imagery Identification Using EEG Signals,” Int J Hum Comput Interact, vol. 40, no. 23, pp. 7915– 

7923, Dec. 2024, doi: 10.1080/10447318.2023.2280327. 

[41] “Train Test Split – How to split data into train and test for validating machine learning models?,” 

https://www.machinelearningplus.com/machine-learning/train-test-split/, [Online]. Available: 

https://www.machinelearningplus.com/machine-learning/train-test-split/ 

[42] A. A. Grigoryan, “Understanding VGG Neural Networks: Architecture and Implementation,” 

https://thegrigorian.medium.com/. 

[43] Sarang Narkhede, “Understanding AUC - ROC Curve,” https://towardsdatascience.com/understanding-auc-roc- 

curve-68b2303cc9c5, Jun. 2018. 

[44] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of 

Optimizers for Deep Learning,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.05446 

[45] Driss Lamrani, Bouchaib Cherradi, Oussama El Gannour, Mohammed Amine Bouqentar, and Lhoussain Bahatti, 

“Brain Tumor Detection using MRI Images and Convolutional Neural Network,” (IJACSA) International Journal 

of Advanced Computer Science and Applications, vol. 13, no. 7, pp. 452–460, 2022. 

[46] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 

6, no. 1, p. 60, Dec. 2019, doi: 10.1186/s40537-019-0197-0. 

[47] A. A. Asiri et al., “Brain Tumor Detection and Classification Using Fine-Tuned CNN with ResNet50 and U-Net 

Model: A Study on TCGA-LGG and TCIA Dataset for MRI Applications,” Life, vol. 13, no. 7, p. 1449, Jun. 2023, 

doi: 10.3390/life13071449. 

[48] E. Agliari, F. Alemanno, M. Aquaro, and A. Fachechi, “Regularization, early-stopping and dreaming: A Hopfield- 

like setup to address generalization and overfitting,” Neural Networks, vol. 177, p. 106389, Sep. 2024, doi: 

10.1016/j.neunet.2024.106389. 

[49] S. Zakariya and M. Jamil, “Unsupervised Content based Image Retrieval at Different Precision Level by 

Combining Multiple Features,” J Phys Conf Ser, vol. 1950, p. 12059, Aug. 2021, doi: 10.1088/1742- 

6596/1950/1/012059. 

[50] SM Zakariya and M. S. Umar, “Self-Attention Augmented Wasserstein Generative Adversarial Network-based 

Detection of Brain Alzheimer Disease Using MRI,” International Research Journal of Multidisciplinary Scope, vol. 

06, no. 01, pp. 1317–1327, 2025, doi: 10.47857/irjms.2025.v06i01.02645. 

[51] S. Bansal, R. S. Jadon, and S. K. Gupta, “A Robust Hybrid Convolutional Network for Tumor Classification 

Using Brain MRI Image Datasets,” International Journal of Advanced Computer Science and Applications, vol. 

15, no. 4, pp. 576–584, 2024, doi: 10.14569/IJACSA.2024.0150459. 

[52] Z. Rasheed et al., “Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural 

Network Techniques,” Brain Sci, vol. 13, no. 9, Sep. 2023, doi: 10.3390/brainsci13091320. 

http://www.theaspd.com/ijes.php
http://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-
http://www.machinelearningplus.com/machine-learning/train-test-split/
http://www.machinelearningplus.com/machine-learning/train-test-split/
http://arxiv.org/abs/1910.05446


International Journal of Environmental Sciences  

ISSN: 2229-7359 
Vol. 11 No. 4, 2025 

https://www.theaspd.com/ijes.php  

1318  

[53] A. J. Alkhatib et al., “Diagnosing Brain Tumors from MRI images through a Multi-Fused CNN with Auxiliary 

Layers,” Sustainable Machine Intelligence Journal, vol. 6, Mar. 2024, doi: 10.61356/SMIJ.2024.66102. 

http://www.theaspd.com/ijes.php

