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Abstract 

Malware detection in drone communication and security is a critical area of research given the growing 
use of drones in civilian and military applications. In the past few years, driven by data artificial 
intelligence techniques, such as Machine Learning (ML) and Deep Learning (DL) approaches, have 
shown promise in detecting malware by leveraging its behaviour in terms of API calls. It is anticipated 
that drones will play a significant part in the future linked smart cities. They will be responsible for 
smart city security and monitoring, transporting commodities and commerce, and acting as mobile hot 
points for broadband wireless access. This article includes an in-depth examination of the several ML 
algorithms used in malware analysis and proposed an hybrid model for the improve the performance 
in terms of accuracy and F1-scores. The "Hybrid With FS" model achieves the highest accuracy, nearing 
80%, indicating the significant benefit of feature selection in optimizing performance. 

Keywords: Communication, Drone, Malware Detection, Cybersecurity, Machine Learning. 
 
1. INTRODUCTION 
 
Understanding different types of malware is essential for developing effective detection techniques and 
ensuring strong cybersecurity defenses. Malware, which includes viruses, worms, Trojans, ransomware, 
spyware, adware, rootkits, and botnets, poses a growing threat by infiltrating systems, stealing data, or 
causing damage. Traditional signature-based detection methods struggle to keep pace, necessitating 
advanced techniques like machine learning (ML) for accurate detection. These AI-driven systems often 
lack transparency. Raising concerns about trust in automated decisions. Explainable Artificial 
Intelligence (XAI) offers a solution by making AI models more interpretable, helping cybersecurity 
professionals understand and trust detection processes, which improves threat response and model 
reliability. 
1.1 Different Types of Malware Detection Techniques: 
 
Malware detection techniques can be broadly categorized into traditional and advanced methods: 
Signature-based Detection: This method relies on identifying known patterns or signatures of malware. 
While effective against known threats, it is ineffective against new or polymorphic malware. 
Heuristic-based Detection: This technique analyzes the behavior of software to identify malicious 
intent. It helps in detecting unknown or new malware but can result in false positives. 
Behavior-based Detection: This method monitors the behavior of applications or network traffic to 
detect malicious activity. It is highly effective against zero-day attacks and advanced persistent threats 
(APTs). 
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Anomaly-based Detection: By establishing a baseline of normal behavior, this method detects 
deviations that may indicate malware. Anomaly-based detection is useful for identifying unknown 
threats but requires constant tuning to minimize false alarms. 
AI-based Detection: Leveraging machine learning and deep learning models, AI-based techniques can 
automatically learn and detect malware patterns from large datasets. These methods are highly scalable 
and adaptive but often lack transparency, making the decision-making process difficult to interpret. 
 

 
 

Figure 1: Different Types of Malware Detection Techniques 
 
The key challenges in deploying AI techniques for malware detection in drone communication and 
security: 
1.2. Resource Constraints: Drones often operate with limited computational, memory, and energy 
resources. Deploying AI models, particularly complex deep learning algorithms, can be infeasible on 
such resource-constrained platforms. Power consumption is another major limitation since onboard 
AI processing can quickly deplete the drone’s battery. A small consumer drone might not have the 
processing power to execute real-time anomaly detection with deep learning models like Convolutional 
Neural Networks (CNNs). Running AI continuously for malware detection could lead to faster battery 
drainage, compromising mission longevity. the Potential Solutions Use lightweight AI models 
optimized for edge computing, such as MobileNet or TinyML frameworks. Offload intensive processing 
tasks to nearby ground stations or cloud systems (edge-cloud collaboration). Develop energy-efficient 
hardware specifically designed for AI applications in drones. 
1.3. Real-Time Processing: Drones often require immediate malware detection to maintain mission 
continuity and prevent potential damage. However, traditional AI models may take longer to analyze 
data and provide actionable results. Network delays can exacerbate the problem, especially when drones 
rely on external systems for processing. A drone detecting a malware-induced hijack attempt must 
respond instantly to regain control or switch to a safe mode. Delays in AI-driven detection could allow 
the attack to succeed. Real-time communication interruptions in swarm drones could lead to cascading 
failures. The potential solutions Implement real-time optimization strategies, such as reducing model 
complexity (pruning or quantization). Utilize specialized hardware like GPUs or TPUs for faster 
computations. Design pre-trained models tailored for fast decision-making on specific malware 
categories. Integrate anomaly detection with fast, rule-based heuristics for initial screening.  
1.4. Data Scarcity: AI models, particularly supervised learning approaches, require large, labeled 
datasets for effective training. Datasets specific to drone malware and cyber threats are often scarce, 
especially for novel or zero-day attacks. The highly diverse range of malware types and drone 
architectures adds to the complexity of obtaining comprehensive datasets. Lack of historical data on 
attacks targeting drone-to-drone communication makes it challenging to train robust anomaly 
detection systems. Zero-day malware exploits are inherently difficult to detect due to their novelty and 
lack of prior examples. The Potential Solutions Use data augmentation techniques to artificially expand 
the dataset. Implement unsupervised learning techniques to identify anomalies without requiring 
labeled data. Develop collaborative frameworks like federated learning to share threat intelligence 
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across multiple organizations while maintaining data privacy. Simulate attack scenarios in controlled 
environments to generate training data. 
1.5. Adversarial Attacks: AI models are susceptible to adversarial attacks, where attackers craft inputs  
designed to deceive the AI system into making incorrect predictions. This vulnerability can be exploited 
to disable malware detection systems or mask malicious activities. An attacker could subtly alter 
communication packets to evade an AI-based anomaly detection system while maintaining control of 
the drone. Poisoning the training dataset by injecting malicious samples during the development phase 
could compromise the AI’s reliability. The Potential Solutions are Employ adversarial training, where 
the AI model is exposed to adversarial samples during training to enhance robustness. Integrate 
explainable AI (XAI) techniques to ensure that decisions made by the AI system are interpretable and 
transparent. Use multi-layered defense mechanisms combining traditional signature-based approaches 
with AI models to reduce reliance on a single technique. Monitor AI systems continuously and update 
them to adapt to evolving adversarial tactics. 
 
2. RELATED WORK 
 
Recent advancements in malware detection leverage deep learning (DL) and machine learning (ML) 
techniques for robust and scalable solutions. Vinayakumar et al. (2019) proposed a big-data-driven 
hybrid framework integrating static and dynamic analysis, ensuring effective zero-day detection but 
facing dataset constraints. Rathore et al. (2018) demonstrated the superiority of Random Forests (RF) 
over Deep Neural Networks (DNN) using opcode frequency features, highlighting the limitations of 
deep learning for simpler problems. Tobiyama et al. (2016) effectively used RNN-CNN combinations 
for process-based malware detection, achieving high accuracy but restricted scalability. Techniques like 
image-based CNN classification were explored by He & Kim (2019) and Choi et al. (2017), offering 
robustness and fast detection but requiring significant memory and adversarial resistance. For Android-
specific malware, Sabhadiya et al. (2019) reviewed DL techniques, while Kim et al. (2018) proposed a 
multimodal DL model combining diverse feature types for enhanced accuracy at the cost of high 
computational complexity. Ransomware detection received focused attention, with Fernando et al. 
(2020) employing Deep Belief Networks (DBNs) and Bae et al. (2020) targeting ransomware-specific 
file operations. Both approaches highlighted trade-offs between specialization and generalization. 
Alomari et al. (2023) balanced feature selection efficiency with performance, addressing dimensionality 
challenges. Collectively, these studies emphasize a trend towards integrating diverse features and DL 
techniques to balance detection accuracy, scalability, and resource efficiency. 
 

Table 1: Overview of related work done in field of malware detection using AI techniques 
 

Reference Objective Methodology Advantages Limitations 

[11] 
Vinayakumar 
et al. (2019) 

Propose a 
robust malware 
detection 
model using 
deep learning 
and image 
processing 
techniques. 

Combines static, 
dynamic, and 
hybrid malware 
detection 
techniques in a big 
data environment. 
Evaluates deep 
learning and 
classical ML 
models on 
unbiased datasets. 

Avoids feature 
engineering, 
effective zero-day 
malware 
detection, 
scalable 
framework. 

Limited practical 
application in real-
time due to dataset 
constraints. 
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[12] Rathore et 
al. (2018) 

Detect malware 
using machine 
learning and 
deep learning 
approaches. 

Applied supervised 
and unsupervised 
learning with 
opcode frequency 
as features. 
Compared RF, 
DNN, and feature 
reduction methods. 

Demonstrated 
effectiveness of 
RF over DNN 
and simpler 
feature reduction 
techniques over 
autoencoders. 

Deep learning 
found to be 
overkill; limited to 
opcode frequency-
based features. 

[13] Tobiyama 
et al. (2016) 

Detect malware 
based on 
process 
behavior using 
deep learning. 

Proposed a 
stepwise 
combination of 
RNN for feature 
extraction and 
CNN for 
classification. 

Achieved 
AUC=0.96; 
effective against 
process-based 
malware 
detection. 

Focused only on 
process behavior, 
limited scalability 
for diverse malware 
types. 

[14] He & Kim 
(2019) 

Evaluate CNN 
for malware 
detection using 
malware 
images. 

Transformed 
malware files into 
image 
representations, 
classified using 
CNN with Spatial 
Pyramid Pooling. 

Effective against 
redundant API 
injection; 
greyscale imaging 
improves 
robustness. 

High memory 
requirements for 
naive SPP 
implementation. 

[15] Choi et al. 
(2017) 

Detect malware 
using malware 
images and 
deep learning. 

Generated images 
from malware and 
benign files; 
trained a deep 
learning model to 
classify. 

Fast detection 
without static or 
dynamic analysis. 

Lacks exploration 
of adversarial 
resilience and 
scalability. 

[16] Sabhadiya 
et al. (2019) 

Android 
malware 
detection using 
deep learning 
techniques. 

Reviewed various 
DL techniques 
(e.g., Maldozer, 
DroidDetector); 
proposed a DL 
model for malware 
classification. 

Focused on 
Android-specific 
malware 
detection; 
provides 
extensive 
comparisons of 
techniques. 

Limited details on 
feature extraction 
and generalizability 
across devices. 

[17] Alomari et 
al. (2023) 

Develop a high-
performance 
malware 
detection 
system using 
DL and feature 
selection. 

Applied 
correlation-based 
feature selection 
and trained LSTM 
and dense models. 

Efficient feature 
reduction while 
maintaining high 
performance. 

Performance 
degradation 
observed with 
aggressive feature 
reduction. 

[18] Kim et al. 
(2018) 

Propose a 
multimodal 
DL approach 
for Android 
malware 
detection. 

Used diverse 
feature types with 
similarity-based 
extraction; 
proposed a 
multimodal DL 
model. 

High accuracy 
leveraging 
multiple feature 
types. 

Complexity in 
integrating multiple 
modalities and high 
computational cost. 
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[19] Fernando 
et al. (2020) 

Explore 
ransomware 
detection using 
ML and DL 
techniques. 

Represented 
malware as opcode 
sequences; used 
DBNs for 
classification and 
autoencoders for 
feature extraction. 

DBNs 
outperformed 
traditional 
classifiers; 
effective feature 
reduction. 

Dependency on 
unlabeled data for 
pretraining; limited 
to opcode 
sequence-based 
analysis. 

[20] Bae et al. 
(2020) 

Detect 
ransomware 
among 
malware and 
benign files. 

Analyzed file-
related operations; 
proposed ML 
methods focusing 
on ransomware-
specific operations. 

Specialized for 
ransomware 
detection; 
effective against 
zero-day 
ransomware. 

Limited to 
ransomware-specific 
behaviors; not 
generalized for all 
malware types. 

 
3. METHODOLOGY 

 
This study employs an explainable AI (XAI) approach to build interpretable models and analyze their 
behavior. The methodological framework can be summarized in the following steps: 

 

Figure 2:Proposed Methodlogy 

i. Dataset: The dataset is collected from Kaggle reposetory from 
https://www.kaggle.com/datasets/datasetengineer/tokyo-drone-communication-and-security-
dataset. Drone networks operating in the Tokyo metropolitan area between 2018 and 2024 
provided detailed communication records, which are included in the Tokyo Drone 
Communication and Security Dataset. A comprehensive and accurate depiction of drone-to-drone 
(D2D) and drone-to-base station (D2BS) communication patterns is provided by this dataset, 
which documents hourly interactions between drones and base stations. This dataset, which was 
gathered from an area with high operating standards and a high level of technical advancement, 
offers important insights on network behaviors and security issues. 

S.N. 
Feature Description 

1 Timestamp The exact time (hourly) of each recorded communication packet. 

2 Source Drone ID Unique identifier of the sending drone (e.g., D1, D2). 

https://www.kaggle.com/datasets/datasetengineer/tokyo-drone-communication-and-security-dataset.
https://www.kaggle.com/datasets/datasetengineer/tokyo-drone-communication-and-security-dataset.
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3 Destination ID Identifier for the receiving drone or base station. 
4 Packet Size Size of the communication packet in bytes. 
5 Transmission Rate Rate of packet transmission (packets per second). 
6 Signal Strength Strength of the transmission signal, measured in dBm. 
7 Error Rate The ratio of corrupted packets during transmission. 
8 Encryption Status Binary feature indicating if data was encrypted (1) or not (0). 

9 Protocol Type 
Type of communication protocol used (e.g., TCP, UDP, 
Proprietary). 

10 Response Time Time between data transmission and acknowledgment (ms). 

11 Battery Level Battery percentage of the source drone during communication. 

12 GPS Coordinates Geographical location of the transmitting drone. 
13 Payload Type Type of data transmitted (e.g., Command, Data, Status). 
14 Packet Loss Rate Percentage of lost packets during transmission. 
15 Connection Duration Duration of communication sessions (seconds). 

16 Round Trip Time 
Average time for packets to reach their destination and return 
(ms). 

17 Hop Count Number of intermediary hops for packet delivery. 

18 Jitter Variability in packet arrival time, indicating network stability. 

19 Drone Velocity Speed of the drone during transmission (m/s). 

20 Signal-to-Noise Ratio Ratio of signal strength to background noise level. 
21 Data Throughput Amount of data transferred over a specific period (kbps). 
22 Port Number Network port number used for communication. 

23 
Communication 
Interval 

Interval between consecutive data packets. 

24 
Control Command 
Frequency 

Rate of control commands issued (Hz). 

25 Drone Altitude Altitude of the drone during transmission (meters). 

26 CPU Usage Percentage of CPU utilization on the transmitting drone. 
27 Memory Utilization Percentage of memory usage on the transmitting drone. 

28 
Distance to Base 
Station 

Distance from the drone to its associated base station (meters). 

29 Target Label 
Categorized status of communication: Normal Communication, 
DDoS Attack, Malware Infection, Anomaly. 

ii. Feature Representation: Key characteristics of the data-set are identified and converted into a 
feature set. This process involves the selection or engineering of features that capture the critical 
information needed for model training. 

iii. Feature Importance Analysis: An analysis of the importance of different features is conducted to 
understand which variables contribute most significantly to the model’s output. This helps in 
identifying key factors that influence predictions. 

iv. Interpretability Analysis: Further analysis is performed to assess the interpretability of the model. 
This step evaluates how easily a human can understand the model’s decisions and the rationale 
behind its predictions.  

v. Model Performance Evaluation: The model’s performance is evaluated using standard metrics, 
balancing accuracy.  
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Figure 3: Different types of Malware Attack 

 Recursive Feature Elimination (RFE) is a feature selection technique that iteratively removes features 
to identify the most relevant subset for a given machine learning model. It is based on assessing feature 
importance and eliminating the least important features in each iteration until the desired number of 
features is reached. Here's a detailed breakdown of the mathematics: 

1. Problem Setup 
Let: X∈Rn×p: Feature matrix with n samples and p features. 
y∈Rn: Target vector. 
F={f1,f2,…,fp}: Set of all ppp features. 
f: The chosen machine learning model (e.g., SVM, linear regression, or tree-based models). 
The goal is to find a subset F∗⊆ F with r features (r<p) that are most informative for predicting y. 
 
2. Feature Importance Calculation 
The importance of each feature is determined by a measure based on the chosen model. 
 
For Linear Models (e.g., Linear Regression, SVM): The feature importance can be quantified using the 
coefficients (weights) wj of the model: 
Importancej=∣wj∣\text{Importance}_j = |w_j|Importancej=∣wj∣ 
where wj is the weight associated with feature fj in the decision function: 
y^=w1x1+w2x2+⋯+wpxp+b 
For Tree-Based Models (e.g., Decision Trees, Random Forests): The feature importance Ij is calculated 
based on the decrease in impurity (e.g., Gini index or entropy) from splitting on feature fj: 
Ij=∑t∈TΔIt⋅ 
 is the reduction in impurity at node t, and T is the set of all nodes. 
 
3. Recursive Elimination Process 
The RFE algorithm proceeds iteratively as follows: 
Train the Model f on the current subset of features Fk (starting with Fk=F, the full set of features). 
Rank Features: Compute the importance scores Ij for all features j∈Fk 
Eliminate Features: Remove the least important kkk features (usually k=1 per iteration). The updated 
feature set becomes: Fk+1=Fkis smallest} 
Repeat Steps 1–3 until the desired number of features rrr remains: ∣Fk∣=r 
4. Stopping Criteria 
RFE stops under one of the following conditions: 
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The desired number of features r is reached. 
Model performance on a validation set begins to degrade. 
5. Algorithm Summary 
Input: Feature matrix X, target vector y, base model f, and the desired number of features r. 
Output: Optimal feature subset F. 
Steps: 
Train f on the current feature set Fk. 
Compute feature importance Ij for all features j. 
Eliminate the k least important features. 
Repeat until ∣Fk∣=r. 
 
The Figure 3 providers Different types of Malware Attack. The dataset used in this study comprises 
images of various malware and benign, sourced from publicly available datasets shown in figure 4. 

 
 

Figure 4: Sample Malware analysis data-set. 
 
The Figure 5 illustrates the distribution of various target labels in the dataset, which are categorized 
into Normal Communication, DDoS Attack, Malware Infection, and Anomaly/Unusual Behavior. 
Normal Communication dominates the dataset with a count exceeding 35,000, indicating that the 
majority of traffic is benign. In contrast, malicious activities such as DDoS Attack and Malware 
Infection have significantly lower counts, with DDoS Attack surpassing 7,000 and Malware Infection 
reaching approximately 5,000. Anomaly/Unusual Behavior appears least frequently, with fewer than 
3,000 occurrences. This imbalance highlights the predominance of normal traffic compared to 
malicious or unusual behavior, which could influence the performance and bias of machine learning 
models trained on this data. 

 
Figure 5: Target Class Labels Count  
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The correlation matrix displays in figure 6 shows the relationships between various features related to 
drone communication, performance, and environmental factors. The diagonal elements represent a 
perfect correlation (1.0), as a variable is always perfectly correlated with itself. All off-diagonal 
correlations are very close to 0, indicating negligible or no linear relationships between the features. 
This suggests that the variables are largely independent of one another and do not exhibit 
multicollinearity. Such a result implies that each feature contributes unique information to the dataset, 
which is valuable for machine learning or statistical models as it reduces redundancy. However, it also 
indicates no strong dependencies between these features that could simplify predictive modeling. 

 

Figure 6: Corelation Matrix 
 

4. RESULT ANALYSIS 
 
The Figure 7 shows the top 10 features impacting drone performance, with "Memory Utilization" and 
"Distance to Base Station" being the most significant factors, both contributing over 7% importance. 
CPU usage, data throughput, and signal-to-noise ratio also play a critical role, indicating that 
computational and communication efficiencies heavily influence drone operations. Features such as 
"Drone Altitude," "Signal Strength," "Jitter," and "Drone Velocity" demonstrate moderate influence, 
likely impacting real-time performance and stability. "Battery Level" completes the list, reinforcing its 
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role in sustained operations. These insights help identify key areas for optimization in drone design 
and control systems. 

 

 
Figure 7: Ten Important Features 

 
 
Table 1: Compares the performance of KNN, Decision Tree (DT), and Multi-Layer Perceptron (MLP)  
 

Model Feature 
Selection 

Accuracy  Precision    Recall  F1-Score 

KNN Without FS 0.620995 0.525344 0.620995  0.564888  
KNN With FS 0.626414 0.527496 0.626414  0.568182  
Decision Tree Without 
FS  

0.702006 0.514837 0.702006 0.579650  

Decision Tree With FS 0.701721 0.643420 0.701721 0.579480  
MLP Without FS  0.673006 0.525579 0.673006 0.577471  
MLP With FS 0.702387 0.493347 0.702387 0.579594  
SVM Without FS 0.702387 0.493347 0.702387 0.579594  
SVM With FS 0.702387 0.493347 0.702387  0.579594  
Hybrid Without FS 0.776524  0.726051 0.876524 0.778176  
Hybrid With FS 0.802101  0.843499 0.799665 

 
0.779665 
 

   The Figure 8 compares the accuracy of multiple models with and without feature selection (FS). The 
"Hybrid With FS" model achieves the highest accuracy, nearing 80%, indicating the significant benefit 
of feature selection in optimizing performance. Similarly, the "Hybrid Without FS" model also 
performs well but shows slight improvement with FS. Decision Tree and MLP models achieve moderate 
accuracy, with minimal difference between FS and non-FS cases. KNN demonstrates lower accuracy 
overall, highlighting its sensitivity to feature quality. SVM models show consistent performance with 
and without FS. This analysis suggests that hybrid models, particularly when paired with feature 
selection, yield superior accuracy, emphasizing the importance of selecting relevant features for 
enhanced model performance. 
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Figure 8: Accuracy per model feature selection 

The Figure 9  illustrates the precision of different models with and without feature selection (FS). The 
"Hybrid With FS" model stands out with the highest precision, surpassing 0.8, highlighting the 
significant impact of feature selection on precision performance. "Hybrid Without FS" also achieves 
relatively high precision, but with a noticeable improvement when FS is applied. MLP with FS performs 
moderately well, reaching a precision above 0.6, whereas Decision Tree and KNN models show lower 
and comparable precision, regardless of FS. SVM models consistently demonstrate the lowest precision, 
around 0.5, with little to no improvement through feature selection. Overall, these results emphasize 
that hybrid models greatly benefit from feature selection, making them the best-performing approach 
for maximizing precision. 

 
Figure 9: Precision per model feature selection 
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The Figure 10 illustrates the recall performance of various machine learning models, both with and 
without feature selection (FS). Models include KNN, Decision Tree, MLP, SVM, and a Hybrid 
approach. The Hybrid model without FS achieves the highest recall at approximately 0.9, followed by 
the Hybrid model with FS at 0.8. Other models, including KNN, Decision Tree, MLP, and SVM, show 
relatively consistent recall values around 0.6 to 0.7, with minimal variation between the inclusion and 
exclusion of feature selection. The results suggest that feature selection does not significantly impact 
most models' recall, except for the Hybrid model, where it slightly reduces performance but still 
maintains a strong recall. This indicates that the Hybrid approach is particularly effective in this setup. 

 

 
Figure 10: Model per feature selection 

The bar chart presents the F1-Score performance for different machine learning models, with and 
without feature selection (FS). Similar to the recall results, the Hybrid model achieves the highest F1-
Score, reaching approximately 0.78, regardless of FS. Other models, such as KNN, Decision Tree, MLP, 
and SVM, display lower F1-Scores, ranging consistently between 0.55 and 0.6. The inclusion of feature 
selection does not show a significant impact on the performance of these models. These findings 
suggest that while the Hybrid model significantly outperforms others in terms of F1-Score, the 
contribution of feature selection remains minimal across all models. 

 

 
Figure 11: F1-Score per model feature selection 
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5. CONCLUSION 

 
 While AI-based techniques for malware detection and analysis have gained traction, traditional non-
AI methods remain indispensable. Techniques like static and dynamic analysis, system call monitoring, 
and reverse engineering are essential for understanding malware behavior in detail, especially when 
dealing with sophisticated threats. The analysis of model performance across accuracy, precision, recall, 
and F1-score reveals that the Hybrid model outperforms all other models significantly, both with and 
without feature selection (FS). Notably, the Hybrid model with FS achieves the highest accuracy 
(80.2%), precision (84.3%), and F1-score (0.779665), indicating strong predictive power and balanced 
performance. KNN shows slight improvements in all metrics when FS is applied, but its overall 
performance remains the lowest among all models. Decision Tree, MLP, and SVM models exhibit very 
similar results, with FS having minimal impact on their metrics. The Decision Tree achieves slightly 
better precision compared to others. Feature Selection has a minimal effect on most models except for 
the Hybrid model, where it enhances precision and maintains high accuracy and F1-score. In 
conclusion, while traditional models like KNN, Decision Tree, MLP, and SVM perform adequately, 
the Hybrid model stands out as the most effective, with FS further optimizing its performance, 
particularly in precision and accuracy. This suggests that the Hybrid approach is better suited for 
achieving high-quality results in this scenario. 
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