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Abstract 

Agriculture plays a crucial role in economic development by providing food, raw materials, and 
employment. With the global population increasing and limited agriculture land, enhancing food 
production is essential. Precision farming, which utilizes advanced technologies like sensors, GPS, and 
automated systems, aims to improve crop productivity and reduce resource usage. This research focuses on 
paddy (Oryza sativa), a staple food for many Asian countries, examining its structure, prevalent diseases, and 
common weeds. Key diseases such as Tungro and Bacterial Leaf Blight, and weeds like Barnyardgrass and 
Purple Nutsedge, significantly impact yields. Traditional manual inspection methods for disease and weed 
detection are labor-intensive and error-prone. Implementing advanced monitoring and early detection 
strategies is vital for effective crop management. By integrating real-time data and precision farming 
techniques, farmers can optimize their operations, reduce costs, and ensure sustainable agricultural 
practices, ultimately contributing to global food security. In this paper, various related works on paddy 
disease detection and weed detection in paddy field is studied. 

Deep Learning (DL), Machine Learning (ML), and Image Processing (IP) are revolutionizing agricultural 
practices, especially in paddy disease and weed detection. IP has long utilized remote sensing to capture and 
analyze high-resolution crop images. Traditional ML methods, like k-Nearest Neighbors (k-NN) and Support 
Vector Machines (SVM), rely on manually engineered features for classification but can struggle with large 
datasets. DL, particularly Convolutional Neural Networks (CNNs), offers automated feature learning and 
end-to-end processing, enhancing accuracy and scalability in image analysis. The integration of these 
technologies improves disease and weed management in paddy cultivation.  

Keywords: Agriculture, paddy, diseases, weeds, detection, precision farming, IP, ML, DL, Early 

1. INTRODUCTION 

Agriculture plays a crucial role in economic development by consistently providing food resources, 
harvesting industrial raw materials, and creating job opportunities for many people [1]. It emphasizes the 
production of safe, high-quality food products with reliable yields. With the population rapidly growing, it 
is essential to significantly boost food production in the coming years despite having limited agricultural 
land [2]. Effective food production requires careful management of tasks such as harvesting, planting, 
cultivation, controlling plant diseases, and managing weeds.  

Several significant factors contribute to the reduction in food production worldwide, as weeds, climatic 
changes, and plant diseases playing pivotal roles. In many developing countries like India, small-scale 
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farmers are the backbone of agricultural output, contributing approximately 80% of the global food supply 
[3]. 50% of crop yield reductions can be attributed to the severity of pests, weeds, and diseases [4]. 

To address these challenges, a multitude of strategies have been developed to minimize yield losses caused 
by diseases and weeds. While preventive measures during the seedling stage are crucial, they are often 
insufficient. Therefore, rigorous monitoring and early detection of diseases and weeds are essential practices 
in crop management. 

In traditional farming practices, the primary method of disease and weed detection involves manual 
inspection by skilled agricultural personnel. This approach, conducted row by row, is time-consuming, labor 
intensive, and susceptible to human error’s. Moreover, access to expert phytopathologists is limited, 
especially in economically disadvantaged and isolated regions [5]. Despite these challenges, accurately 
identifying plant diseases and weeds remains the critical initial step towards implementing effective disease 
and weed management strategies. 

1.1 Precision Farming 

Precision farming represents a significant evolution in agriculture practices. By leveraging advanced science 
and technology, it aims to enhance crop productivity while minimizing, usage of fertilizers and pesticides, 
thereby reducing overall farm expenses. The components and benefits of precision farming are below: 

1.1.1 Key Technologies in Precision Farming 

 Sensors and Remote Sensing: Used to collect data in real time about crop health, weather  and soil 
conditions. Helps in monitoring moisture levels, nutrient content, and identifying disease or pest 
infections early. 

 Mapping and Surveying: Provides detailed maps of fields, identifying variations in soil types and 
conditions. Assists in planning efficient planting patterns and irrigation systems. 

 High Precision Positioning Systems (HPPS): Utilizes technologies like GPS (Global Positioning 
System) for accurate positioning. Ensures precise use of inputs such as pesticides, fertilizers, and 
seeds. 

 Variable Rate Technology (VRT): Allows, variable usage of inputs based on field requirements. 
Ensures that crops receive the right amount of nutrients and treatments. 

 Global Navigation Satellite System (GNSS): Provide’s accurate location data to guide machinery 
and optimize field operations. 

 Automated Steering Systems: Enhances the efficiency and accuracy of field operations by 
automating machinery guidance. Reduces overlaps and gaps in planting and treatment applications. 

 Computer-Based Applications: Software tools for data analysis, farm management, and decision 
support. Helps farmers make informed decisions based on data trends and predictions. 

1.1.2 Benefits of Precision Farming 

 Increased Crop Productivity: By providing crops with accurate amount of inputs within the right 
time, precision farming enhances yields. 

 Cost Reduction: Minimizing the use of fertilizers and pesticides reduces overall farm expenses. 
 Environmental Sustainability: Targeted application of inputs reduces chemical runoff and 

environmental pollution. 
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 Better Resource Management: Efficient use of water, nutrients, and land resources through data-
driven decisions. 

Precision farming integrates various technologies to create more effective, productive, and sustainable 
agriculture system. By using real-time data and advanced tools, which help farmers optimize their 
operation’s and achieve better outcomes [6] [46][47]. 

India's agricultural landscape is characterized by a diverse array of major crops grown across different 
regions. Rice, wheat, and maize are staples widely cultivated, with rice production concentrated in states 
such as Uttar Pradesh and West Bengal. Wheat dominates in Punjab, Haryana, and Uttar Pradesh. Millets 
such as jowar, bajra, and ragi are crucial in drier regions like Maharashtra and Karnataka. Pulses such as 
chickpea, pigeon pea, and lentils are grown extensively in states like Madhya Pradesh and Maharashtra. 
Cash crops like cotton thrive in Gujarat and Maharashtra, while sugarcane is a key crop in Uttar Pradesh 
and Maharashtra. Tea is predominantly grown in Assam and West Bengal, while coffee is produced in 
Karnataka and Kerala. Oilseeds like groundnut and mustard are significant in states like Gujarat and 
Madhya Pradesh. This agricultural diversity underscores India's status as a major global producer across a 
wide range of crops, shaped by varied climatic conditions and local agricultural practices. This research 
work concentrates on paddy [48][49][50]. 

1.2 Paddy  

Paddy (Oryza sativa) is the raw form of rice, consisting of the grain enclosed in a husk. It's harvested from 
flooded fields, undergoes drying and threshing to remove the husk, and then milling to produce edible rice. 
Paddy is the staple food to many countries, particularly in Asia, and is vital for global food security and 
economies. Paddy plant structure is shown in figure [1]. 

 

Figure 1. Structure of paddy Plant 

Paddy plant structure consists of several key parts:  

1. Leaf: The green, flat part of the plant responsible for photosynthesis and growth. 

2. Leaf sheath: The protective covering of the leaf base, which surrounds and supports the stem. 
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3. Tiller: A secondary shoot that grows from the base of the main stem, contributing to the overall structure 
and productivity of the plant. 

4. Panicle: The reproductive structure of the paddy plant, where flowers develop and grains form after 
pollination. 

5. Grain: The edible seed of the paddy plant, produced within the panicle, which is harvested for 
consumption as rice [7][51][52].  

1.3 Diseases Occur in Paddy Crop 

The table 1 summarizes the diseases in paddy, detailing their season, Infection factors, Infection stage, 
symptoms, Diseases they occur in. Each disease presents specific challenges and requires tailored 
management strategies to minimize crop losses [8][53]. 

Table 1. Paddy diseases with symptoms, infection stage, factors and season 

Diseases Symptoms Infection stage Infection Factors Season 
Tungro Yellow and stunting of 

plants, lowered tillering 
Early to late 
growth stage 

Viruliferous insects 
transmitting virus 

Wet season 

Stemborer Entry holes in stems, 
frass (excreta) in tunnels 

Larval stage 
inside stems 

Moth oviposition on rice 
plants, presence of 

eggs/larvae 

Early wet 
season 

Sheath Blight Lesions on leaf sheaths, 
elongated lesions on 

leaves 

Mid to late 
growth stages 

High humidity, prolonged 
leaf wetness 

Warm, 
humid 
weather 

Neck Blast Neck rot, dark brown 
lesions on neck and 

panicles 

Booting to 
flowering stages 

High humidity, warm 
temperatures 

Wet season 

False Smut Formation of green to 
yellow spore balls on 

spikelets 

Flowering and 
grain filling stages 

High humidity, nitrogen 
application 

Warm, 
humid 
weather 

Brown Spot Tiny, dark brown dots 
on leaves with golden 

haloes 

Early to mid 
growth stages 

High humidity, prolonged 
leaf wetness 

Warm, 
humid 
weather 

Bacterial Leaf 
Blight 

Water-soaked leaf 
lesions, leaf tips may die 

Early to mid 
growth stages 

Rain or irrigation, wounds 
on leaves 

Warm, 
humid 
weather 

Bacterial 
Blight 

Yellow-haloed lesions 
soaked in water on leaves 

Early to mid 
growth stages 

Rain or irrigation, wounds 
on leaves 

Warm, 
humid 
weather 

 

1.3 Weeds  

Table 2, provides the scientific name, common name, and preferred land type (where the weed commonly 
grows) for various types of paddy weeds, which are categorized into broadleaf weeds, sedges, and grassy 
weeds [9]: 
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Table 2. Common weeds in paddy fields 

Category Scientific Name Common Name Preferred Land Type 
Broadleaf Weeds Eclipta prostrata False Daisy Wetlands, damp areas 

 Caesulia axillaris Climbing Aster Moist areas, open fields 
 Ludwigia octovalvis Mexican Primrose-willow Wetlands, rice paddies 
 Monochoria vaginalis Heartleaf False Pickerelweed Aquatic, wetlands 
 Ludwigia adscendens Creeping Primrose-willow Wetlands, rice paddies 
 Sphenoclea zeylanica Sri Lanka Mudplantain Marshes, flooded fields 
 Commelina benghalensis Benghal Dayflower Moist areas, open fields 
 Ipomoea aquatica Water Spinach Aquatic, marshy areas 

Sedges Cyperus rotundus Purple Nutsedge Wetlands, rice paddies 
 Cyperus difformis Smallflower Umbrella Sedge Moist areas, flooded fields 
 Cyperus iria Rice Sedge Paddy fields, wetlands 
 Fimbristylis miliacea Fimbristylis Sedge Wetlands, shallow water 
 Fimbristylis littoralis Spike Sedge Wetlands, riverbanks 

Grassy Weeds Digitaria sanguinalis Large Crabgrass Paddy fields, disturbed soils 
 Echinochloa crus-galli Barnyardgrass Paddy fields, wetlands 
 Echinochloa colona Jungle Rice Paddy fields, wetlands 
 Eleusine indica Goosegrass Paddy fields, disturbed soils 
 Paspalum species Paspalum Wetlands, disturbed soils 
 Ischaemum rugosum Wrinkle Grass Paddy fields, open areas 
 Leptochloa chinensis Chinese Sprangletop Paddy fields, disturbed soils 

 

2. DEEP LEARNING (DL), MACHINE LEARNING (ML), IMAGE PROCESSING (IP) IN PADDY 

IP, ML, DL are transforming agricultural practices, especially in detecting and classifying of Paddy disease’s 
and weeds. 

2.1. IP in Paddy 

IP methods has been employed in Paddy for over two decades, primarily through remote sensing 
technologies. These technologies capture high-resolution images of crops, which are then processed to 
extract meaningful information. IP tasks typically include:  

 Preprocessing: Adjusting image quality, removing noise, and enhancing contrast to improve 
subsequent analysis. 

 Segmentation: Identifying and delineating regions of interest within the image, such as plant leaves, 
fruits, or stems. 

 Feature Extraction: ML methods depend on manually created features extracted from segmented 
images. These features capture characteristics like texture, color, and shape, which are crucial for 
disease and weed classification. 

2.2. ML Approaches 

Traditional ML methods have been extensively used in paddy image analysis. Key steps in this approach 
include: 

 Feature Engineering: Experts manually design features based on domain knowledge and extract 
them from segmented images. These features serve as inputs to ML classifiers. 
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 k-Nearest Neighbors (k-NN): A straightforward yet efficient technique that groups samples 
according to the dominant class among the neighbors. 

 Support Vector Machines (SVM): builds high-dimensional hyperplanes to divide classes according 
to features that are extracted. 

 Fully Connected Neural Networks: Also known as multilayer perceptrons, these models learn 
complex relationships between features and classes through multiple layers of interconnected 
neurons. 

Traditional ML approaches are advantageous when interpretability of features is crucial or when datasets 
are limited in size. However, their performance heavily relies on the quality of manually engineered features 
and may struggle with large and diverse datasets. 

2.3. DL Revolution 

The use of DL, in particular “Convolutional Neural Networks (CNNs)”, has increased recently for 
revolutionized image analysis tasks in paddy: 

 Feature Learning: Hierarchical data representations are automatically learned by CNNs, directly 
from raw images. They can capture intricate patterns and features that are difficult to extract 
manually, such as spatial relationships between pixels and textures. 

 End-to-End Learning: Unlike traditional ML pipelines that separate feature extraction and 
classification, CNNs perform end-to-end learning. This means they can learn to classify images 
directly from pixels, eliminating the need for explicit feature engineering. 

 Scalability: Deep learning models thrive on large-scale datasets, which are increasingly available in 
paddy due to advancements in data collection through drones, satellites, and IoT devices. This 
scalability enables CNNs to generalize well across diverse conditions and crop types. 

3. RELATED WORK FOR PADDY DISEASE DETECTION 

One of the primary methods used by ML algorithms to classify images according to similarities is image 
processing. Pre-processing, feature extraction, and classification are the three stages that ML algorithms 
typically include. We can determine if the classifier is unsupervised or supervised based on its mathematical 
structure. Deep learning methods have been widely used by researchers recently. Deep learning techniques 
are used to identify the suggested images by classifying them according to their features. Both ML and DL 
tools, may utilize to expand their study in a variety of fields by scientists. It is used in every prior industry 
that has an impact on humans, including education [10], healthcare [11,12], smart cities [13], and others. 
The aim is to automate tasks that are typically performed by individuals. People will benefit greatly from 
this since machines will be able to perform tasks that people previously handled.  
 
Hybrid approaches involve integrating various models of various types, like DL and ML, to tackle complex 
problems beyond the capabilities of single models. 

[14] uses novel hybrid Dense-Net approach integrated with an enhanced U-Net architecture, is used to 
automate the identification process, addressing issues of inefficiency and inconsistency in manual 
identification methods. Improved U-Net is utilized for precise “Region of Interest (ROI)” extraction, while 
Dense-Net handles image classification tasks. The study evaluates several familier Neural Network(NN) 
models like DenseNet, AlexNet, VGG16, GoogleNet, ResNet50, SVM, and CNN, under both standard 
image classification and hybrid ROI extraction scenarios. In experiments without ROI extraction, accuracy 
varies among models: SVM 82%, CNN 81%, ResNet50 59%, GoogleNet 86%, VGG16 78%, AlexNet 
78%, and DenseNet excels with 86%. With ROI extraction, accuracy improves significantly: Simple CNN 
reaches 88%, SVM 92%, ResNet50 77%, GoogleNet matches at 86%, VGG16 86%, AlexNet 85%, and 
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DenseNet achieves the highest at 96%. Overall, ROI extraction based on  U-Net, classification results across 
all tested models, with DenseNet demonstrating the best overall performance. 

A hybrid CNN (Inception-ResNet)-SVM model has been developed to address the challenge of accurately 
detecting and treating diseased rice leaves. The model uses images captured in agricultural fields, which are 
refined and enhanced for clarity. Through a process that includes the Grab-Cut algorithm for image 
segmentation, the model extracts features and classifies them using the hybrid CNN-SVM approach. Results 
show the model achieves high accuracy (0.97) and precision (0.93), outperforming previous methods, 
making it a promising tool for aiding farmers in pesticide selection based on the specific characteristics of 
diseased rice leaves [15]. 

[16] The study introduces ResViT-Rice, a hybrid architecture combining transformer components and 
CNN for precise detection of brown spot and leaf blast diseases in rice plants. It integrates ResNet as the 
backbone and incorporates transformer encoder and “convolutional block attention module” to improve 
feature extraction. Highest accuracy 99.04% is attained by the model with AUC 0.9987, F1-score, recall and 
precision exceeding 0.96. ResViT-Rice proves effective in extracting disease features, leads to accurate, 
robust classification of rice diseases. 

[17] This study investigates 3 kinds of rice diseases: Leaf Smut, Brown spot, Bacterial leaf spot, Bacterial 
Leaf blight Bacteria. To extract features, it uses “Faster R-CNN deep architecture in conjunction with VGG-
16 transfer learning”. Following transfer learning, extracted features are classified by Random Forest (RF). 
RF classifier partitions rice field into 3 unique regions based on these features. Images of rice leaves were 
taken from the UCI Machine Learning Repository and used in this investigation. Method achieves 97.3% 
accuracy for classifying rice disease images. Experimental results validate effectiveness of the proposed 
technique in accurately detecting rice diseases. 

Table 3. Summary of related work in paddy disease detection 

Study Dataset Category Key Models/Methods Results 
[14] Kaggle Hybrid DenseNet, AlexNet, VGG16, 

GoogleNet, ResNet50, SVM, Simple 
CNN 

Without ROI extraction: 
DenseNet 86%, AlexNet 78%, 
VGG16 78%, GoogleNet 86%, 

Resnet50 59%, SVM 82%, SVM 
82%, Simple CNN 81% 

With ROI Extraction : DenseNet 
96%, AlexNet 85%, VGG16 

86%, GoogleNet 86%, ResNet50 
77%, SVm 92%, simple CNN 

88% 
[15] Private Hybrid CNN (Inception-ResNet), SVM, 

Grab-Cut algorithm 
Accuracy: 97%, Precision: 93% 

[16] Private Hybrid ResNet, transformer encoder, 
convolutional block attention 

module 

Accuracy: up to 99.04%, AUC: 
0.9987, Precision, Recall, F1-

score > 0.96 
[17] Private Hybrid VGG-16, Faster R-CNN, random 

forest classifier 
Average accuracy: 97.3% 

[18] Public Ensemble Ensemble Model, ResNet-50, SE-
ResNet-50, DenseNet-121 

91% accuracy 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 3S, 2025 
https://www.theaspd.com/ijes.php 

123 
 

 

[18] A smartphone app was used in the development and implementation of an automated diagnostic 
approach. Utilizing DL on dataset of 33,026 images encompassing 6 kinds of rice diseases, including brown 
spot, bacterial stripe, sheath blight, neck blast, false smut, leaf blast, employed an Ensemble Model 
integrating top-performing submodels: ResNeSt-50, SE-ResNet-50, DenseNet-121. The Ensemble Model 
achieved 91% accuracy, effectively reducing misdiagnosis and improving disease recognition. Accessible via 
a web server, the smartphone app provided efficient field diagnosis for rice diseases, offering convenience to 
users. 

[19] This study compares 6 CNN architectures (Seresnext101, ResNet152V, ResNet101, MobileNetV2, 
InceptionV3, DenseNet121) for classifying nine prevalent rice diseases in Bangladesh. It also explores 
transfer learning with Seresnext101, ResNet152V, MobileNetV2, DenseNet121, and an ensemble model 
named DEX “Densenet121, EfficientNetB7, Xception”. Ensemble approach achieves the highest accuracy 
of 98%, demonstrating a 17% improvement over Seresnext101 in disease detection and localization. This 
study underscores potential of CNN models in real-time agricultural disease detection, crucial for timely 
interventions to safeguard rice yields and quality in farming communities. 

[20] Introduces the “stacking-based integrated learning” approach aimed at enhancing the efficiency and 
precision of rice leaf disease detection. The model incorporates 4 CNN’s (MobileNetV3, ResNet50, 
Improved GoogleNet, Enhanced AlexNet) as base learner’s, supplemented by SVM as the sublearner. 

[19] Public(UC
I[22]) 

Private 

Ensemble Ensemble Model (DEX), 
Seresnext101, Resnet152v, 
resNet101, MobileNetv2, 

Inceptionv3, DenseNet121 

Highest accuracy: 98% 

[20] Public[21], 
Private 

Ensemble Enhanced AlexNet, SVM, 
MobileNetV3, ResNet50, GoogleNet 

99.69% accuracy 

[23] Kaggle[32] Transfer 
Learning 

ResNet34 98.54 

[24] Public [32] Transfer 
Learning 

VGG 97.10 

[25] Public(Kag
gle [33], 

Mendeley 
[34]) 

Transfer 
Learning 

XceptionNet 94.33 

[26] Public(Git
Hub [35]) 

Transfer 
Learning 

EfficientNetV2B3 94 

[27] Private Transfer 
Learning 

EfficientNetB3 99 

[28] Public & 
Private 

Custom 
CNN 

Deep learning model optimization 98.64 

[29] Public 
(Kaggle 

[36]) 

Custom 
CNN 

IoT-based framework using ML/DL 
techniques 

90.98 

[30] Public(ID
ADP [37]) 

Custom 
CNN 

DHLC-DETR (DHLC-FPN 
integrated with DETR) 

97.44 

[31] Private Custom 
CNN 

ADAM, SGDM Achieves maximum accuracies of 
99.83% with Adam and 99.66% 

with SGDM by the 7th epoch 
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Achieved detection rate of 99.69% on a rice dataset, this approach explores how various enhancement 
techniques impact learning and training across various classification tasks. Comparative experiments 
include evaluations of individual models versus different combinations of stacking-based ensemble models, 
as well as comparisons across diverse datasets.   

[23] This paper examines four CNN architectures for identification and classification of diseased and 
healthy leaves, including Leaf Blast, Hispa, Brown spot. Initially, ResNet34 and ResNet50 are employed to 
mitigate vanishing gradient issues that can degrade network performance. While traditional CNN models 
handle feature extraction, the incorporation of self-attention with ResNet34 and ResNet18 architectures 
enhances the feature selection process. This improved feature extraction significantly enhances accuracy of 
rice leaf disease identification and classification. Ultimately, proposed ResNet34 with self-attention 
architecture achieves a high accuracy of 98.54%, surpassing other CNN models evaluated in the study. This 
approach shows better performance than state-of-the-art methods in multiclass classification problems. 

[24] This paper addresses the issue of the large parameter size in CNN models by proposing the recognition 
model which integrates multi scale convolution module with NN architecture based on the VGG. Model 
performance is evaluated based on loss metrics and accuracy for both test and train sets. Test accuracy of 
proposed model reaches 97.1%, marking a significant 5.87% improvement over VGG. Additionally, model 
demonstrates reduced memory requirements, totaling 26.1M, which is only 1.6% of the memory used by 
VGG. Experimental results indicate superior performance in terms of memory efficiency, recognition 
speed, accuracy. 

[25] Introduces “Dynamic Mode Decomposition (DMD)” approach with Attention-driven preprocessing for 
identifying rice leaf diseases. It evaluates ten CNN models using transfer learning, highlighting 
DenseNet121 with 93.87% accuracy. ML models constructed using deep features from the last layers of 
DCNNs, especially DenseNet121 with a Random Forest classifier, show superior performance. The study 
explores DMD-based preprocessing to localize infected regions using hard attention maps, enhancing 
segmentation. Evaluations on both original and DMD-preprocessed images show XceptionNet with SVM 
achieving 100% test accuracy. Field tests confirm XceptionNet's superior performance with 94.33% 
classification accuracy compared to other models, demonstrating enhanced metrics like F1-score, Recall, 
Precision, Accuracy with DMD-preprocessed images. 

[26] This research uses a variety of deep learning approaches to propose a robust system for predicting 
diseases in rice leaves. Images of diseases affecting rice leaves were gathered and prepared in accordance 
with algorithm specifications. Prior to classifying diseases including brown spot, blast, bacterial blight using 
several ensemble and machine learning classifiers, features were first retrieved using 32 pre-trained models. 
Results were compared, demonstrating that proposed approach outperforms current methods, achieving 
90–91% identification accuracy along with metrics like Kappa statistics, Matthews coefficient, F1-score, 
recall rate, precision on a standard dataset. Post-segmentation, the accuracy further improves to 93–94% 
with the EfficientNetV2B3 model using HGB and ET classifiers. Proposed approach effectively identifies 
rice leaf diseases with 94% accuracy, supported by experimental results validating its validity and 
effectiveness in disease identification. 

[27] For the purpose of identifying rice leaf diseases while maintaining data privacy, this study suggests a 
lightweight federated deep learning architecture. It employs client-server architecture to ensure privacy 
across distributed clients with both non-IID and IID data. Experimental validation included traditional 
learning and federated learning approaches, with EfficientNetB3 achieving a baseline accuracy of 99%. 
Federated learning on IID data achieved 99% train and evaluation accuracies with minimal loss, while non-
IID data maintained strong performance with 99% training accuracy and 95% evaluation accuracy. This 
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highlights the framework's effectiveness in comparison to conventional models, making it suitable for early 
disease classification in resource-constrained environments. 

[28] Focuses on improving the identification of rice diseases, specifically bacterial leaf blight, rice false smut, 
rice blast. Initial challenges include variations in image specifications due to distance, lighting, size, and 
angle differences. The study expands and standardizes the dataset through resizing, rotation, and mirroring. 
A new deep learning model is developed with optimized parameter initialization. Experimentation refines 
the model using key parameters such as optimization algorithms, learning rate, batch size, iteration time. 
Evaluation using the confusion matrix compares the model against ResNet and VGG, achieving an 
accuracy of 98.64%, effectively meeting the goal of precise disease identification. 

[29] This paper proposes the IoT-based framework for detecting, forecasting rice diseases using ML and DL, 
aiming to enhance decision making in smart farming systems. The framework focuses on detecting pest 
infection in rice cultivation. Results indicate that, framework achieves accurate classification and efficient 
prediction of rice disease types. It demonstrates professional-grade disease prediction with results reaching 
up to 87.97 - 97.27% accuracy using ML and DL models, respectively. Moreover, framework outperforms 
current benchmark algorithm’s in terms of F1-Score, Recall, Precision, Accuracy, ensuring effective rice 
diseases detection. 

[30] Introduces “Dense Higher-Level Composition Feature Pyramid Network (DHLC-FPN) integrated into 
the Detection Transformer (DETR)” algorithm, forming “Dense Higher-Level Composition Detection 
Transformer (DHLC-DETR)”. This approach effectively detects 3 diseases: flax spot, rice blast, sheath 
blight. DHLC-FPN replaces DETR's backbone network by merging with Res2Net to create the feature 
extraction network. Res2Net extract 5 scales of features, integrated via ‘high-density rank hybrid sampling’ 
from DHLC-FPN. These features, along with location encoding, feed into the transformer for class and box 
predictions. Predictions are refined via binary matching using Hungarian algorithm. On IDADP datasets, 
DHLC-DETR, enhanced by data augmentation, achieved the 17.3% increase in mAP compared to DETR. 
Specifically, mAP to the smaller target detection improved by 9.5%, and hyperparameter size reduced by 
324.9 M. Results underscore, optimizing feature extraction significantly enhances detection accuracy, 
achieved 97.44% accuracy on IDADP rice diseases dataset. 

[31] CNN is trained on the dataset comprising 1400 healthy and 4 common rice disease images for 
comparison. Using ‘Stochastic Gradient Descent with Momentum (SGDM) and Adaptive Moment 
Estimation (Adam)’ optimization techniques, the model achieves maximum accuracies of 99.66% and 
99.83% on testing set on 7th epoch. When including healthy leaf dataset, the Adam-optimized model 
performs better, reaching accuracies of 99.66% and 97.61% compared to SGDM by the same epoch. Table 
3. Summarizes the related work in paddy disease detection. 

4. RELATED WORK FOR WEED DETECTION IN PADDY FIELD 

[42] UAV images is obtained from the rice field in South China for weed distribution mapping using a 
semantic labeling approach. Adapted the pre-trained CNN (residual framework into a fully convolutional 
form) and fine-tuned it on the dataset. Atrous convolution expanded the convolutional filter's field of view, 
and evaluated multi-scale processing performance. Following CNN processing, ‘fully connected conditional 
random field (CRF)’ refined spatial details. The method was benchmarked against ‘pixel-based SVM and 
classical FCN-8s’, demonstrating superior accuracy. Particularly in detecting small weed patches, Approach 
performed noticeably better than previous approaches. Achieved 0.7751 accuracy, 0.9128 kappa 
coefficients, 0.7751 mean IU. These results underscore the approach's potential for precise weed mapping 
in UAV imagery. 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 3S, 2025 
https://www.theaspd.com/ijes.php 

126 
 

[43] Effective SSWM is essential for maximizing crop yields. In large-scale SSWM, remote sensing plays a 
pivotal role by providing precise information on weed distribution. Unlike satellite and piloted aircraft 
remote sensing, UAV captures higher resolution images, offering detailed data for weed mapping. This 
study aims to create accurate weed cover map with UAV imagery. RGB imagery is acquired in October 
2017 in the rice field in South China. Employed FCN for weed mapping, leveraging transfer learning to 
enhance generalization and integrating skip architecture for improved prediction accuracy. FCN approach 
was benchmarked against the ‘Patch_based CNN and Pixel_based CNN’ methods. Results demonstrated 
superior performance of the FCN method, achieved 0.935 accuracy  and the weed recognition accuracy of 
0.883. These findings highlight the capability of the algorithm to generate precise weed cover maps from 
UAV imagery. 

[50] A semi-automatic procedure utilizing an unsupervised clustering algorithm was developed and applied 
to a multi-spectral ortho-mosaic derived from UAV Sequoia images captured over a rice field. The objective 
was to identify weeds during early stage of growing season. Among the various input feature sets evaluated, 
spectral information exhibited superior accuracy compared to textural features. Spectral indices, particularly 
SAVI and GSAVI, yielded the most promising results, achieving an overall accuracy greater than 94%. The 
output weed map generated by the semi-automatic procedure was utilized in conjunction with additional 
data derived from the same Sequoia dataset. This integration facilitated the creation of geospatial gridded 
layers that encompassed information on weed distribution and the fractional cover of rice germination. 
Such detailed spatial information is invaluable for enhancing precision agronomic practices in rice field 
management. 

[77] Chemical control is crucial for managing weeds and ensuring rice yield, but excessive herbicide use 
poses environmental and agronomic risks. ‘Site-specific weed management (SSWM)’ optimizes herbicide 
application based on weed coverage to reduce usage while improving effectiveness. High-resolution UAV 
imagery and FCN-based pixel classification were used to generate precise weed cover maps. Experimental 
results showed FCN-4s achieved 0.9196 overall accuracy and 0.8473 mean IU for weed mapping, with 
mapping completed in under 30 minutes for a 50 × 60 m field. Threshold-based prescription maps resulted 
in herbicide savings of 58.3% to 70.8%. This method promises accurate SSWM applications. 

[94] ‘DL and Object-based image analysis (OBIA)’ are employed to map weeds using UAV imagery. In 
OBIA, the imagery was segmented into objects using multi-resolution segmentation and the enhanced k-
means method. Color, texture features are extracted and combined as feature vector. Classification utilized 
RF, SVM, NN, Back Propagation (BP) after rigorous hyperparameter tuning and model selection. OBIA 
achieved 66.6% MIU accuracy on test set, with 2343.5 ms per image as interface speed. For DL, ‘fully 
convolutional network (FCN)’ is adopted for pixel-wise classification. Transfer learning involved fine-tuning 
4 pretrained models (ResNet, GoogleNet, VGGNet, AlexNet). Spatial detail enhancement employed 
conventional architecture and ‘fully connected conditional random fields (CRF)’, followed by a partially 
connected-CRF as post processing to expedite inference. Hybrid methods combining ‘conventional 
architecture and partially connected CRF’ were also tested. Results demonstrated that VGGNet-based FCN 
has higher accuracy. Hybrid approach achieved MIU 80.2% on test set, with an inference speed of 326.8 ms 
per image sample. This study illustrates the efficacy of UAV remote-sensing and deep learning for 
supporting site-specific weed management (SSWM) in rice fields. 

[96] This study introduces an innovative approach integrating vision and tactile data to accurately assess 
weed density. Initially, tactile information containing weed density details was acquired using a custom 
tactile sensor, alongside simultaneous capture of corresponding visual images. Subsequently, improved the 
correlation between differentiating characteristics taken from the tactile and visual datasets using “kernel 
canonical correlation analysis (KCCA)” technique. Fusion eigenvectors, which accurately represent weed 
density, were produced by this approach. These eigenvectors are inputed into ‘broad learning system (BLS)’, 
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where a cascade feature node replaced random feature mapping, resulting in ‘KCCA-based cascade feature 
broad learning system (KCCA-CFBLS)’. Method demonstrated precise evaluation of weed density across 
high, medium and low weed conditions with a new dataset from the specialized paddy field setting. 
Performance analysis, including accuracy and processing time, revealed that KCCA-CFBLS surpassed 
YOLOv5-Lite & SVM methods by 7.56% and 11.56% higher accuracy, with reduced time consumption. 
Outcomes highlighted substantial benefits of the approach in terms of real-time capability and accuracy over 
purely visual methods, offering the foundation for intelligent decision-making in implementing mechanical 
and chemical weeding in specialized paddy environment’s. 

[97] Introduces an weeding robot designed specifically for paddy field, utilizing an enhanced version of 
YOLOv5 for adaptive weeding operations. Initially, real time method for recognizing rice seedlings is 
proposed using MW-YOLOv5s, leveraging a dataset covering various growth stage, environments of paddy. 
The model replaces GIoU_loss with WIoU_loss and combines MobileViTv3 with Backbone network 
structure. This leads to significant gains in rice seedling detection speed and accuracy. Then, MW-YOLOv5s 
is incorporated into a paddy weeding device, utilizing the least squares approach to extract seedling 
navigation lines. Lastly, a control system uses feedback control gleaned from the navigation path to 
autonomously steer the weeding machine in real time. Test outcomes demonstrate robust performance of 
MW-YOLOv5s in recognizing rice seedling across diverse paddy field conditions, achieving mAP 92.32% 
and 90.05% precision. Real-time processing capabilities reach 19.51 FPS, meeting operational requirements 
for paddy fields weeding machines. Agronomic criteria for mechanical weed management in rice fields are 
satisfied by the experimental findings, which show an 82.4% weed control rate and a 2.8% seedling damage 
rate. 

Based on provided excerpts from different studies related to weed mapping using UAV imagery in rice 
fields, here's a summarized table 4 that highlights key methods and performance metrics from each study: 

Table 4. Summary of related work in paddy weed detection 

Paper Key 
Techniques 

Performance 
Metrics 

Dataset/Imagery 
Details 

Advantages Limitations 

[38] CNN, FCN, 
CRF 

Mean IU: 0.7751, 
Overall Accuracy: 

0.9445, Kappa 
Coefficient: 

0.9128 

UAV imagery, Rice 
field in South 

China 

Superior 
accuracy in 

detecting small 
weed patches 

Computationally 
intensive, requires 

fine-tuning 

[39] FCN, Transfer 
Learning 

Overall Accuracy: 
0.935, Weed 
Recognition 

Accuracy: 0.883 

RGB imagery, 
October 2017, Rice 

field in South 
China 

High accuracy, 
detailed weed 
cover mapping 

Dependence on 
quality of training 

data 

[40] Clustering, 
Spectral 
Indices 

Overall Accuracy 
> 94% 

UAV Sequoia 
images, Rice field 

High accuracy 
with spectral 
information 

Limited to specific 
spectral bands 

[41] FCN, Pixel 
Classification 

Overall Accuracy: 
0.9196, Mean IU: 

0.8473 

High-resolution 
UAV imagery, 50 × 

60 m field 

Significant 
herbicide 

savings, fast 
processing 

Sensitivity to image 
quality and lighting 

conditions 

[42] OBIA, FCN, 
VGGNet 

MIU: 80.2%, 
Inference Speed: 

UAV imagery, Deep 
learning models 

High accuracy 
with hybrid 

Complexity in 
parameter tuning 
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326.8 ms per 
sample 

approach 

[43] KCCA, BLS Higher accuracy 
than SVM and 
YOLOv5-Lite 

Specialized paddy 
field setting 

Precision in 
weed density 
evaluation 

Requires additional 
sensor integration 

[44] YOLOv5s, 
MW-

YOLOv5s 

Precision: 
90.05%, mAP: 
92.32%, FPS: 

19.51 

Diverse paddy field 
environments 

Real-time 
processing 
capabilities 

Limited to specific 
types of weeds 

This table 4 provides a comparative view of the different methodologies used across studies, along with their 
respective performance metrics such as “mean intersection over union” and accuracy, and other relevant 
outcomes like herbicide savings where applicable. Each study employs variations in deep learning models, 
image processing techniques, and evaluation metrics to address the challenges of weed mapping using UAV 
imagery in rice fields. 

5. COMPARATIVE ADVANTAGE, CURRENT RESEARCH AND FUTURE DIRECTIONS 

Comparative Advantages 

Both traditional ML and deep learning approaches have distinct advantages 

 Traditional ML: Offers interpretability through manually engineered features and can perform well 
with smaller datasets. It's useful when understanding the reasons behind predictions is crucial (e.g., 
for regulatory purposes). 

 Deep Learning: Excels in tasks requiring complex pattern recognition and benefits from large 
datasets. It's particularly effective for tasks like image classification, where accuracy is paramount 
and when data is abundant. 

Researchers continue to explore hybrid approaches that combine the strengths of traditional ML and deep 
learning. For instance, integrating CNNs with traditional ML classifiers for improved interpretability or 
using transfer learning techniques to adapt pretrained deep learning models to specific agricultural 
domains. 

Future research directions include 

1. Improving Robustness: Addressing challenges such as variability in lighting conditions, occlusions, 
and image quality inherent in field conditions.   

2. Real-time Applications: Developing algorithms capable of real-time and early disease and weed 
detection and decision-making to enhance paddy crop management practices.   

3. Data Fusion: Integrating data from multiple sources (e.g., images, weather data, soil conditions) to 
provide comprehensive insights into crop health and optimize agricultural operations. 

Image processing, machine learning, and deep learning techniques are pivotal in advancing precision 
agriculture. Their integration enables more efficient paddy disease detection, weed management, and 
overall crop monitoring, contributing to sustainable and productive agricultural practices.  

6. RESEARCH OBJECTIVES 

Overall aim of this research is to design, develop, and analyze algorithms for automated detection of 
diseases and weed in paddy fields. The following are the objectives of the research; 
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 Exposure weeds in paddy fields using multispectral satellite images and estimate the weed density 
within the sub-fields. 

 Accomplish early detection of commonly occurring disease in paddy fields using Machine Learning 
algorithms. 

 Recognize the cause of the disease using different vegetation indices derived from the multi-spectral 
satellite images. 

7. CONCLUSION 

Agriculture is important for economic growth, food security, and jobs, especially in developing areas. With 
the world’s population growing and less land available for farming, increasing agricultural productivity is 
essential. Precision farming uses advanced technologies like sensors, GPS, and automated systems to 
improve efficiency and save resources. This study focuses on the challenges in growing paddy (Oryza sativa), 
such as diseases like Tungro, Bacterial Leaf Blight and so on and weeds like Barnyardgrass, Purple Nutsedge 
and so on. Traditional methods of detecting these issues are time-consuming and can be inaccurate.  

Precision farming helps by providing real-time monitoring and early detection, allowing for timely solutions 
and better crop management. Furthermore, using precision farming techniques promotes environmental 
sustainability by reducing the excessive use of fertilizers and pesticides. This helps prevent chemical runoff 
and soil degradation, ensuring that farming practices are productive and eco-friendly. By adopting precision 
farming, farmers can achieve higher yields, lower costs, and reduce their environmental impact. This 
approach is vital for meeting future food needs, ensuring sustainable agriculture, and supporting global 
food security. Embracing these advanced technologies helps build a strong and productive agricultural 
system to support the growing global population. 

The integration of Deep Learning (DL), Machine Learning (ML), and Image Processing (IP) significantly 
enhances the detection and classification of diseases and weeds in paddy cultivation. While traditional IP 
and ML methods have provided valuable insights through manual feature extraction and classification 
techniques, the advent of DL, particularly Convolutional Neural Networks (CNNs), has revolutionized the 
field by automating feature learning and enabling end-to-end image analysis. DL’s ability to process large 
datasets and capture complex patterns directly from raw images offers improved accuracy and scalability, 
addressing the limitations of earlier methods. Overall, these advanced technologies are crucial for advancing 
paddy management practices, ensuring better crop health and yield. 

Traditional ML offers interpretability and performs well with smaller datasets, making it ideal for scenarios 
where understanding predictions is crucial. In contrast, deep learning excels in complex pattern recognition 
and requires large datasets, making it particularly effective for tasks such as image classification. Current 
research is focused on integrating these approaches, such as combining convolutional neural networks 
(CNNs) with traditional ML classifiers or using transfer learning for specific agricultural applications. 
Future research aims to enhance robustness against field variability, develop real-time detection algorithms, 
and integrate diverse data sources to optimize crop management. The integration of image processing, ML, 
and deep learning is essential for advancing precision agriculture, improving paddy disease detection, weed 
management, and overall crop monitoring for sustainable agricultural practices. 
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