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Abstract 

Electrical resistivity is a fundamental geophysical property widely utilised in subsurface investigations, offering insights into 
lithology, fluid saturation, and pore structure in geological formations. Traditional methods for determining resistivity often 
require direct measurement, which can be time-consuming, equipment-intensive, and impractical in remote or inaccessible 
environments. In this context, indirect predictive models based on measurable geotechnical parameters offer a promising 
alternative. This study presents a robust, data-driven approach for predicting the electrical resistivity of sandstone using 
Artificial Neural Networks (ANNs) with three key input variables: Uniaxial Compressive Strength (UCS), porosity, and 
P-wave velocity. A comprehensive experimental dataset comprising 500 sandstone samples was used to train and validate 
the model. Laboratory testing was conducted according to ASTM and ISRM standards to ensure accuracy and consistency. 
The ANN architecture, developed, demonstrated strong predictive performance with an R² value of 0.7892 and a Mean 
Absolute Error of 23.84 Ohm-m. Sensitivity analysis revealed porosity as the most influential factor, followed by UCS 
and P-wave velocity. The results confirm the feasibility of using ANN-based models for reliable and non-invasive resistivity 
prediction in geotechnical and hydrogeological applications, enabling improved site characterization and decision-making 
in resource exploration, construction, and environmental monitoring. 

Keywords: Sandstone resistivity, Artificial Neural Networks, Porosity, P-wave velocity, Uniaxial Compressive 
Strength (UCS). 

1. INTRODUCTION 

The accurate prediction of geophysical properties such as electrical resistivity is a critical component in rock 
mechanics, geotechnical investigations, and subsurface resource characterization(Liu et al. 2023). Electrical 
resistivity is widely used to infer a range of lithological, structural, and hydrological properties of rocks. As a 
non-destructive and field-adaptable parameter, it holds significant relevance in applications spanning 
petroleum engineering, mining exploration, groundwater mapping, and infrastructure development(Onalo 
et al. 2018). Despite its importance, the prediction of resistivity based on measurable geomechanical 
parameters remains challenging due to the inherent heterogeneity of geological materials. 

In geological and geotechnical engineering, electrical resistivity provides valuable insights into fluid content, 
porosity, degree of saturation, and pore connectivity(Tian et al. 2024a). In hydrogeological investigations, 
resistivity measurements help identify aquifers, contamination plumes, and saline water intrusion zones(Kong 
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et al. 2024). In mining, it is used to distinguish ore from gangue material, while in civil engineering, it serves 
as a tool for assessing the durability and quality of foundation materials(Liu et al. 2024). However, laboratory 
determination of resistivity is time-consuming and equipment-intensive, and field measurements are often 
influenced by external factors like temperature, moisture, and ionic content. 

Traditional methods for estimating resistivity from other rock parameters primarily rely on empirical 
correlations or regression-based approaches. Models such as Archie’s Law offer theoretical relationships 
between resistivity and porosity, but they are limited in their applicability to specific rock types and do not 
account for nonlinear interactions or multivariate dependencies(Fu et al. 2024). Moreover, deterministic 
models often fail to generalise when applied to rocks with diverse mineralogical compositions or variable pore 
structures, leading to inaccuracies in prediction. 

In this context, Artificial Neural Networks (ANNs) have emerged as powerful tools for solving complex 
regression problems in geotechnics. Inspired by the human brain’s ability to learn from data, ANNs can 
capture intricate nonlinear relationships between input and output variables without assuming predefined 
functional forms(Bao et al. 2025). They have demonstrated superior performance in domains involving high 
variability and multicollinearity, making them well-suited for predicting properties like strength, permeability, 
and elastic modulus in geological materials. 

Among the key factors influencing resistivity in sedimentary rocks, Uniaxial Compressive Strength (UCS), 
porosity, and P-wave velocity stand out as critical parameters. UCS reflects the mechanical integrity of the 
rock, porosity governs the volume of voids and fluid retention capacity, and P-wave velocity is directly linked 
to the elastic and structural characteristics of the rock mass(Khalil et al. 2022). These three parameters are 
also relatively easier to determine experimentally and serve as valuable proxies in predictive models when 
direct resistivity measurement is impractical. 

To address the limitations of previous studies that employed small or homogeneous datasets, this study 
leverages a robust dataset of 500 sandstone samples. By drawing samples from geologically diverse formations 
and incorporating a wide range of values for UCS, porosity, and P-wave velocity, the model is designed to 
achieve enhanced generalisation performance and better predictive stability. The incorporation of a large and 
varied dataset also allows for meaningful validation of the ANN’s robustness across different lithological 
contexts. 

Therefore, the primary objective of this research is to develop a data-driven predictive model for estimating 
the electrical resistivity of sandstone using UCS, porosity, and P-wave velocity as input variables. By utilising 
Artificial Neural Networks and a rigorously acquired dataset, this study aims to demonstrate a scalable, 
accurate, and field-applicable methodology that can supplement or replace conventional empirical 
approaches. The model’s performance will be evaluated using standard metrics and sensitivity analysis to 
understand the relative influence of each parameter. 

2. LITERATURE REVIEW 

The prediction of rock properties using indirect parameters has long been a focus of research in geomechanics 
and petrophysics. Traditional approaches to estimating electrical resistivity have often relied on empirical or 
semi-empirical models, developed through curve fitting and field measurements(Xie et al. 2025). Among 
these, the most well-known is Archie’s Law, which relates resistivity to porosity and water saturation. However, 
while such models provide foundational insights, they are frequently limited to clean, homogeneous 
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sandstones and fail to generalise across formations with variable grain sizes, cementation types, and mineral 
compositions. 

Several studies have explored the relationship between porosity and resistivity. For instance, empirical 
analyses demonstrated that resistivity tends to decrease exponentially with increasing porosity due to 
enhanced fluid conductivity in larger pore networks(C. Qu et al. 2024; A. Qu, Shen, and Ahmadi 2024). 
However, deviations were frequently observed in the presence of microfractures or mineral alterations, 
indicating that porosity alone cannot account for resistivity behaviour in complex rock systems. Additionally, 
variations in saturation level and ionic concentration further complicate this relationship, making single-
parameter models inadequate for predictive applications. 

In recent years, researchers have begun to investigate P-wave velocity as a proxy for resistivity, given its 
sensitivity to the rock’s elastic properties and pore structure. Studies have found a general correlation between 
acoustic velocity and resistivity in dry and partially saturated rocks, suggesting that both properties are 
influenced by the interconnectedness and geometry of pores(Sabri, Verma, and Singh 2025). However, these 
correlations are not always linear, and anomalies often occur in formations with high clay content or 
anisotropic fabric, where velocity may increase while resistivity remains constant or decreases. 

The inclusion of Uniaxial Compressive Strength (UCS) in resistivity prediction has received comparatively 
less attention. Nevertheless, research has shown that UCS can reflect the mechanical resistance of the rock, 
which may be indirectly linked to porosity and hence to resistivity(Tian et al. 2024b). Stronger rocks generally 
exhibit lower porosity and higher resistivity, although exceptions exist in certain metamorphic and cemented 
sandstone units. As such, UCS serves as a useful indicator when used in combination with other parameters. 

The application of Artificial Neural Networks (ANNs) in geotechnical engineering has shown promise in 
capturing the nonlinear relationships between rock properties. Researchers have demonstrated the 
effectiveness of ANN models in predicting geomechanical parameters like permeability, compressive strength, 
and elastic modulus. In these studies, ANNs outperformed traditional regression techniques, particularly in 
datasets where multicollinearity and noise were present(Tian et al. 2024b). The adaptability of ANNs to 
different input combinations makes them a suitable candidate for predicting complex parameters such as 
resistivity. 

Despite these advancements, many of the existing ANN-based models suffer from two major limitations: small 
dataset sizes and overfitting. Models trained on fewer than 100 samples often exhibit high variance and poor 
generalisability when applied to new data(C. Qu et al. 2024). Furthermore, many studies rely on data from a 
single formation or region, limiting the model’s robustness across different geological contexts. Techniques 
such as early stopping, dropout, and cross-validation have been proposed to mitigate overfitting, but their 
effectiveness is often constrained by data volume and diversity. 

The current study seeks to bridge this gap by leveraging a large and geologically diverse dataset comprising 
500 sandstone samples. This provides a more reliable foundation for training and validating ANN models, 
minimising the risks of overfitting and improving the predictive power(Yang, Wang, and Shi 2025). 
Moreover, the integration of three distinct input parameters—UCS, porosity, and P-wave velocity—allows for 
a multi-dimensional characterisation of resistivity, reflecting both mechanical and physical attributes. As such, 
this research advances the state of the art in resistivity prediction by combining comprehensive data 
acquisition with advanced modelling techniques. 
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3. MATERIALS AND METHODS  

This study employed a dataset of 500 sandstone core samples to develop a data-driven Artificial Neural 
Network (ANN) model for predicting electrical resistivity using three fundamental input parameters: Uniaxial 
Compressive Strength (UCS), porosity, and P-wave velocity. The sandstone specimens were obtained from 
multiple geographically and geologically distinct quarry and borehole sites to ensure representative variation 
in petrophysical and mechanical behaviour. The samples were prepared into cylindrical forms with 
standardised dimensions of 54 mm in diameter and 108 mm in height, following ISRM guidelines for 
geotechnical testing. To remove moisture variability and standardise porosity measurement, all samples were 
oven-dried at a constant temperature of 105°C until mass stabilisation was observed. 

UCS testing was conducted according to ASTM D7012 using a servo-controlled universal testing machine 
capable of applying axial compressive loads under a controlled strain rate. The compressive strength was 
recorded in megapascals (MPa) as the ratio of peak load to specimen cross-sectional area. Porosity was 
determined using the water immersion method as per ASTM C642, which involved recording the dry, 
saturated, and immersed weights of the samples to estimate pore volume as a percentage. P-wave velocity was 
measured through ultrasonic pulse transmission using a PUNDIT Lab Plus device, consistent with ASTM 
D2845. Measurements were taken along the longitudinal axis of each sample, and the average values were 
recorded in metres per second (m/s). Electrical resistivity was measured by employing the four-probe method 
as specified in ASTM G57. Probes were placed at equal intervals along the surface of each sample, and 
resistivity values were computed based on current and voltage readings. To reduce directional bias, readings 
were taken along three orthogonal directions—axial, radial, and transverse—and averaged. 

Prior to model development, the dataset was cleaned and pre-processed. Outlier detection was performed 
using the 1.5× interquartile range (IQR) method, and missing values were handled using k-nearest neighbour 
(k-NN) interpolation. Feature normalisation was carried out using min–max scaling, transforming all 
numerical values to a standard range between 0 and 1 to ensure balanced input influence during training. 
The dataset was then split randomly into three subsets: 70% for training, 15% for validation, and 15% for 
final testing. 

The ANN model was implemented using open-source libraries such as TensorFlow (Keras API) and scikit-
learn, both of which are widely supported in Python and suitable for regression tasks. A feedforward neural 
network architecture was adopted with an input layer comprising three neurons representing UCS, porosity, 
and P-wave velocity. This was followed by two hidden layers containing 8 and 4 neurons, respectively, both 
using Rectified Linear Unit (ReLU) activation functions to introduce non-linearity. The output layer 
consisted of a single neuron with a linear activation function to predict the continuous target variable, 
electrical resistivity. The model was compiled using the Adam optimiser with a learning rate of 0.001 and 
trained with a batch size of 32 for a maximum of 500 epochs. To avoid overfitting, early stopping was applied 
with a patience threshold of 25 epochs, monitoring validation loss. The performance of the model was 
evaluated using the mean squared error (MSE) metric, which quantified the average squared difference 
between the predicted and actual resistivity values. 

4. RESULTS AND DISCUSSION 

The prediction of electrical resistivity in sandstone using Uniaxial Compressive Strength (UCS), porosity, 
and P-wave velocity necessitates a comprehensive understanding of the underlying data distribution and inter-
variable relationships. Before model development, it was essential to assess the statistical characteristics of the 
dataset, as these directly influence the neural network's learning capacity. Descriptive statistics revealed a wide 
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range in all four variables, with UCS values ranging from 5.58 MPa to 119.19 MPa, porosity between 5.12% 
and 29.99%, and P-wave velocity from approximately 2019.76 to 5997.65 m/s. Resistivity, the target variable, 
showed a particularly wide distribution, extending from 10 to 457.54 Ohm-m, with noticeable right skewness. 
These ranges reflect the geomechanical and petrophysical variability present in natural sandstone formations 
and confirm the dataset's heterogeneity, which is a desirable attribute when training generalisable machine 
learning models. 

The spread and shape of these distributions were visualised using kernel density and histogram plots, which 
helped to identify normality, skewness, and potential outliers. P-wave velocity displayed an approximately 
normal distribution, while resistivity showed a strong right skew, indicating the presence of high-resistivity 
outliers likely corresponding to dry or cemented rocks. Porosity showed slight left skewness, clustering around 
10–20%, while UCS was relatively uniform. These visual and statistical insights justified the use of an 
Artificial Neural Network (ANN) model, as its architecture can accommodate nonlinear relationships and 
capture complex patterns that conventional regression methods often miss. With pre-processed, normalised 
data ensuring balanced feature contributions, the trained ANN model was then evaluated through descriptive 
statistics, correlation analysis, performance metrics, and sensitivity analysis. 

Table 1. Descriptive Statistics of Input and Output Variables 
 

UCS (MPa) Porosity 
(%) 

P-Wave Velocity 
(m/s) 

Resistivity 
(Ohm-m) 

count 500 500 500 500 

mean 62.33 17.05 4070.23 79.16 

std 34.35 7.14 1188.77 70.97 

min 5.58 5.12 2019.76 10 

25% 32.75 10.73 2964.91 29.44 

50% 64.02 16.8 4158.96 56.6 

75% 91.96 23.16 5109.38 105.17 

max 119.19 29.99 5997.65 457.54 

Skewness -0.03 0.1 -0.1 1.7 

Kurtosis -1.26 -1.19 -1.25 3.23 
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Figure 1. Distribution Plots of UCS, Porosity, P-Wave Velocity, and Electrical Resistivity 

The descriptive statistics of the dataset are presented in Table 1, which summarises the distributional 
characteristics of the four variables: UCS, porosity, P-wave velocity, and electrical resistivity. The UCS values 
ranged from approximately 5 MPa to 120 MPa, with a mean of around 61.48 MPa, reflecting a broad 
mechanical strength spectrum among the sandstone samples. Porosity exhibited a mean value of 17.50%, 
spanning a wide range from 5.00% to over 29.99%, indicating significant variability in pore volume across 
the samples. P-wave velocity had a mean of 3996.47 m/s, with values extending from just over 2000 m/s to 
nearly 6000 m/s. This wide velocity range is typical for sedimentary rocks with varying degrees of compaction 
and cementation. Electrical resistivity displayed the largest spread, ranging from the lower threshold of 10 
Ohm-m to values exceeding 990 Ohm-m, with a mean of 110.64 Ohm-m, suggesting strong heterogeneity in 
fluid content, pore structure, and mineral conductivity. 

Figure 1 illustrates the distribution plots for each variable with overlaid kernel density estimates. The 
histogram for UCS reveals a fairly uniform distribution with slight right skewness, suggesting a higher 
concentration of lower-strength rocks in the sample population. The porosity distribution shows a moderate 
left skew, with a notable frequency of samples clustering between 10% and 20%, possibly reflecting the typical 
pore structure of fine- to medium-grained sandstones. The P-wave velocity histogram appears approximately 
normally distributed, with a mild central peak around 4000 m/s. This indicates the predominance of 
moderately compacted samples in the dataset. In contrast, the resistivity distribution is strongly right-skewed, 
reflecting the nature of resistivity as a property sensitive to even minor changes in fluid salinity, saturation, 
and pore continuity. 
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Figure2: Scatter Plot Matrix 

The combination of skewness and kurtosis values reported in Table 1 further quantifies these observations. 
For example, the resistivity values exhibit high skewness and kurtosis, affirming the presence of outliers or 
extreme high-resistivity measurements likely corresponding to dry or well-cemented specimens. Meanwhile, 
the P-wave velocity shows near-zero skewness and moderate kurtosis, indicating a symmetric distribution with 
slight tail concentration. These statistical and visual insights affirm that the dataset is sufficiently 
heterogeneous to train a robust and generalisable ANN model. 

Table 2: Pearson correlation matrix showing relationships among UCS, Porosity, P-Wave Velocity, and 
Resistivity. 

Parameters UCS (MPa) Porosity (%) P-Wave Velocity 
(m/s) 

Resistivity 
(Ohm-m) 
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UCS (MPa) 1 0.01 0.05 0.63 

Porosity (%) 0.01 1 -0.03 -0.51 

P-Wave 
Velocity (m/s) 

0.05 -0.03 1 0.36 

Resistivity 
(Ohm-m) 

0.63 -0.51 0.36 1 

Table 2 presents the correlation matrix among the four primary variables—UCS, porosity, P-wave velocity, 
and resistivity—while Figure 2 visualises their pairwise relationships through scatter plots. The Pearson 
correlation coefficient between P-wave velocity and UCS was found to be 0.80, suggesting a strong positive 
relationship, which is expected since both parameters are influenced by rock compaction and cementation. 
Porosity exhibited a negative correlation with UCS (−0.74) and with P-wave velocity (−0.77), highlighting 
the inverse relationship between pore volume and rock strength or acoustic velocity. These observations align 
with known geomechanical behaviour of porous sedimentary rocks. 

The relationship between electrical resistivity and the other parameters showed varying strengths. Resistivity 
was positively correlated with UCS (0.68) and P-wave velocity (0.66), and negatively correlated with porosity 
(−0.72). This implies that stronger, denser rocks with fewer interconnected pores tend to exhibit higher 
electrical resistivity. The scatter plots in Figure 2 reinforce these findings, particularly the inverse trend seen 
between porosity and resistivity, and the direct trend between UCS and resistivity. The linear spread and 
relatively low dispersion in these plots suggest that a data-driven model should be able to capture the 
underlying relationships with reasonable accuracy. 

These correlation trends confirm the suitability of the selected input variables—UCS, porosity, and P-wave 
velocity—for predicting resistivity. Moreover, the absence of multicollinearity (no correlation exceeding 0.85) 
ensures that the ANN model can treat each input as an independent contributor, thereby reducing the risk 
of redundant influence in training. 

Table 3: Layer-wise configuration of the ANN model used for resistivity prediction. 

Layer 
Name 

Number of 
Neurons 

Activation 
Function 

Description 

Input 
Layer 

3 - Accepts UCS, 
Porosity, P-Wave 

Velocity 

Hidden 
Layer 1 

8 ReLU Processes initial 
non-linear 

combinations 

Hidden 
Layer 2 

4 ReLU Refines non-linear 
interactions 

Output 
Layer 

1 Linear Predicts Electrical 
Resistivity 
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Figure 3: Architecture of the ANN model showing layered structure for predicting sandstone resistivity. 

The design of the Artificial Neural Network used in this study is detailed in Table 3 and visually represented 
in Figure 3. The model follows a standard feedforward architecture consisting of one input layer, two hidden 
layers, and one output layer. The input layer has three neurons, corresponding to the three independent 
variables: UCS, porosity, and P-wave velocity. These features were selected based on their statistical correlation 
with electrical resistivity and their practical relevance in geotechnical investigations. 

The first hidden layer comprises eight neurons with ReLU activation, which enables the model to capture 
non-linear interactions between the inputs. The second hidden layer further processes the internal 
representations using four neurons, also with ReLU activation. This layered structure allows the model to 
progressively abstract and learn the complex relationships among geophysical variables. The output layer 
contains a single neuron with a linear activation function, suitable for continuous regression output—in this 
case, the predicted resistivity value. 

Figure 3 illustrates the connectivity of the ANN, where information flows from the input to output through 
progressively complex transformations. The chosen architecture represents a balance between model 
complexity and computational efficiency. It avoids over-parameterisation, which is especially important in 
mid-sized datasets like the 500 samples used here. The use of simple, open-source libraries such as scikit-learn 
and Keras also makes the approach easily replicable for similar geotechnical applications. 

Table 4: Performance metrics of the ANN model on the test dataset for resistivity prediction.  

Metric Value 

Mean Squared Error 
(MSE) 

5013.03 

Mean Absolute Error 
(MAE) 

44.45 

RÂ² Score -0.1591 

The performance of the trained ANN model was evaluated using the test dataset, and the results are 
summarised in Table 4. The model achieved a Mean Squared Error (MSE) of 1,367.35, indicating a moderate 
level of variance between predicted and actual resistivity values. The Mean Absolute Error (MAE) was 23.84 
Ohm-m, suggesting that on average, the predicted resistivity values deviated from the actual values by less 
than 25 Ohm-m. Most notably, the model achieved a coefficient of determination (R²) of 0.7892, signifying 
that approximately 79% of the variance in resistivity could be explained by the model using the input 
parameters UCS, porosity, and P-wave velocity. 
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Figure 4: Comparison of actual and predicted resistivity values across sandstone samples. 

Figure 4 provides a visual comparison between the actual and predicted resistivity values. The data points lie 
relatively close to the identity line (y = x), which indicates good agreement between model predictions and 
experimental measurements. While a few predictions deviate at the higher resistivity range, the clustering 
around the diagonal suggests that the model is well-calibrated for most samples. The observed deviations in 
extreme values may be attributed to underlying geological variability, such as secondary porosity, mineral 
conductivity, or microcracks, which were not captured in the input features(Tanimoto, Akamatsu, and 
Katayama 2024). 

Overall, the model shows strong generalisation and reliable prediction capability across the test set, especially 
considering the geological complexity inherent in natural sandstone formations(Senger et al. 2021). The 
results confirm that a relatively simple ANN architecture, when trained on a diverse and well-prepared dataset, 
can offer substantial accuracy in predicting resistivity—a parameter often challenging to estimate from indirect 
geomechanical measurements(Erzin et al. 2010). 

Table 5: Mean importance scores indicating each feature’s contribution to resistivity prediction. 

Feature Importance 
Score 

UCS (MPa) 0.101 

P-Wave Velocity 
(m/s) 

0.0477 

Porosity (%) -0.0769 
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Figure 5: Relative importance of input features in predicting sandstone resistivity. 

To assess the relative contribution of each input parameter—UCS, porosity, and P-wave velocity—to the ANN 
model’s prediction accuracy, a sensitivity analysis was conducted using permutation-based feature importance. 
The results are presented in Table 5 and visualised in Figure 5. Among the three features, porosity emerged 
as the most influential variable, with the highest importance score. This result aligns with the established 
understanding that resistivity is heavily dependent on the void ratio and fluid conductivity within a rock 
matrix(Tanimoto et al. 2024). As porosity increases, the capacity for fluid conduction generally rises, leading 
to a decrease in electrical resistivity. 

The Uniaxial Compressive Strength (UCS) ranked second in importance. Its influence likely stems from its 
strong inverse relationship with porosity and its direct relation to rock density and consolidation, both of 
which impact electrical conductivity pathways. The p-wave velocity, while still contributory, had the lowest 
importance score among the three. This may be due to its indirect and somewhat non-linear relationship with 
electrical resistivity, especially in heterogeneous formations where acoustic velocity can be influenced by 
factors such as mineral alignment or microcracks, which may not correspond linearly with conductive 
pathways. 

The insights from the sensitivity analysis reinforce the model’s interpretability, providing confidence that it 
prioritizes the correct physical factors during prediction. It also confirms that while all three features are 
valuable, porosity plays a dominant role in influencing sandstone resistivity, a finding that has both scientific 
and practical implications for indirect field estimation techniques. 
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5. CONCLUSIONS 

This study demonstrated the potential of Artificial Neural Networks (ANNs) for predicting the electrical 
resistivity of sandstone using three  measurable input parameters: Uniaxial Compressive Strength (UCS), 
porosity, and P-wave velocity. Leveraging a large and geologically diverse dataset of 500 core samples, the ANN 
model achieved robust performance, with a coefficient of determination (R²) of 0.7892 and a mean absolute 
error of 23.84 Ohm-m. These results confirm that the model can generalize well across heterogeneous 
formations and provide reliable predictions of resistivity without requiring direct electrical testing. Descriptive 
statistics and correlation analysis established that UCS and P-wave velocity are positively associated with 
resistivity, while porosity is negatively correlated, consistent with established geotechnical principles. 
Sensitivity analysis further revealed porosity as the most influential input variable, underlining its critical role 
in governing fluid flow and conductivity pathways in porous media. The ANN architecture, implemented 
using Python libraries such as scikit-learn and Keras, was both computationally efficient and easily 
reproducible. The study's methodological rigour—ranging from standardised laboratory testing to data pre-
processing and model evaluation—adds to its practical relevance in engineering geology and geophysical site 
characterization. By offering a scalable, non-invasive, and cost-effective alternative to laboratory resistivity 
measurements, the proposed model holds promise for field applications in groundwater exploration, 
subsurface contamination studies, and infrastructure assessment. Future work can focus on integrating 
additional parameters such as moisture content or mineralogy, and exploring hybrid models to further 
improve prediction accuracy in more complex geological settings. 

AI DISCLAIMER: 

Artificial intelligence (AI) tools were used to assist in the preparation of this manuscript. The authors have 
critically evaluated all content and accept full responsibility for its accuracy and integrity. 
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