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The expansion of metal mining into environmentally sensitive areas requires precise approaches to estimating the spatial 
distribution of minerals. This study applied geostatistical techniques to estimate the concentrations of gold (Au) and 
copper (Cu) in the Judith mining concession (265 ha), located in Napo, Ecuador. A total of 53 samples were 
systematically distributed (0.2 points/ha) and analyzed by inductively coupled plasma mass spectrometry (ICP-MS), 
ensuring analytical quality control. The spatial analysis used ordinary krigeado for Au and co-krigeado for Cu, 
integrating cross-validation in the SGeMS software. The results revealed a heterogeneous distribution: the Au presented 
maximum concentrations of 1.85 ppm, with a mean of 0.67 ppm and a median of 0.61 ppm in the northeast; Cu 
showed maximum values of 348.5 ppm, mean of 110.8 ppm and median of 109.4 ppm in the center-south. The models 
demonstrated a strong statistical fit (MSE: 0.013; MAE: 0.087 for Au), allowing the generation of thematic maps of 
spatial distribution. These estimates facilitated the delimitation of priority mineralized zones, improving extractive 
planning. It is concluded that geostatistics is effective in spatially projecting the concentration of Au and Cu, providing 
key inputs for the technical management of the resource, reduction of uncertainty and a more selective, strategic and 
environmentally controlled exploitation. 
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INTRODUCTION 

In 2019, 79% of theworld's production of metallic minerals was concentrated in five of the six biomes with 
the greatest global biodiversity. In particular, gold (Au) and copper (Cu) extraction has intensified in 
regions with severe water scarcity, raising significant environmental and social concerns (Luckeneder et al., 
2021). In this context, geostatistics is consolidated as a key tool for the exploration and evaluation of 
deposits, by allowing a robust estimation of mineral concentrations and their spatial distribution (Mazari et 
al., 2023). Its application is crucial in mining concessions, as it facilitates more precise and profitable 
planning of exploitation, aligned with technical and environmental criteria (Zerzour et al., 2021). 

In Ecuador, mining has acquired a leading role in economic development. In 2023 alone, the sector's 
exports reached USD 3,324 million, representing an increase of 19% compared to theprevious year 
(Verdezoto, 2023). This growth reaffirms the strategic relevance of mining in the country, but also shows 
the urgency of implementing sustainable management mechanisms that ensure a rational exploitation of 
resources, while mitigating their negative externalities (Mistler, 2022). The province of Napo, located in the 
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Ecuadorian Amazon, concentrates several extractive activities, including the Judith mining concession, 
located in the Carlos Julio Arosemena Tola parish and with an area of 265 hectares. This concession 
operates under the open-pit mining model, a technique that allows large volumes of material to be extracted 
with high efficiency, but which also implies a high environmental impact, particularly in soils and water 
bodies, due to the mobilization of heavy metals and toxic waste (Mestanza et al., 2022; Fan et al., 2022). 

Added to this scenario is a growing expansion of illegal mining in Napo, a phenomenon that has escalated 
critically in the last two decades. This informal activity, characterized by the absence of environmental and 
regulatory controls, has led to the degradation of vast areas and the systematic contamination of sensitive 
ecosystems. Recent reports point to a 21% increase in areas affected by illegal mining in the province, 
which further aggravates the challenges for conservation and land use planning (Panchana, 2022; Mistler, 
2022). 

In this context, the incorporation of geostatistical techniques to estimate the spatial distribution of Au and 
Cu in the Judith concession is proposed as a high-value technical strategy. These methods make it possible 
to generate reliable predictive models that optimize the use of resources, while strengthening the scientific 
basis for implementing responsible mining practices (Afonseca and Costa, 2021). Geostatistics also 
facilitates the identification of critical areas that require specific environmental mitigation measures, 
contributing to a more comprehensive and sustainable management of the territory (Zerzour et al., 2021). 
Therefore, the objective of this research is to estimate the spatial concentration of Au and Cu in the Judith 
mining concession through the use of advanced geostatistical techniques. This estimation will make it 
possible to define mineralogical distribution patterns that guide efficient technical exploitation, minimizing 
ecological impacts and promoting a mining model aligned with the principles of sustainable development.  

Method 

The research was carried out in the Judith mining concession, located in the Carlos Julio Arosemena Tola 
parish, Napo province (Ecuador), with an area of 265 hectares. This area is geographically delimited by the 
UTM coordinates (Zone 17S), between the points East (X): 177,300 m and North (Y): 9,870,900 m. The 
predominant mining activity corresponds to the open-pit extraction system, which facilitates direct access to 
the surface layers of the substrate for geochemical sampling, without the need for deep drilling. A 
quantitative, exploratory and applied research design was adopted, with a geospatial and geostatistical 
approach. This design integrated spatial analysis techniques using Geographic Information Systems (GIS) 
and ordinary kriging interpolation methods  , in order to model the spatial distribution of gold (Au) and 
copper (Cu) concentrations in the study area (Zerzour et al., 2021; Scott, 2022). 

 

Figure 1. Geographical location of the study area. 
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Geospatial Data Collection 

The field phase consisted of the systematic georeferencing of 53 sampling points distributed under a regular 
grid design, with an average density of 0.2 points per hectare, following mineralogical sampling standards 
(Lambert, 2016; Liang et al., 2021). The coordinates were recorded with a high-precision GPS (Garmin 
Montana 680), and subsequently corrected by positional error analysis in a GIS environment, contrasting 
with base topographic cartography and applying differential correction models (Niu et al., 2021). At each 
point, in addition to the location, morphological characteristics of the terrain, vegetation cover and 
lithological attributes were documented. This information was classified in situ according to 
morphostratigraphic and pedological criteria established for Andean-Amazonian terrains (Hannousse & 
Yahiouche, 2021). 

SAMPLE SAMPLING AND TREATMENT 

The sampling was aimed at capturing the horizontal and vertical variability of the deposit. Soil and rock 
samples were extracted at controlled depths of between 60 and 90 cm, using sterile hand holes and 
systematic sampling protocols to avoid cross-contamination. The samples were stored in sealed polyethylene 
bags, labeled with a unique code, and transported under stable thermal conditions to an ISO/IEC 17025 
accredited laboratory (Dominy et al., 2021). 

CHEMICAL ANALYSIS 

The samples were subjected to complete acid digestion in HNO₃-HCl-HF matrix and subsequent 
quantitative determination by inductively coupled plasma mass spectrometry (ICP-MS), a technique that 
offers high sensitivity for trace metals (Giurlani et al., 2023). Analytical quality controls were incorporated 
through the use of targets, duplicates, internal standards, and certified reference materials (MRCs) in 
accordance with the QA/QC guidelines for geochemical explorations (Moles et al., 2013). 

GEOSTATISTICAL ANALYSIS 

The preliminary statistical analysis was performed in the SGeMS (Stanford Geostatistical Modeling 
Software) software, starting with an evaluation of normality, heteroskedasticity, and presence of outliers. 
Subsequently, omnidirectional experimental variograms were constructed, adjusted to Gaussian, 
exponential and spherical theoretical models. The selected model was the Gaussian model, as it had the 
lowest square error of fit and greater stability in spatial prediction (Arrieta et al., 2014). 

Interpolation was executed by ordinary krigeado (OK) for both variables, using a tight Gaussian model and 
a search radius defined according to the spatial correlation range obtained in the variograms. Additionally, 
for the estimation of copper (Cu), ordinary co-krigeate was applied, incorporating gold (Au) as a secondary 
variable, given its more defined spatial structure and its usefulness as a geochemical guide in zones of 
associated mineralization (Patel et al., 2021). The validation of the model was carried out by means of leave-
one-out cross-validation, using mean square error (MSE) and mean absolute error (MAE) as main metrics, 
defined as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑍̂𝑖 − 𝑍𝑖)

2𝑛
𝑖=1  ; 𝑀𝐴𝐸 =

1

𝑛
∑ (𝑍̂𝑖 − 𝑍𝑖)

2𝑛
𝑖=1  

where 𝑍̂𝑖 is the estimated value and 𝑍𝑖 the observed value at location i. 

GRAPHICAL REPRESENTATION OF SPATIAL DISTRIBUTION 

As a result of the ordinary krigeado applied to the geochemical data, a raster representation of the spatial 
concentration of gold (Au) in the mining concession was generated, expressed on a continuous scale of 
colors. This map was obtained directly from the geostatistical processing environment, showing the areas of 
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greater and lesser accumulation of the metal. The values were coded using a chromatic scale ranging from 
blue (low concentrations) to red (high concentrations), allowing the areas of greatest mineralogical interest 
to be visually identified (Vaziri et al., 2021; Arrieta et al., 2014). 

FINDINGS  

 

 

Figure 1. (a) Punto_Au and (b) Punto_Cu 

Figure 2 shows well-defined clusters of high concentrations of both gold and copper, which coincide 
spatially with the nuclei of higher density estimated by ordinary kriging. This direct match between the raw 
data and the modelled values confirms the presence of mineralised zones with a coherent geochemical 
distribution and no artificial distortions. In the case of gold (Figure 2a), the high-grade points are 
concentrated towards the northeastern sector, while copper (Figure 2b) shows a more dispersed pattern, 
although with dominant foci in the central zone. The observed distribution not only supports the quality of 
the data collected, but also clearly delimits the most relevant metalliferous corridors of the evaluated area. 

Statistical and Distributive Analysis 

 

Figure 2. (a) Histograma_AuQ25 and (b) Histograma_AuQ50 

The quartile histograms of gold (Figure 3 and Figure 4) clearly show a progressive enrichment dynamic in 
the deposit. In quartile 25 (Figure 3a), concentrations are mostly below 0.02 ppm, although point values 
close to 0.08 ppm are already emerging, revealing incipient zones of mineralization. This trend intensifies in 
quartile 50 (Figure 3b), where frequencies shift towards intermediate values (~0.04 ppm) and records above 
0.1 ppm begin to consolidate, indicating a greater accumulation in localized sectors. 
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Figure 3. (a) Histograma_AuQ75 and (b) Histograma_AuQ100 

In the upper quartiles, the gold behavior is even more defined. Quartile 75 (Figure 4a) reflects a substantial 
increase in concentrations, with recurrent values between 0.06 and 0.12 ppm and the appearance of 
outliers above 0.2 ppm. This statistical configuration confirms the continuity of the enrichment process in 
specific areas. In quartile 100 (Figure 4b), the histogram shows a marked asymmetry to the right, with values 
reaching up to 0.48 ppm. This bias reveals the presence of high-grade metalliferous cores, possibly linked to 
hydrothermal events or geological structures that favor gold concentration, consolidating the economic 
interest of the sector. In contrast, the geochemical behavior of Cu was less structured. The quartile 
histograms showed flat distributions without relevant accumulations, without registering extreme values or 
consistent trends. This homogeneous dispersion suggests a diffuse geochemical signal, lacking significant 
mineral concentration, which limits its exploitation potential under current conditions. 

CORRELATION AND NORMALITY 

 

Figure 4. Scatterplot Au vs. Cu 

The scatterplot between Au and Cu concentrations (Figure 5) reveals a weak to moderate positive 
relationship. Although an overall upward trend is identified, the point cloud is widely dispersed, limiting 
the statistical strength of the correlation. No anomalous clusters or cyclic structures were observed, 
suggesting a stable joint behavior. However, the presence of outliers in Au, higher than 0.60 g/t, introduces 
variability that could distort prediction models if not properly managed. 

a 
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Figure 5. a) PP Plot – Gold and b) PP Plot – Copper 

On the other hand, the PP graphs (Figure 6) confirm significant differences in the statistical distribution of 
both elements. In the case of Au (Figure 6a), there is a marked deviation from normal, especially at the 
extremes of the range (<0.10 and >0.60 g/t), reflecting a heterogeneous and biased distribution. This 
condition suggests the need to apply previous statistical transformations to any modeling that assumes 
normality. In contrast, Cu (Figure 6b) presented a much closer fit to the theoretical distribution, with more 
than 70 % of its values concentrated between 0.03 % and 0.07 %, which validates its suitability for 
geostatistical analysis without the need for prior adjustments. 

Spatial Structure – Variograms 

 

 

Figure 6. Cu and Au_azth variograms 
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The results derived from the variographic analysis showed contrasting spatial behaviors between Cu and 
Au, both in terms of continuity and direction. In the case of Cu, the omnidirectional variogram (Figure 7a) 
yielded a sill close to 0.25 and an effective range of approximately 100 meters. This configuration indicates 
a generalized spatial continuity without marked anisotropy, supported by a low nugget/sill ratio, confirming 
that most of the variability is structurally explained. 

The 90° direction (Figure 7b) reinforced this pattern, with a slightly lower sill (~0.20) and a virtually 
negligible nugget (~0.02). The nugget/sill ratio of less than 10% evidences a highly marked local continuity, 
probably controlled by structural alignments such as veins or fractures parallel to that azimuth. This 
directionality reveals a defined and coherent spatial organization at the local scale. 

In the 135° direction (Figure 7c), the growth of the Cu variogram was more gradual, with a sill that rose to 
~0.30 and an extended range to 130 meters. This morphology suggests a regional structure of greater scope, 
possibly conditioned by oblique tectonic systems that define the mineralization in that orientation. In 
addition, the multidirectional model (Figure 7d) showed a smooth trend with sill of ~0.23 and a moderate 
nugget (~0.04), configuring a geochemical scenario with a controlled level of randomness (nugget/sill 
~17%), useful for an integrated and balanced spatial representation. 

In contrast, the spatial behavior of Au reflected greater heterogeneity. The 90° directional variogram (Figure 
7e) showed a slightly higher sill (~0.28) and an extended range to 110 meters, signaling a longer continuity 
compared to Cu, and a greater total variability. This configuration suggests that the hydrothermal processes 
associated with gold mineralization have acted with greater dispersion and less structural control, which 
amplifies spatial heterogeneity. 

Overall, the variographic models allow us to infer that Cu has a more stable and predictable structure at the 
local scale, while Au behaves with greater range, but also with greater dispersion. These differences directly 
condition estimation strategies: while Cu is more suitable for high-resolution local modeling, Au requires 
broader approaches, considering larger radii of influence and adjustments for heterogeneity. Both 
configurations, however, are technically sound for the application of kriging and, eventually, its extension 
to cokriging when it comes to integrating both variables 

Spatial Estimation 

 

Figure 7. Mapa_KO_Au 

The estimates obtained by ordinary kriging (KO) consolidated the spatial trends previously revealed by 
variographic analyses. In the case of Au, the estimated values fluctuated between 0.12 and 11.16 g/t, with a 
clear concentration of the highest grades in the northeast quadrant of the modeled block (Figure 8). This 
zone, defined by gold enrichment nuclei, remained consistent with the previously identified spatial 
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anisotropy directions, which reinforces the robustness of the model. Towards the southwest, concentrations 
decreased progressively, stabilizing below 1.0 g/t. This contrasting zoning suggests active structural control, 
possibly associated with vein systems or directed hydrothermal processes. 

 

Figure 8. Mapa_KO_Cu 

In the case of Cu, the estimates varied between 0.43 % and 12.61 %, with amore homogeneous spatial 
distribution (Figure 9). The highest values were located towards the north-central sector, although without a 
delimitation as marked as in the Au pattern. The transitions were smoother and the edges less defined, 
which can be attributed both to a lower density of primary data and to the influence of Au on the cokriging 
model used. Even so, areas with appreciable metal potential were identified, which justify more specific 
exploratory monitoring, particularly in areas of overlap with gold enrichment. 

DISCUSSIONS 

The progressive concentration of Au evidenced in the quartile histograms in the Judith mining concession, 
with values reaching up to 0.48 ppm, corresponds to the ranges reported by Arrieta et al. (2014), who when 
studying porphyry-type deposits in Andean contexts identified maximum grades of 0.45 ppm and a mean of 
0.12 ppm. This coincidence suggests that the mineralization processes at Judith could be influenced by 
similar mechanisms, characterized by a gradual distribution of the metal in hydrothermal environments. On 
the other hand, the homogeneous distribution of Cu in Judith, without significant enrichments, contrasts 
with what was described by López (2016), who when analyzing the Recuay-Huaraz deposit reported an 
average of 0.949 % and maximum valuesof up to 3.447 %. This divergence may be associated with 
differences in structural and lithological controls, an aspect that Ouchchen et al. (2023) highlight as a 
determinant in the concentration of Cu in different geological systems.  

The normality analysis carried out through PP graphs showed that the distribution of Au in Judith does not 
respond to normal behavior, presenting marked asymmetries at its ends. This condition was also reported 
by Navarro (2020) in the Condor project, where the correlation between Au and Cu was equally low, 
reflecting a limited mineralogical association between both elements. In Judith's case, the weak positive 
correlation between these metals supports that same dynamic, suggesting a likely independence in their 
concentration mechanisms. The marked asymmetry in the Au distribution, evidenced by the deviations in 
the PP graphs, is related to what was found by Díaz and Cuador (2019) in the Hierro Mantua deposit, who 
applied a logarithmic transformation to correct the skewed distribution of Cu, which reinforces the need to 
evaluate transformations when working with highly distorted variables. On the contrary, in Judith, the 
distribution of Cu is acceptably close to normal, which allows its direct modeling without resorting to 
transformations, thus facilitating the efficient application of geostatistical methods, as Koucham et al. 
(2024) warn when analyzing cases with similar behaviors. 
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The directional variograms constructed for the Judith deposit reveal definite spatial anisotropies, with 
effective ranges of up to 130 m for Cu and 110 m for Au. These magnitudes are within the expected values 
for mineralized systems in the Andes, as pointed out by Hammarstrom (2022), who documents a significant 
increase  in Cu resources  in that region, from 590 Mt in 2005 to 1600 Mt, in part due to the recognition 
of large and continuous spatial structures. The low nugget/sill ratio obtained in Judith, less than 10%, 
shows a high spatial continuity in both variables, an aspect that was alsoreported by Lytman et al. (2020) in 
the study carried out in Tintaya, where a strong spatial dependence of geomechanical properties was 
identified. This degree of continuity supports the applicability of the Kriging models used in Judith, by 
allowing a robust and reliable estimation of the laws of Au and Cu in the domain evaluated. 

Au estimates  obtained through Ordinary Kriging in the Judith mining concession reached maximum 
values of 11.16 g/t, significantly exceeding the average grades reported by Navarro (2020) in the Condor 
project, where 4.56 g/t were recorded. This difference suggests greater economic potential in Judith, at least 
in terms of the localized presence of high-grade areas. In the case of Cu, the application of Co-Kriging using 
Au as a secondary variable allowed to improve the accuracy of the estimates. This approach has been 
validated in research such as that of Du et al. (2021), who documented how Escudero and Morera 
optimized the Kriging plan through cross-validation, achieving a substantial improvement in resource 
estimation. The implementation of this type of methodologies in Judith contributes to reinforce the 
reliability of the geostatistical model applied, aligning it with modern practices in mineral evaluation. 

While Ordinary Kriging has proven to be effective in estimating resources in Judith, emerging alternatives 
with operational and predictive advantages have been proposed in recent years. Christianson et al. (2022) 
highlight the use of Gaussian Processes as a tool that automates variogram inference and allows for better 
quantification of spatial uncertainty. For their part, Kirkwood et al. (2020) and Wang et al. (2021) applied 
Bayesian deep learning models to map geochemical variables from auxiliary information, achieving 
improvements in the accuracy of predictions compared to conventional methods. Although these 
techniques imply a greater computational demand, their future application could complement and enhance 
the results obtained by Kriging in complex exploratory scenarios such as Judith's. 

CONCLUSION 

The geostatistical estimation developed in the Judith mining concession allowed to characterize the spatial 
distribution of Au with technical rigor, identifying areas of high concentration with values that reach up to 
11.16 g/t. This patternwas accompanied by a significant structural continuity, with an effective range of 110 
m, and a marked spatial dependence evidenced by a nugget/sill ratio of less than 10 %. These indicators 
reflect a consistent mineralized system, technicallyrobust and with favorable projections in terms of 
economic viability. On the other hand, the geochemical distribution of Cu, although it did not show 
relevant enrichment patterns, was instrumental when used as a covariate in the Co-Kriging model, 
improving the resolution of the Au modeling  by incorporating complementary spatial information. 
Together, the implementation of Ordinary Kriging and Co-Kriging not only proved to be methodologically 
sound and statistically valid, but also consolidated a reliable analytical platform for future stages of 
advanced exploration in the Judith field, opening opportunities to optimize the design of drilling campaigns 
based on spatial criteria.  
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