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Abstract:

Memory effects can be easily understood with the help of fractional derivatives [1]. In this paper with the help of Deformable
fractional derivative we try to understand the role of deformability on skewness and kurtosis using moment generating function
[1]. First, we develop a formula for deformable skewness and kurtosis with the help of deformable fractional derivative using
moment generating function. Secondly, we establish a relationship among ordinary skewness, kurtosis to deformable skewness
and kurtosis. Lastly, with help of example and a table can see the variation in the statistical measure and draw the conclusions.
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1. INTRODUCTION

Measure of skewness tell us about the lack of symmetry in the distribution, while measure of kurtosis gives
information about the peaked-ness or flatness of a distribution. In this paper we show that ordinary skewness
and kurtosis is a particular case of deformable skewness and deformable kurtosis. Generalization of the idea of
skewness and kurtosis give wide area of insight information about a distribution.

Deformable Fractional Derivative: Let f(x) be a real valued function defined on interval (a,b) for a given
numbera, 0 <a <1

lim (1+ea”) f(x+ea)—f(x) (1)
e—0 €

Where
at+a* =1

If this limit exists, we denote it by D*[f(x)] [1}2].
D¥[f(x)] = a Df(x) + a*f(x) (2)

Moment Generating Function: Let X be random variable such that for some h > 0, the expected value of e™
exists for —h < t < h. Then moment generating function of X is defined to be the function My (t) = E[e%],
for —h < t < h [1H6].

My (t) = E[e™] = ¥ e™ px(x) 3)

If above series converge then we can say that moment generating function exist.
Deformable a-differentiable of moment generating function is defined as

My“(0) = ) D[] px ()

Mx“(t) = X{axe™ + (1 — @) e*} px(x) (4)
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With the help of equation (4) we can define deformable mean and deformable standard deviation [1].

Deformable Mean
u* = Mx*(0) = a EX) + (1 — o) (5)

Deformable standard deviation
O'X(x = X oy (6)

2. DEFORMABLE COEFFICIENT OF SKEWNESS
Coefficient of skewness tell us about the direction of the variation or the departure from symmetry and is denoted
by B; and defined as [6]. Whereas, Deformable coefficient of skewness defines using deformable derivative is

varying over fractional orders.

As we know that coefficient of skewness

B, = :% (7)
As we know that
uy = M"x(0) — (M'x(0))? (8)
uy = M*%(0) — (M*x(0))? )
uz = M""x(0) — 3 M'x(0) M"x(0) + 2 (M'x(0))3 (10)
ug =M% (0) — 3 M*x(0) M**x(0) + 2 (M*x(0))? (11)
g = M""x(0) =4 M'x(0) M"'x(0) + 6 (M'x(o))ZM"x(O) - 3(M'x(0))* (12)

Here a- deformable mean of fourth order is

K = MEEE(0) — 4 MOy (0) ME“4(0) + 6 (M4 (0)) M@y (0) — 3(M7x(0))* (13)

As we know that using equation (4)
My® () =a? X x? e py(x) +2a (1 —a) X x e™ py(x) + (1 — a)* X et px(x) (14)

Term by term a- differentiation of eqn. (14) w.r.to t then

My*%%(t) = a? sz D¥e™*]py(x)+2a (1 — OC)ZX D*[e™] px(x) + (1 —a)? Z D*[e"™] px(x)
My“%%(t) = a? Z 2{axe™+(1—a)e®}py(x)+2a (1 - a)zx {axe™ +(1—-a)e™} py(x)
+ (1-a)? Z{a xe™ +(1—a)e™}px(x)

My®* ) =a3Yx3 e py(x) + 2a? (1 —a) X x%e™ py(x) + a? (1 —a) X x? ePpy(x) +
20(1—a)? Txe®py(x)+ (1 —a)® Y e py(x) + a(1 — a)? ¥ xe™ py(x) (15)

M, %%%(0) = 3 Zx3 e py(x) +3a2(1—a) zxz e% px(x) +3a(1 — a)? z x e py(x)

+(1-a) z e’ px(x)
My %%(0) = a® E(X®) +3a2 (1 —a) E(X?) + 3a(1 — a)2 EX)+(1- a)3 (16)

As we know that a-deformable moment of third order is

H§ = M (0) — 3 M (0) M*%x(0) + 2 (M%(0))* 17)
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After solving we get

ug = a3 [E(X3) +2 (E(X))3 -3 E(X)E(XZ)] +3a?(1—a)EX) (18)
Deformable coefficient of skewness is defined as
a _ (udH?
B = sy (19)
o @3 [E(x3)+2 (EX)*-3 ECOE(X?)]+3 a?(1-a) E(X0) 2
b = [a2 EXD)+2 a (1—a)EX)+(1-a)?]3 (20)

It shows the fractional order (@ = 1), dependency of coefficient of skewness on deformable coefficient of
skewness.

3. DEFORMABLE COEFFICIENT OF KURTOSIS
Whereas, Deformable coefficient of kurtosis defines using deformable derivative and varying over fractional
orders.

As we know that the coefficient of kurtosis is
Br=1s @1
From equation (15)

My*%%(t) = a3 Zx3 e py()+ 2a?(1—a) sz e™ py(x)+a?(1—a) sz e py(x)
+ 2a(1 — a)? Z xe®py(x)+ (1 —a)d Z e™ py(x) + a(l — a)? Z xet™ py(x)

Term by term a- differentiation of above equation w.r.to t then
Myoe(6) = a3 " 3 DeeIpg(x) +3 0% (1= @) ) x* D[ ]ps(x)
+3a(l—@)? Y x DU Ipy(0) + (1-@)° ) D [elpy(x)
After solving the above equation at t = 0 we get
My®***0) = a* EX") +4a* (1 —a)E (X3 +6a’ (1 - )’ EX?) +3a(1—-a)’E(X)+ (1 —a)*
Hg = My®@e(0) — 4 My® (0)My“““(0) + 6 (Mx“(0))” Mx*“(0) — 3 (Mx*(0))*

On solving above equation, we get
ug = o* [EX*) = 3{EO}* + 6 {E)PEX?) —4 EXEX?)] - a (1 -)* EX) -9 (1 — )*

Deformable coefficient of kurtosis is defined as

o (Hg)
Bz = oy (22)

o o [EXH) = 3{E)}* + 6 {ECOYE(X?) =4 EXEX®)] - a (1 -a)? EX) -9 (1 — )*
Bz = [a2 E(X2) + 2 a (1 — )EX) + (1 — a)?]?
(23)

4. EXAMPLE

For the following data compute the coefficient of skewness and kurtosis [7].

X: 4.5 145 245 345 445 545 645 745 845 945
f: 1 5 12 22 17 9 4 3 1 1
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The following are the calculated values on the basis of given data.

E(X) = —0.4, E(X?) = 2.99, E(X3®) = -0.08, E(X*) = 27.63
B; = 0.504, B, = 3.782
Table 4.1 for deformable skewness and kurtosis
Fractional order Deformable Deformable kurtosis
(o) by ug Ty skewness(B;“) B2)
0.1 0.76790 - -5.87271 0.00012 9.95931
0.00742
0.2 0.63160 - -3.59697 0.00051 9.01680
0.01136
0.3 0.59110 | 0.01566 | -1.87435 0.00119 -5.36448
0.4 0.64640 | 0.10112 | 0.35627 0.03786 0.85267
0.5 0.79750 | 0.27250 | 1.35597 0.14640 2.13202
0.6 1.04440 | 0.55728 | 3.71127 0.27261 3.40243
0.7 1.38710 | 0.98294 | 7.20863 0.36202 3.74660
0.8 1.87560 | 1.57696 | 12.39724 0.40872 3.71975
0.9 2.35990 | 2.36682 | 19.87640 0.42624 3.56903
1 2.9 3.38000 30.29 0.42739 3.38873

5. CONCLUSION

Skewness and kurtosis are a particular case of deformable skewness and kurtosis for & = 1.To verify this result
we take an example and calculate value of  u§,u$,u§ for varying fractional orders for o =
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 and also calculate the varying values of deformable skewness and
kurtosis. On the basis of table 4.1 we can see that deformable skewness and kurtosis are approximately very close
at a = 1. Therefore, we can conclude that skewness and kurtosis are particular case of deformable skewness and
kurtosis.
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