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Abstract: Remote sensing-based classification of paddy and maize crops is challenging due to spectral similarities 
and complex cropping systems, particularly in semi-arid regions. This study investigates the potential of multiple 
machine learning algorithms i.e., Forest (RF), Support Vector Machine (SVM), XGBoost, and Light GBM for 
paddy and maize crops classification in Mahabubabad district of Telangana, India, using Sentinel-2 imagery. 
Different remote sensing datasets including multi-temporal Sentinel-2 data acquired during the kharif and rabi of 
2023-2024 year andSRTM digital elevation are used for training the machine learning models. Sentinel-2 data 
derived vegetation indices and phenological metrics, and SRTM DEM derived slope parameters are used along with 
850 georeferenced crop sites for training and validation of the models.The performance of these methods are assessed 
using different accuracy measures. The results indicate, XGBoost outperformed other machine learning models with 
overall accuracy 92.3%, followed by RF and other methods. The spatial pattern analysis of classification accuracy 
depicts classification errors are mainly related to field size and crop phenology. This study highlights the usefulness of 
machine learning approaches in classifying staple crops such as paddy and maize. Additionally provides insights on 
the impact of different auxiliary parameters on classification accuracy.Overall the framework implemented in this 
study can be useful for enhancing the accuracy of crop type mapping in other regions with similar agro-ecological 
conditions. 

Keywords: Crop type mapping; Machine learning; Spatial  pattern. 

 

1. INTRODUCTION 
India is primarily agriculture-based country and 1/3rd of nation’s GDP is dependent on agriculture 
(Kaur, 2013). With the global shift in market economies, reliable information on agriculture is having 
more importance than before.  Accurate and timely mapping of different crops, especially the staple 
crops like paddy and maize, gives vital insights for the policy makers, agricultural managers, and farmers 
for trade policy formulation, yield prediction and managing water resources (Zhao et al., 2021; See et al., 
2015; Gumma et al., 2011). Conventionally crop statistics such as acreage, yield etc., are calculated 
based on the land revenue system. Shortcomings of conventional systems include lack of real-time 
monitoring, delay in reporting, non-sampling errors, inadequate data for forecasting the data in 
response to change in weather and crop health conditions, etc. (Sagar & K, 2018). These limitations are 
overcome to certain extent by making use of remote sensing data sets such as aerial photographs, 
satellite imagery, etc. (Singh, 2017; Khanal et al., 2020; Mandal, 2016). These datasets facilitate more 
sophisticated approaches allowing accurate quantification of crop areas, thereby addresses related 
agrarian challenges (Migdall et al., 2018). 

In recent years, the availability of high-resolution and open-access satellite data, combined with the rapid 
advancements in machine learning techniques, has opened new opportunities for large-scale, 
automated, and efficient crop area estimation (Li et al., 2022). Crop discrimination with remote sensing 
datasets is primarily based on spectral response and is affected by sensor characteristics as well as time of 
observation (Arafat et al., 2013). Different crops exhibit diverse spectral responses in spectral bands of 
various sensors onboard different satellites (Montibeller et al., 2019; Surase et al., 2018). The 
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interaction of electromagnetic radiation with crops is primarily influenced by chlorophyll and water 
content in optical wavelength region, whereas in microwave region, it is influenced by the dielectric 
properties of the crop and crop pattern, height, etc (Silleos et al., 1992). The general steps in crop 
acreage estimation includes delineation of crop lands, crop type identification, estimation of crop area 
and accuracy assessment of crop area and identification (Hudait& Patel, 2022; David & Sturza, 2010). 
Crop mapping in multispectral optical and thermal remote sensing imagery is carried out using visual 
image interpretation and digital image classification techniques (Büchi et al., 2018; Thomson & 
Sullivan, 2006). With the advancements in remote sensing approaches and computational resources, 
remote sensing datasets are extensively used to supplement various estimates and observations related to 
crops (such as crop mapping, yield prediction, crop health monitoring, etc.) made from field 
observations using ground-based surveys. This helps in reducing the amount of ground observations 
needed while providing the comprehensive details for various applications. 

Though multiple types of crops are possible to map with remote sensing datasets, mapping staple crops 
i.e., paddy and maize are more important in India. These crops form essential means of food for 
multiple northern and southern Indian states. Many studies have demonstrated the effectiveness and 
the potential of combining satellite data and machine learning methods for crop area mapping for 
different crops including maize and paddy (K et al., 2022; She et al., 2020; Dhillon et al., 2023). In 
India, cultivation is mainly carried out over small and fragmented land holdings by large number of 
individual farmers leading to heterogeneity in crop types within small areas. This field size heterogeneity 
presents challenges for remote sensing applications, especially when using medium to coarse resolution 
satellite data. Usage of multi-temporal high-resolution satellite imagery such as Sentinel-2 in different 
crop phases can be advantageous in these situations for mapping different crops. The multispectral and 
temporal characteristics of sentinel-2 datasets allows to capture different spectral patterns exhibited by 
different crops and their variation be distinguished in time domain (Singh et al., 2019; Ghosh et al., 
2018). Understandably, there has been an increasing number of studies focusing on the use of Sentinel-
2 and other high-resolution imagery in agricultural research (Gascon, 2018). Several investigations have 
shown that optical multi-temporal satellite imagery facilitates crop type mapping across different 
climates and diverse cropping systems. In a recent study, Sentinel-1 and Sentinel-2 datasets used are in a 
convolution neural networks approach for crop classification in China (Wang et al., 2023) have 
exhibited excellent results in classifying maize, soybean, peanuts, and other crops. Similarly, many 
studies are carried out using different machine learning for crop area classification. 

Despite the advantages of using high resolution satellite imagery for crop classification, their usage is still 
limited in India. For example, although different machine learning algorithms are used in crop 
classification, comparison studies are still not comprehensive. Accurate classification of crops such as 
paddy and maize are still challenging due to their spectral similarities of different crops at various 
growth stages, the effects of heterogeneous soil moisture conditions, and the presence of arbitrary 
cropping patterns. Moreover, the evolution of plant growth phenology across time and the influence of 
drought stress under semi-arid conditions make this classification process more challenging. Also, the 
interaction between field size, crop phenology, and classification accuracy is poorly understood 
indicating the need for research in this direction. Limitations in computational resources, complexities 
associated with handling large datasets poses challenges for effective implementation of such practices. 
Additionally, during the monsoon season, the weather conditions including clouds and rain constrains 
the usability of optical and infrared remote sensing images for crop classification and area estimation 
(Kordi& Yousefi, 2022; Shen et al., 2022; Kyere et al., 2020; Dadhwal et al., 2002). The hardware 
requirement and computation resources can be overcome to certain extent by making use of cloud 
computing geospatial platforms such as google earth engine, which provides direct access to multiple 
remote sensing datasets along with robust computational resources for all users at free of cost. 

The main aim of this study is to compare and better understand the functionality of different machine 
learning algorithms for differentiating between paddy and maize crops using Sentinel-2 data, to assess 
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the spatial variability of the crops. The study is implemented over Mahabubabad district, Telangana, 
India, which exhibits semi-arid agriculture conditions. This research work presented in this study 
demonstrates the potential of machine learning for crop mapping and emphasizes details about various 
real-world challenges for agricultural stakeholders operating in semi-arid environments. This research 
aims to improve the understanding of the challenges and solutions for crop mapping in semi-arid 
regions by means of implementing different machine-learning methods. The results will provide insights 
on multiple factors that affect the crop classification towards the improvement of sustainable 
agricultural practices in similarly agriculture constrained geo-climatic settings. 

The study attempts to achieve the following objectives: 
1. To compare the performance of machine learning algorithms in classifying paddy and maize using 

Sentinel-2 data. 

2. To analyze the spatial distribution of paddy and maize crops across the study area. 

3. To examine the impact of environmental variables on crop classification accuracy. 

The manuscript is structured in the following manner. Followed by introduction, section 2 provides the 
brief description about the study area and datasets. The detailed methodology is provided in section 3. 
The results and discussion are outlined in section 4. Finally, the conclusions are presented in section 6. 

 
Fig. 1: Geographical extent of Mahabubabad region. 

2. MATERIALS AND METHODS 

2.1. Study region 
Mahabubabad district is located in Telangana state, India extending between the latitudes and 
longitudes of 17°36' to 18°0' N and 79°30' to 80°15' E encompassing an area of approximately 2,569 
square kilometres (See in Fig. 1).  The study region experiences a semi-arid climate characterized by 
seasonal variation in weather conditions. Temperature reaches up to 45 °C in summer, whereas in 
winter the temperature ranges between 15–28 °C. The annual rainfall is around 900 mm and most of it 
is received in monsoon months (from June–September) and is important for agricultural activities in 
this region. 

Mahabubabad's agriculture includes two major cropping seasons i.e.,Kharif (June-November) and Rabi 
(December-March). Paddy cropping is more prevalent in Kharif with monsoon rains, whereas maize is 
cultivated in both crop seasons. However, in some parts of Mahabubabad paddy is cultivated even in 
rabi season based on the availability of water. Small to medium field sizes are most common in the 
district with land holding varying approximately between 1-2 hectares. Irrigation for the cultivation is 
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supported by a network of tanks, canals and ground water, which induces heterogeneity in agriculture 
practices within the district. The terrain is mainly characterized by rolling plains and few hillocks with 
topographical elevation ranging between 200 to 500 m above the mean sea level over the entire region. 
Different soil types, such as red sandy loams and black cotton soils, coupled with the irrigation facilities 
leads to the cultivation of variety of crops and farming techniques across the district. 

 
Fig. 2: Training datasets 

2.2. Datasets 
The Ground truth data consists of 874 field polygons which include 554 paddy fields, and 320 maize 
fields collected using field surveys (as shown in Fig. 2) during the study period are considered in this 
study. These polygons are used for training and validating the different machine learning algorithms. In 
addition to ground observations, multi-temporal remote sensing data i.e., Sentinel-2 satellite images 
were obtained for the 2023-24 agricultural season i.e., June 2023-March 2024. During the study 
window, remote sensing imagery are selected based on key phenological stages for both paddy and 
maize crops. Additionally, images with high cloud are not considered as they are less useful and can lead 
to misclassification of the crops. Between June 2023 to March 2024, ten Sentinel-2 scenes were selected 
to cover both Kharif and Rabi seasons. These details of the Sentinel-2 imagery used in the study are 
shown in Table 1. 

In addition to Sentinel-2 imagery, Digital Elevation Model (DEM) created from the Shuttle Radar 
Topography Mission (SRTM) data is used as an auxiliary dataset for enhancing the accuracy of the 
model. From DEM, slope map of study region is created as shown in figure 3. Integrating these auxiliary 
datasets in the machine learning approaches facilitates the analysis of paddy and maize crop distribution 
and their performance with respect to different environmental and topographical factors. 

Table 1: Details of Sentinel-2 imagery used in the study. 
Acquisition Date Cloud Cover (%) Growth Stage (Paddy) Growth Stage (Maize) Season 

June 15, 2023 5.2 Sowing/Early Sowing Kharif 
July 20, 2023 8.4 Vegetative Vegetative Kharif 

August 25, 2023 12.1 Reproductive Tasseling Kharif 
September 30, 2023 3.5 Maturity Grain filling Kharif 
December 15, 2023 2.1 Sowing Early vegetative Rabi 

January 20, 2024 4.3 Vegetative Reproductive Rabi 
February 15, 2024 3.8% Reproductive/Heading Grain filling Rabi 
March 20, 2024 2.5% Maturity/Harvest Maturity Rabi  
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Fig. 3: Maps representing a) Topographic elevation and b) Slope of study region 

2.3 Methodology 

2.3.1 Preprocessing 
The methodological framework starts with the data preparation task i.e., selection of suitable bands 
from Sentinel-2 images and their preprocessing. The details of different steps followed in the 
methodology are shown as a flowchart in the figure 4. The bands were selected based on the spatial 
resolution and their usefulness to vegetation mapping  

  
Fig 4: Methodology 

and analysis as suggested by Sentinel-2 crop mapping studies. The selected bands include visible (B2, B3, 
and B4) and near-infrared (B8) bands at 10 m resolution, and red-edge bands (B5, B6, B7) originally 
available at 20 m resolution. These bands are resampled to 10 m using bilinear interpolation to preserve 
the consistency and spatial continuity across the data. Following the resampling, radiometric calibration 
and atmospheric correction is performed on all selected bands using the Sen2Cor processor to produce 
surface reflectance values. The entire preprocessing and selection are implemented in a cloud-based 
platform google earth engine. 
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Fig 5: Vegetation Indices used for developing machine learning models (in Kharif): a) NDVI b) EVI c) 

NDWI; (in Rabi) d) NDVI e) EVI f) NDWI; 

2.3.2. Computation of vegetation indices 
Three different vegetation indices were calculated and used as input features in the machine learning 
approaches to improve crop discrimination. These indices include Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI). 
The average indices over the study region during the Kharif and Rabi seasons are depicted in Fig.5. 
Overall vegetation greenness can be quantified using the Normalized Difference Vegetation Index 
(NDVI).  It is calculated as a normalized band combinations ratio derived from near-infrared (B8) and 
red (B4) bands and is used for quantifying the vegetation health and greenness. EVI exhibits sensitivity 
to high biomass regions and reduce the impact of soil background effects and atmospheric interference. 
Water content and stress conditions of crops can be assessed using NDWI by utilizing the spectral 
contrast between green and near-infrared bands. Apart from the vegetation indices, additional features 
were generated using the auxiliary datasets. These features include elevation, slope, aspect, and 
topographic wetness index (TWI) which are calculated from the digital elevation model. These features 
provide contextual information about the local terrain conditions that affect the drainage and crop 
growth. 

2.3.3. Training of machine learning models 
Different machine learning models compared in this study are Random forest, Support Vector Machine 
(SVM), XGBoost and Light GBM. These selected models in this study have already demonstrated 
theireffectiveness in crop classification in many previously reported studies. These models are 
configured with the following settings for performing classification of paddy and maize crops. Random 
forest approach is implemented with 500 trees, with tree depth of six, and minimum no of samples to 
split are eight. Random forest algorithm adopts an ensemble ensemble learning scheme for training the 
model to generate balanced results which can be generalized. SVM classifier is implemented with Radial 
Basis Function (RBF) kernel for training the model. SVM model is highly suitable for distinguishing 
classes which are non-linear in nature and can be separated mainly with non-linear conditions. XGBoost 
and Light GBM approaches emphasize on gradient boosting with a focus on preventing overfitting 
using regularization parameters. 

The remote sensing observations (i.e., Sentinel-2 data), derived vegetation indices, topographical 
parameters were paired based on the geolocation. This dataset was split into training and validation sets 
with proportions of 70% and 30% respectively. Testing data were excluded while training the machine 
learning models. Following that, a 5-fold cross-validation method was performed while training the 
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model to evaluate its stability and generalization. Grid search optimization was employed for 
hyperparameter optimization of different model parameters for each algorithm to determine optimal 
configurations. The parameters optimized for random forest are the number of trees, maximum depth 
and minimum samples per leaf. Whereas for SVM model, C parameter and RBF kernel coefficient (i.e., 
gamma value) are selected with hyperparameter tuning. Learning rate, maximum tree depth, and 
number of estimators are optimized in the case of XGBoost and Light GBM approaches. 
Hyperparameter optimization for each algorithm was performed using grid search optimization and 
evaluated using cross-validation based on the classification accuracy metrics. 

2.3.4. Evaluation of the models 
A comprehensive evaluation framework is established for determining quantitative accuracy metrics and 
spatial patterns of accuracy and errors to assess the performance of different machine learning 
classification models. Training samples dataset is used for determining the accuracy of the machine 
learning approaches. Classification accuracy is quantified using multiple statistical measures such as 
overall accuracy, Kappa coefficient, etc., to evaluate and compare between machine learning models 
implemented in this study. Overall classification accuracy as well as class-wise accuracy are calculated for 
each machine learning model. Overall accuracy is the calculated as the total number of correct pixels 
divided by all the pixels in validation dataset. Additionally, class-wise accuracies are computed for both 
paddy and maize crops to obtain insights into the model performance, as these have heterogeneous 
spectral and temporal dynamics. 

In addition to classification accuracy, Kappa coefficient and F1 score are used to evaluate the accuracy 
of the classification. Kappa metric is particularly useful in this study, where the class distributions are 
imbalanced between paddy vs maize cultivation. F1 score is the harmonic mean of precision and recall, 
provides details about the performance of a classification model with respect to both false positives and 
false negatives. For each classifier, we also provide a detailed confusion matrix that allows us to analyze 
the patterns of misclassifications between crop types. 

Table 2: Accuracy metrics for different classification algorithms 
Algorithm Overall 

Accuracy (%) 
Kappa 

Coefficient 
F1-Score Producer's 

Accuracy (%) 
User's Accuracy 

(%) 
XGBoost 92.3 0.89 0.91 93.5/91.1 92.8/90.7 

Random Forest 89.7 0.86 0.88 90.8/88.6 89.9/88.2 
Light GBM 88.4 0.84 0.87 89.2/87.6 88.7/87.1 

SVM 86.5 0.82 0.85 87.3/85.7 86.9/85.2 

The classification accuracy was further assessed by systematically analysing the spatial pattern of 
classification error over the study area. This analysis helps understanding the region and conditions 
where the classification model is performing better or poor.  

The impact of field size on the classification accuracy is also determined by comparing the 
misclassification amounts when related with field size. This analysis gives insights into the goodness of 
classification models especially in heterogeneous cropping communities. Similarly, the impact of 
elevation, slope and soil type are also determined by analysing the classification accuracy with auxiliary 
parameters. Furthermore, temporal stability analysis is conducted on the selected machine learning 
model while performing crop classification by analysing the classification accuracy on different time 
frames (i.e., classification of different date imagery) during the study period. This analysis across times 
provides insight into periods of interest for crop discrimination and demonstrates the effect of 
phenological stages on classification performance. The overall crop classification assessment provides 
comprehensive details about the performance and statistical validation of different machine learning 
crop classification models and depicts the spatial patterns of the selected model performance. 
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3. RESULTS AND DISCUSSIONS 

3.1. Comparison of different machine learning models performance 
The comparison of different machine learning algorithms—XGBoost, Random Forest, Light GBM, and 
Support Vector Machine (SVM) models’ performance highlights the difference in their classification 
abilities in discriminating the paddy and maize crops. The crop classification results from different 
models are shown in Figure 6. The results of comparative analysis based on overall accuracy, Kappa 
coefficient, F1-score, producer's accuracy, and user's accuracy are summarized in Table 2. The overall 
and crop level classification accuracy are shown in Figure 7. 

Among the compared models, XGBoost has consistently outperformed the others, achieving the highest 
overall accuracy (92.3%) and a Kappa coefficient of 0.89, indicating strong agreement with reference 
field observations. The model also exhibited high accuracy when evaluated for individual crops, with 
producer’s accuracy of 93.5% for paddy and 91.1% for maize, and user’s accuracy of 92.8% and 90.7%, 
respectively. These metrics indicates majority of the XGboost predictions arehighly accurate and reliable. 
The random forest model ranks second with an overall accuracy of 89.7%, and a slightly lower class-wise 
performance compared to XGBoost. 

 
Fig 6: Crop classification over mahabubabad: a) XG Boost b) Random forestc)Light GBM d) SVM for 

Kharif season; d) XG Boost e) Random forest f)Light GBM g) SVM for Rabi season 

However, for both the crops producer’s and user’s accuracy are above 88%, indicating the reliability of 
random forest model. Light GBM and support vector machine have shown overall accuracies of 88.4% 
and 86.5%. While Light GBM is computationally efficient, its accuracy is lower than XGBoost and 
random forest models. SVM model has shown lowest performance among the compared models. 
Despite its theoretical strengths, the decision boundary used in the SVM model could not achieve better 
performance than the other models. These models’ performance hierarchy remained consistent across 
different metrics i.e., kappa coefficient, F1-score, producer’s and user’s accuracy for validation as shown 
in Table 2. Class-level accuracy and overall metrics also exhibit similar pattern with XGBoost model 
outperforming the other approaches as shown in the Figure 7. 
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Fig 7: Comparative performance of machine learning algorithms showing overall accuracy and crop-

specific classification accuracies for paddy and maize. 

3.2. Analysis of classification accuracy with field size 
The spatial patterns in classification errors and accuracy details are further assessed based on various 
factors such as field size, location, etc. With regard to location no distinguishable pattern. The 
classification errors are randomly distributed over the entire region. Whereas, field size has some 
association with classification accuracy. Therefore, overall accuracy is assessed against the field size using 
the reference data for the best performing model i.e., XGBoost. The spatial distribution characteristics 
of classification accuracy did not exhibit any specific regional variations over Mahabubabad region. 
However, high-accuracy in this region generally correspond with contiguous large-scale farmed areas, 
whereas errors are observed across fragmented agricultural landscapes. The results indicate, 
classification accuracy decreased in areas having mixed cropping patterns and with smaller field sizes (< 
0.5 hectare). When field size is 0.1-0.5 hectare, the overall accuracy is less than 88% and varied between 
77-88%. Whereas for fields above 0.5 hectare, the overall accuracy is more consistent varying in a small 
range between 88-92% for the XGBoost model (See in Fig 8). This is particularly pronounced in areas of 
mixed cropping, since the complexity of such agricultural patterns poses challenge for spectral 
classification of crops with remote sensing datasets. 

 
Fig 8: Field size impact map 
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3.3. Temporal analysis of accuracy 
The results from temporal analysis indicates misclassification increases during crop transition periods, 
particularly in late-season maize fields where leaf senescence patterns lead to spectral confusion with 
harvested paddy fields. Temporal trends in classification performance can be observed in the seasonal 
accuracy assessment.  

The classification accuracy varied between 80-90% for both the crops depending on the time the 
imagery is acquired for crop classification in both kharif and rabi seasons as represented in the figure 9. 
The classification accuracy is observed to be highest during the peak growing periods for both maize and 
paddy in kharif as well as rabi seasons; However, the overall classification uncertainty increases during 
the transition period between Kharif and Rabi. These insights are essential to determine the image 
acquisition timing for accurately classifying the crops for various applications. 

3.4. Analysis with respect to auxiliary parameters 
The classification accuracy is significantly affected by environmental factors, like temperature and 
humidity. The performance of XGBoost model is analysed with topographic and auxiliary parameters 
i.e., slope, soil type, and field size. The results indicates that overall accuracy decreases by 8-12% on 
slopes larger than 15 degrees. The details regarding the impact of auxiliary parameters on crop 
classification with XGBoost model are summarized in Table 3.Further, accuracy is analysed with 
underlying soil types of agricultural landscapes. The results depict regions with black cotton soils 
reporting 7% higher accuracy than red sandy soils. The larger fields have exhibited higher accuracy 
compared to smaller fields. The overall accuracy decreased by 15 to 20 percent when field size is less 
than 0.5 ha. 

 
Fig.9.Temporal variation in classification accuracy for paddy and maize throughout the growing season 

Table 3: Summary of different factors affecting classification accuracy 
Auxiliary Parameter Impact on Accuracy (%) Key Observations 

Slope > 15° -8 to -12 Higher misclassification on steeper slopes 
Black Cotton Soil +7 Better accuracy compared to red soils 
Field Size < 0.5 ha -15 to -20 Significant decrease in small fields 

4. CONCLUSIONS AND SUMMARY 
This study implements different types of machine learning approaches in the mapping of paddy and 
maize crops in a semi-arid region i.e., Mahabubabad. The results from this study demonstrates that 
among the different approaches tested, XGBoost and Random Forest have high classification accuracy 
(92.3% and 89.7% respectively). Overall, these results demonstrate a significant advancement over 
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conventional classification methods, especially in peri-urban and rural regions where mixed crop systems 
and spatial variability in field sizes are common. 

The methodology implemented in this study offers different useful insights in agricultural remote 
sensing. In addition to Sentinel-2 data, different auxiliary parameters are used in this for addressing the 
environmental effects in semi-arid regions where crop spectra are impacted by moisture stress. The 
classification accuracy is further investigated with respect to different parameters such as slope, soil type, 
field size, etc. This analysis indicated that field size and soil type have strong implications on 
classification accuracy in semi-arid regions such as Mahabubabad. The variability in accuracy of crop 
classification is more prevalent in areas with mixed cropping patterns. Although XGBoost has higher 
accuracy than Random Forest, the later approach is much simpler and computationally less demanding. 
The results indicate that although increased accuracy can be achieved through more complex 
implementations, the choice of crop classification methods should be determined with consideration of 
the operating environment conditions. Despite the various useful insights, the study has certain 
limitations which can improved in the future research. Other crop patterns are not considered in this 
study, which can lead to classification errors in areas with mixed crop patterns. Additionally, the impact 
of other auxiliary parameters such as streams, rainfall can be investigated. Cloud cover poses challenges 
during the monsoon period. This can be overcome with help of active microwave remote sensing 
datasets. Future studies can investigate the synergy between active microwave and multispectral remote 
sensing datasets for crop classification. The usefulness of deep learning models to deal with complex 
spatial and spectral classification can be. Additionally, further studies should aim to develop hybrid 
approaches that leverage the strengths of multiple algorithms while overcoming the specific limitations 
found in different agriculture landscapes. Overall, the investigation presents insights that are useful for 
understanding crop mapping dynamics in semi-arid regions, particularly through analyzing spatial 
patterns and accuracy variations by season. 

The research fills the void between scientific understanding of these relationships and practical 
applications in the operational context of agricultural remote sensing by quantifying the relationships 
and offering usable checklists for farmers to implement on the ground. These findings underscore the 
need to integrate additional factors within the technical research phase of new operational crop 
mapping systems beyond algorithmic performance aspects, which in this case focus on practical 
implementation constraints. The results indicate that although increased accuracy can be achieved 
through more complex implementations, the ultimate choice of classification methods should be 
determined with consideration of the operating environment. Further studies should aim to create 
hybrid approaches that leverage the strengths of multiple algorithms whilst also overcoming the specific 
limitations found in specific landscape contexts.The overall conclusion is that the mapping 
performance of crop type in semi-arid regions needs to strike the right balance between accuracy, 
computational efficiency, and practical applicability. This study shows that data balance of these classes 
can be achieved as long as they are appropriately selected with respect to algorithm choice, feature 
engineering and environmental classification performance determinants. 
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