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Abstract— The early and accurate detection of plant diseases is crucial because of its contribution to socioeconomic growth in
agricultural productivity and worldwide food security. Traditional methods of plant disease detection often depend upon time-
consuming, intensive research surveys and onsite field inspections, which are time-consuming and liable to human error. In the last
few decades, the incorporation of imaging technology with automated artificial intelligence (Al) algorithms has appeared as a
promising answer, allowing speedy and accurate early identification of plant diseases. In this work, an automated framework is
developed to identify and classify diseases in apple plants at the right time to reduce financial loss and human labor. However,
advancements in sensor technology, information analytics, and artificial intelligence algorithms continue to enhance smart
agriculture. In this work, we have used a multispectral dataset analyzing grayscale and RGB sample images with preprocessing, and
classification to discover apple leaf illnesses. Color spatial capabilities have been recognized as crucial for assessing the severity of
apple plant species infections. Our findings indicate that blue channel color space supplied better clarity and noiseunfastened
outputs, making them more effective for detecting diseased leaves than other color space channels and grayscale images. Two Al-
based models, Random Forest and Conwvolutional Neural Networks (CNNs) were fine-tuned and used for disease detection. The
CNN model outperformed Random Forest, achieving an accuracy of 89.05%, precision of 90.71%, remember of 89.05%, and an
F1 score of 89.87%. These effects underscore the high functionality of CNN s to hit upon and classify plant diseases with precision
while minimizing false positives and negatives. The integration of CNNs into RGB channel color space detection workflows
facilitate early diagnosis and timely interventions, improving plant control, safeguarding yield, and promoting agricultural
sustainability.

Keywords— Convolutional Neural Networks, RGB Images, Plant diseases, Deep Neural Networks, Infectious Disease, Plant
Pathology, Smart Agriculture, Agricultural Sustainability

INTRODUCTION

The global population is anticipated to rise to 9.8 billion with the aid of 2050 (United Nations 2015). To feed the
populace, agricultural manufacturing will want to grow closely over current levels, efficiently using assets. Furthermore,
the entire crop yield discount because of all crop pests and illnesses reaches 40% (Oerke et al. 1994), causing
worldwide food security to be undermined (Chandler et al. 2011). The use of traditional plant protection products to
shield crops against pests and sicknesses sadly has poor effects on the environment, bio range, and human health and
should therefore be largely reduced. Ways to make crop safety more sustainable are required and incorporated pest
management (IPM) is promoted as the first-class manner forward making a distinction in this attempt. IPM emphasizes
the growth of a healthful crop with the least feasible disruption to agro-ecosystems (Lamichhane et al. 2016). To
enhance productivity farmers, adopt numerous techniques to suitable crops and determine suitable insecticides to
support plant increase. The incidence of plant diseases substantially affects the quality and quantity of agricultural
production. In the study of plant pathology, scientists have a look at plant sicknesses, making a specialty of figuring
out and knowledge of the visually observable patterns exhibited by way of affected plants. Accurate assessment of plant
health and disease status is crucial and essential for successful agricultural practice. Historically, the exam and
prognosis of plant illnesses trusted guide evaluation through professional people, a procedure that turned into
exertions-in-depth and time-consuming. In modern-day agriculture, image analysis techniques are extensively applied
for plant ailment identity, primarily focused on signs determined at the stems, vegetables, and leaves.

Smartphones can be used by farmers to take images of their crops, which they can then upload to cloud-based
platforms where machine learning (ML) algorithms process the photos and produce useful information. For example,
(Mrisho et al. 2020) presented Nuru, a deep-learning model for diagnosing cassava diseases on Android devices. With
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a 65% accuracy rate, this device shows the reliability of reasonable arrangements that utilize current cell phone
innovation for in-field diagnostics.
Enormous scope crop observation is likewise made conceivable by high-goal cameras introduced on ground-based
stages and automated elevated vehicles (UAVs). Plant pathology has been changed by late improvements in the man-
made reasoning (man-made intelligence) area, particularly in machine vision (Pattanaik et al., 2022). Machine vision
permits machines to grasp their environmental elements by joining camera frameworks and PC calculations to remove
data from images or recordings (Shin et al., 2023). By giving ranchers admittance to constant information to help
with all-around informed direction, this innovation can change farming (Tian et al., 2020).

Machine vision has been utilized to recognize bugs (Sena Jr. et al., 2003), distinguish illnesses (Karthik et al., 2020;

Sethy et al., 2020), and screen crops for signs of pressure (Kacira et al., 2002; Khotimah et al., 2023; Nhamo et al.,

2020). Huge yield misfortunes are brought about by vermin and sicknesses. Accordingly, imaging innovations like

satellites, drones, UAVs, and cell phones are being utilized increasingly to follow crop medical images and recognize

ailments. Ranchers can answer rapidly and successfully because of these stages (Hafeez et al., 2022). On a more
extensive scale, satellite sensors give sagacious data by distinguishing sickness episodes and assessing crop wellbeing

across the whole field (NASA Science Mission Directorate, 2010; Yang, 2020).

The utilization of AI (ML) methods to naturally recognize patterns and irregularities reminiscent of harvest infections
is developing (Pattanaik et al., 2021). Convolutional brain organizations (CNNs), repetitive brain organizations

(RNNs), and autoencoders are instances of cutting-edge profound learning models that have shown extraordinary

commitment in the ID of illness designs from images (Pattanaik et al., 2024). For instance, (Mohanty et al. 2016)

prepared a profound convolutional brain organization (DCNN) that could distinguish 14 harvest species and 26

sicknesses utilizing a dataset of 54,306 photographs of solid and unhealthy plant leaves. The model's astounding

99.35% exactness on the test set exhibited the adequacy of profound learning methods for precise and versatile yield

illness determination. A broad examination of image-based techniques for crop illness discovery is given in this survey.

It evaluates the significance of man-made reasoning models that have been reported in the audit work, featuring

critical snags and exploring the capability of different sensor advances in sickness identification. The audit inspects

the impacts of environmental change on crop wellbeing and features how relevant elements, like climate and field the
executive's procedures, influence sickness 1D.

Numerous crops and diseases are systematically analyzed, emphasizing machine learning techniques catered to
regional and species needs. Image-based surveillance systems for extensive monitoring to identify new infections are
also examined in the review. Technologies for real-time monitoring are cited as crucial resources for early disease
detection, allowing for prompt interventions and selfsufficient crop management. The efficiency of collaborative
mapping approaches in raising the accuracy of disease detection is also investigated. An examination of automated
technologies intended for implementation in low-income and developing nations, to offer affordable and easily
accessible answers to the world's agricultural problems, rounds out the review.

Images serve as the basis for the extraction and interpretation of visual information, making them a fundamental data

type for image processing applications (Li, H. et al. 2025). Two-dimensional arrays are commonly used to represent

digital images, with each element corresponding to a distinct coordinate (r, ¢) and storing information about the
brightness or intensity at that location (Pérez-Rodriguez et al. 2019).

The smallest controllable and addressable unit in digital imaging is the pixel, which is distinguished by its intensity,
which varies based on the kind of image. The methodical arrangement of pixels in a two-dimensional matrix makes
manipulation and analysis easier. A pixel's brightness is determined by its intensity, and this information is essential
for several image processing tasks.

e Binary Image: The most basic type of digital image, binary images are made up of just two-pixel values, usually
black and white, denoted by the numbers 0 and 1. Because only one binary digit is needed to encode each pixel,
these images are known as 1-bit per pixel images. Applications where clarity and simplicity are essential, such as
document scanning and object segmentation, frequently use binary images.

e Grayscale Image: Grayscale images are colourless and monochromatic, representing information about
brightness. In an 8-bit representation, each pixel in a grayscale image has a single intensity value, usually between
0 (black) and 255 (white), resulting in 256 distinct shades of Gray. In computer vision, photography, and medical
imaging, grayscale images are frequently utilized because they highlight.
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e Indexed Image: A colormap matrix and a pixel array make up the two-part representation used by indexed images.
The colormap defines the actual RGB colour values, and the pixel array contains indices pointing to rows in the
colormap. Each row of the colormap, which is a m*3 mx3 matrix with floating-point values in the interval [0, 1],
indicates the red, green, and blue components of a given color. Maps, diagrams, and some forms of medical
imagery are examples of images with limited color palettes that can be effectively represented by index images
(Pérez-Rodriguez et al. 2019).

¢ RGB Image: RGB images utilize three parts — red, green, and blue — to address every pixel to catch full-variety

data. Generally, 8 pieces are utilized by every part, for a sum of 24 pieces for each pixel. More than 16 million
tonnes are conceivable with this organization, making for various purposes, contemporary image handling
strategies exploit these image kinds of characteristics. For preprocessing undertakings like thresholding, edge
recognition, and morphological tasks, parallel images are fundamental. In computationally requesting
applications like surface examination and facial acknowledgment, where a variety of information is pointless,
grayscale images are now and again. Images with restricted variety ranges, like warm guides and topical guides in
geospatial examination, can be proficiently put away and delivered thanks to list images. RGB images are
fundamental for undertakings like item discovery, semantic division, and creative delivery that call for a rich
variety of data. Multispectral and hyperspectral images, which go past the RGB range to integrate additional
groups like infrared or bright, are one more illustration of a high-level image design. These images can be utilized
in material examination, remote detection, and farming. Rich otherworldly information is caught by these
configurations, giving a more exhaustive understanding of natural and surface qualities. Creative arrangements
across businesses are made conceivable by image handling calculations that utilize these different image types to
boost execution for undertakings like further developing differences, fragmenting locales of interest, or grouping
objects.

MATERIALS AND METHODS

Analysis of chlorophyll content by RGB indices calculation

During data collection, crop indices (Cis) were computed and dissected for every yield with different spectral data
from red (R), green (G), and blue (B) parts. Color is the most important feature that plays a vital role in regularizing
plant species and displaying spectral marks on these different color channels.

Spectral data from red (R), green (G), and blue (B) groups were dissected for each yield to compute crop indices (Cls)
on dates. Color is a regularly utilized strategy to recognize plant species, as various yields display one-of-a-kind spectral
marks in these groups. Exactly when Cls are gotten from RGB gatherings, they give unequivocal phenotypic
information that directs the various assortments of harvests or plants. Since RGB images consolidate both soil and
reap leaves, the dirt part was covered before processing Cls (Figure 2 and Figure 3). This covering was performed using
a managed image with the assistance of the help vector machine (SVM) strategy, known for its high accuracy (Banerjee
et al., 2018). Spectral marks for crops were extricated as shown in Figure 3. RGB-based crop records have been
comprehensively utilized and shown power for extricating grouped phenotypic data under moving advancement
conditions (Gracia-Romero et al., 2017). In this audit, 16 are not set in stone for each yield discernment date using
the "raster" group in R Studio v4.2.2. Clear estimations for all VIs were figured for each collection across different
image-getting dates. Tukey's Clear Gigantic Differentiation (HSD) test was coordinated in SPSS v16 to assess immense
differences between pack suggests.

Late movements in RGB test assessment have furthermore overhauled how we could decipher crop phenotyping
under different regular circumstances. For example, concentrates by (Zhao et al. 2020) and (Ahmed et al. 2021)
included the ability of significant standard RGB imagery in exactness agribusiness, highlighting its part in crop
noticing and yield assumption. Such techniques continue to progress with work on computational gadgets and
artificial intelligence strategies, offering more conspicuous precision and viability in agrarian investigation.

A. Data Processing using RGB Indices

Exploratory data analysis (EDA) is a basic push toward the data science work process. It gives a profound
comprehension of the information, which is fundamental for settling on informed conclusions about information
preprocessing, including designing, and model determination (Vigni, M.L et al. 2013). By directing exhaustive EDA,
it is ensured that the ensuing Machine Learning and Deep Learning algorithms demonstrating processes are based on
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strong groundwork, prompting more exact and dependable outcomes. This cycle incorporates gathering, cleaning,
investigating, dissecting, and finally getting bits of knowledge. In this work, the distribution of each feature with
statistical metrics like mean, median, mode, and range are used, and they help us in choosing appropriate
preprocessing techniques and models. For the data preprocessing stage, the original dataset is used as shown in Figure
1. Figure 1 showcases the different distribution of plant species with their metrics of sample distribution.

5%

28.30%
32.50%

= rust scab healthy multiple diseases

Figure 1: Illustrates the original dataset chart and different plant species sample distribution.

B. Methods

Random Forest (RF) is one of the machine learning algorithms that show good performance in plant pathology
(Hatuwal, B.K 2020). Random Forest is characterized by its robustness and reliability. Usually, the Random Forest
approach develops many small decision tree structures, offering decision outputs after training and learning for better
prediction. The RF model will allow predictive analysis employing lowering overfitting through the power of the wide
variety of decision branches. The RF belongs to the powerful ensemble approach using the electricity of many
classifiers for introduced accuracy and is well-located for extremely complex classification obligations, along with the
character of identifying diverse plant ailment classifications from images. In this phase, we are going to discuss the
implementation of the Random Forest set of rules implemented around plant pathology through image class. Now
we can present this class implementation that separates the occurrence of various foliar illnesses and other not-unusual
crop fitness issues. Here many snapshots of Apple tree leaves of plant pathology have been captured, aiming to develop
a model for early detection and a friendly tool for farmers and agriculture specialists, and, in turn, get progressed
advanced automated analysis of plants to get higher yields. Here, Al Al-based automated method for facts training,
image preprocessing, training, and testing RF is used. Along with this, we have included the performance metrics to
be carried out at some point in the overall version assessment, in addition to presenting the version's benefits and
drawbacks. In this work, we exhibit how the RF approach may be adapted to boost the outcomes and accuracy of
faster plant disease detection, so we can aim towards advanced and automatic approaches inside the subject of
agricultural pathology.

Convolutional Neural Networks (CNNs) are a sort of profound deep learning model especially viable in image
classification works (Pattanaik et al. 2024). They succeed at recognizing designs and spatially ordered progressions in
images, making them appropriate for diagnosing plant sicknesses. By utilizing various layers, CNNs consequently and
adaptively gain complex elements straightforwardly from crude pixel information, successfully dealing with the high-
layered highlight space ordinary in plant pathology samples. In this work, we fostered a CNN model to group plant
pathology images. The objective was to make a device able to precisely recognize different foliar disease plant samples,
for example, apple scab, rust, and others, as well as separate these from solid healthy leaves. Utilizing an enormous,
publicly available labeled dataset, the model furnishes farmers and horticultural experts with an early advanced disease
detection framework for illness acknowledgment and intercession.

The CNN model incorporates a few basic parts intended to successfully concentrate and cycle highlights from input
image samples: The CNN deep learning model comprises many layers and can be used to extract and process features
from the input image samples. The first layer of CNN helps to convolute the input image samples and detect several
features. After the input layer, the next layer is the max pooling layer i.e. MaxPooling2D used to reduce the spatial
dimensions and to direct on important relevant features. The feature maps can be flattened and into one-dimensional
vector processing into dense layers after convolutional and pooling layers. To assess the model, we utilized
measurements like review, accuracy, F1 score, and others. This gave a thorough evaluation of the model's assets and
limits when applied to real-time farming scenarios.
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I1. EXPERIMENTAL SETUP ANALYSIS

A. Datasets

A multispectral dataset of plant pathology images is expected to foster a powerful imaging model. The dataset is a
collection of different yields impacted by various infections. It will guarantee a different portrayal of true situations.
For this task, we utilized a dataset from Kaggle (The Plant Pathology 2020 FGVCT7 dataset) which involves sample
images of apple leaves showing various sorts of sicknesses connected with apple trees, for example, apple scab, rust,
and numerous illnesses, such as well as solid healthy leaves. Apple leaf infections include normal illnesses like scab,
rust, and fine mold or powdery mildew (Thapa et al. 2020). Among these, the apple scab, brought about by a parasitic
microorganism, stands apart as quite possibly one of the most financially critical contagious illnesses influencing apple
crops internationally (Agarwal et al. 2019). The sickness appears as noticeable parasitic designs on the leaf surface.
Likewise, rust illness can incur extreme harm under helpful ecological circumstances. Impacted leaves show little
yellow spots, as seen in plants experiencing rust. Figure 2 and Figure 3 outline healthy and unhealthy apple plant leaf

image samples respectively. Similarly, an entire infected leaf image is shown in Figure 4.
) - : ~%
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Figure 4. Single Image of Infected Apple Leaf
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Figure 5. Systematic flowchart architecture for apple disease identification by channel response analysis with Random
Forest (RF) and Convolutional Neural Network (CNN) model evaluation and implementation.
Detecting illnesses in apple plant leaves is a challenging task due to the many diseases that are affecting the apple
leaves. Nowadays, due to the recent advancement of many advanced artificial intelligence techniques have powerful
devices for automated computer-based illness identification in the Apple plant. The automated detection and locating
of apple plant illness through artificial intelligence involves many essential stages. In the first stage, a dataset of apple
plant leaf images is collected and compiled into two groups, i.e. healthy and infected illness leaves. Following the data
preprocessing stage, the color and grayscale images are further split into individual channels for further deep analysis
to recognize which channel is giving more information. The observed analyzed the suggested brightness of the three
number one shades (Red, Green, and Blue) inside the leaves of regenerated vegetation to determine their dating with
chlorophyll content:

e Red (R) and Green (G): The implied brightness of those colorations confirmed a terrible correlation with

chlorophyll content material, meaning their brightness reduced as chlorophyll content material improved.
e Blue (B): In contrast, the implied brightness of Blue showed a growing fashion with chlorophyll content. However,
the correlation between blue brightness and chlorophyll content becomes vulnerable.

Once it is collected then the image from that channel is fed and trained with a machine learning model i.e. Random
Forest and a deep learning model i.e. CNN to recognize the depth patterns within the images. Figure 5 shows a
systematic flowchart architecture for apple disease identification by channel response analysis with Random Forest
(RF) and Convolutional Neural Network (CNN) model evaluation and implementation. Following the entire process,
the outperforming bets framework was deployed as an application for real-time world usage.
B. Feature Selection and Extraction
The Feature Selection process includes all necessary steps to identify the most active and effective features to enhance
the classification performance. Descriptive color statistics, textures, and shape features can be considered to identify
easily the crop disease with proper signatures. A strong courting becomes discovered between chlorophyll content and
the mean brightness of Red and Green, indicating that these colors are greater applicable for determining chlorophyll
content with the use of color factor in comparison to Blue. When analyzing the ratio of implied brightness (RGB)
across the three colorations, an enormous correlation is observed with chlorophyll content material:
e Red (R) and Green (G) maintained a bad correlation with chlorophyll content.
® Blue (B) showed an advantageous correlation with chlorophyll content material.
This indicates that even as all 3 number one shades are worried, Red and Green are more dependable indicators of
chlorophyll content material in regenerated plants.
We observed that the blue channel is the most varied variety in channels and changes diversely for the solid example
than other infection tests. Along these lines, we attempt to involve this in a machine-learning model. Then, at that
point, we utilize a profound learning model and look at the exhibition of the two models. Many methods overlook
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the histogram-combined RGB channel distribution disparities in apple plant images (as described in Figure 6 and
Table I) when creating their framework architecture. But here we have considered the spatial properties in the
frequency domain of the original image, allowing us to learn from the non-linear restoration information mappings.
Table III summarizes the study to obtain detailed plant image sample data by depth, with sample selection guided by
the classification of different species. Table II shows the histogram and boxplot analysis of different samples Images
of healthy Apple leaves and diseased leaf-like scab, rust, powdery mildew.

Table 1. Histogram distribution of original image samples individual RGB channel distribution analysis
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Figure 6. Histogram distribution of original image samples combined with RGB channel distribution analysis

DISCUSSION

C. Evaluation Analysis

This section outlines the performance of the systematic flowchart architecture for apple disease identification by
channel response analysis with Random Forest (RF) and Convolutional Neural Network (CNN) model evaluation
and implementation in terms of accuracy, precision, recall, and Fl-score. The collected data is in the form of color
image spaces and further they were converted to grayscale space. The experimental system was set on a Windows PC
with an i7 7700HQ processor with 16GB RAM processor running at 2.8GHz. We have focused on training around
70% of the data and 30% rest for testing. Here we had considered a 0.001 learning rate, 128 batch size with 0.9
momentum. For this work, the performance of the framework following parameters such as accuracy, precision, recall,

and Fl-score must be considered for checking the effectiveness of the model depicted in Eq. (1) - (4).
True Positive+True Negative (1)

Accuracy =
y True Positive+True Negative+False Negative+False Positive

Precision = True Positive (2)
True Positive+False Positive

True Positive
Recall = — . (€)
True Positive+False Negative
True Postive « True Positive
F1—S5S =2 X True Positive+False Positive True Positive+False Negative (4)
core = True Positive True Positive

True Positive+False Positive + True Positive+False Negative

Where True Positive = correctly classified positive apple leaves, True Negative = classified negative apple leaves, False
Negative = incorrectly classified apple leaves, and False Negative = incorrectly classified positive apple leaves.

Key insights are exposed by means of this comparative evaluation between the Random Forest-based totally machine
learning model and the Convolutional Neural Network (CNN) deep learning model to identify disease spots and
classify healthy and diseased plant leaf samples.The classical gadget gaining knowledge of the model, based on Random
Forest, was done with 69.59% of accuracy, 83.66% of precision, 70.14% of recall, and an F1 score of 76.30%. The
metrics endorse that the Random Forest model discriminates and classifies diseases like apple scab, rust, and multiple
diseases exceptionally well, especially with the accuracy metrics. On the other hand, the CNN model, which uses
advanced deep gaining knowledge of practices, showed a few vast performances; accuracy of 89.05%, precision of
90.71%, recall of 89.05%, and an F1 score of 89.87%. These consequences prove that this model has awesome
competencies to hit upon and classify disease samples with excessive precision and recall, maintaining a low number of
false positives and negatives. The performance variations between these models are presented conspicuously excessive
in the performance metrics between the Random Forest and CNN models, which simply emphasize the sizeable benefit
of the usage of the deep mastering technique in solving tough issues of image classifications—particularly in plant-
associated pathology—at ease. The expanded CNN accuracy and F1 rating in comparison to the Random Forest
underline that the CNN model needs to be more capable of seizing and interpreting the complicated styles and
capabilities of the leaves suffering from sicknesses, considering greater accuracy and dependable disease detection.
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Table II. Boxplot analysis of different channels R, G, and B and showcasing the mean values of the individual
channels.
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Table III. Histogram and boxplot analysis of different samples Images of healthy Apple leaf and diseased leaf-like scab,
rust, powdery mildew

610



International Journal of Environmental Sciences

ISSN: 2229-7359
Vol. 11 No. 4,2025

https://theaspd.com/index.php

| . e
50 100 150

|

Sample Histogram Analysis Boxplot Analysis
Type
Healthy
Distribution of RGB Channels combined healty_sample Distribution of the Color healty_sample
Sample
0.04 B Red
0.03 150 . B Green
0.02 L] B sive
0.01 =
o 5 100
= 1
TN SR
T e S —— 0 50 .
L L1 W ——— 1 |
L Ly 25 Red Green Blue
Color channel
Multiple
Disease Distribution of RGB Channels combined multiple_diseases_sampl Distribution of the Color multiple_diseases_sample
Sample -
. 150 0 red
0.06 & B Green
0.04 ] B &ive
-
0.02 c 100
10 1 N
RRRRL AL LEE L 50
LSRN 17T T AT T
Red Green Blue
50 100 150
Color channel
Rust
. Distribution of RGB Channels combined rust_sample Distribution of the Color rust_sample
Disease
Sample sl _ .
0.03 150 [ Green
0.02- y B Blve
0.014 E
. c 100
0 ]
3 .
j 1)
{ 1 O | | 50
1 LI L ——— —— || |
50 100 150 Red Green Blue
Color channel
Scab
Disease Distribution of RGB Channels combined scab_sample Distribution of the Color scab_sample
Sample
0.041 . 1 0 red
150 B Green
0.02 ;g B she
z
c 100
0 H "
z .
I ———
F00 T | — | 50

Red Green Blue

Color channel

611




International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 4,2025
https://theaspd.com/index.php

100

80
6
4
2
0

Accuracy Precision Recall F1 Score

o

o

o

B Random Forest (%) ® CNN (%)

Figure 7. Chart showcasing the different performance metrics i.e. accuracy, precision, recall, and F1- Score of two
different algorithms i.e. random forest and CNN.
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Figure 8. The ROC Curve of the CNN model outperforms the random forest algorithm

D. Execution Time Analysis

Figure 9 shows the details plot for the mean training time in seconds for different color spaces mainly for RGB and

grayscale. In this work, we have mainly focused on the amount of time required for training the train data. We have

employed two Al techniques, i.e. Random Forest and CNN for this work. After the completion of the entire task, we

found that the time required for training is much longer compared to the testing duration, just the same way a classifier

works. The agricultural workers are the end users who can use the entire tool for testing and summarizing the tool

can be used to work in the real-time field.
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Figure 9: Showcases the mean execution time (seconds) of the classifiers for the training data. The blue channel
performs the best compared to other channels and requires the least training time.
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Figure 10. Confusion Matrix of the random forest and CNN model respectively

E. Confusion Matrices Analysis

Figure 10 illustrates the confusion matrices of 70:30 training: testing samples data for the apple plant. The confusion
matrices showcase the statistics of the RGB space where for example row 2 of the predicted class of random forest out
of 100 apple sample images (15 + 70 + 15), the framework technique classified 15 apple scabs, 70 rust, 15 healthy
whereas the predicted class of CNN with 100 apple sample images (8 + 88 + 4), 8 apple scabs, 88 rust, 4 healthy
respectively. Therefore, out of 100 apple samples, 70 samples were correctly classified as rust whereas by CNN, 88
samples were correctly classified as rust. If we focus on the two confusion matrices, cell 2 gives the highest value
information with the off-diagonal cells. The new comparative frame detects three common apple leaf illnesses i.e. scab,
rust, and fine mold or powdery mildew. Further, we analyzed apple plant illness, which also affects apple fruits and
creates future enhanced diseases to the fruits too. In the future, a precise experiment should be performed to develop
an automated tool that can help to identify and detect a wide range of ailments that may harm plant leaves, stems,
and fruits. This type of harmful challenge can be covered in future work.

CONCLUSION

Apple is one of the most popular and important fruits that has multiple antioxidant benefits by reducing chronic
illness. Well, this popular fruit is a risk in production due to various organisms like bacterial, fungi, and viruses’
infections. Applying pesticides and fertilizers can help to reduce the illness but it will also degrade the quality and
quantity of the apple plants. Therefore, early identification and treating the apple plant at the right time is very crucial
to reduce productivity and financial loss. In summary, traditional machine learning techniques like Random Forest
offer a foundational stage of infection detection, whilst deep learning techniques such as CNNs provide great
enhancements in early detection with normal effectiveness, accuracy, precision, and consideration of morphological
characteristics. In this paper, RGB images and grayscale images were utilized and analysis of each channel with
information transmission is recorded. The integration of CNNs in the detection of plant sicknesses makes early
diagnoses and intervention activities extra effective, and therefore, it improves the control of crops, accordingly,
shielding the yield and improving agricultural sustainability. The outcomes of this work show that compared with
grayscale and RGB image processing procedures, the blue channel has a relevant and reliable result in classifying apple
scab illness in early development stages.
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