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Abstract: A serious threat to the environment and human health is air pollution, especially in rapidly expanding cities and
the rural areas that surround them. This research investigates the use of contemporary Internet of Things (IoT)-based sensor
technologies to monitor and improve the quality of the air in Tamil Nadu's Madurai district, taking into account both
urban and rural environments. The study evaluates important pollutants including PM2.5, PM 10, NOj, SO, and CO
while integrating real-time data collection using Internet of Things-enabled air quality monitoring equipment. A comparison
of rural and urban areas reveals the differences in air pollution levels and identifies major causes, including residential fuel
usage, industrial activity, transportation emissions, and agricultural burning. The report suggests data-driven pollution
control measures including smart ventilation systems, neighbourhood awareness campaigns, and policy-driven suggestions for
environmentally friendly building and urban design. The results show how IoT can revolutionise environmental monitoring
and how crucial it is to integrate smart sensor infrastructure to create healthier and cleaner living spaces in both urban and
rural areas.
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INTRODUCTION

In developing countries like India, air pollution is a major environmental and public health issue in both urban
and rural regions. According to estimates from the World Health Organisation, outdoor air pollution causes
over seven million premature deaths per year. Rapid urbanisation, industrial growth, vehicle emissions,
agricultural burning, and residential fuel consumption all contribute to Tamil Nadu's declining air quality,
which disproportionately affects the state's most vulnerable rural residents. There are significant gaps in real-
time, localised pollution assessment caused by the restricted geographical coverage and high deployment costs
of traditional monitoring techniques, such as reference-grade stations run by the Central Pollution Control
Board (CPCB).[1]Although standard CPCB stations are usually few and do not monitor wide regions, they
provide precise pollution readings. This is especially severe in rural areas, where comprehensive stationary
surveillance is not possible due to infrastructural and budgetary limitations. According to recent developments,
scalable, high-resolution air quality monitoring systems may be possible using inexpensive Internet of Things
(IoT) sensor arrays. To enable "hyperlocal" mapping across the city, IIT Madras, for example, created mobile
monitoring units fitted with PM1.0, PM,.5, PM 19, NOy, and SOy sensors installed on autorickshaws and other
vehicles. These mobile platforms recorded pollution spikes associated with automobile traffic, school zones,
and industrial activities and showed high correlations (Pearson's r =0.97) with reference instruments.
[3]Additionally promising have been complementary stationary IoT sensor networks that make use of
inexpensive optical and gas sensors such as MQ 135 and PMSAQ03. One example is the use of cloud-based
systems for real-time monitoring, notifications, and predictive analytics in Chennai's small urban installations
that detected PM,, PM1o, NO,, SO,, CO, O3, and VOC:s. IoT sensor arrays and machine learning methods
were used in another hybrid model implemented in Tamil Nadu to improve early warning capabilities and
forecast accuracy. Peak pollution linked to business zones and transportation congestion is detected by mobile
sensors in crowded urban corridors. Stationary networks failed to notice the large increases in PM,.5 that were
recorded during festival activities like Deepavali. Tactical interventions like traffic rerouting and public
transportation timetable optimisation are informed by distributed sensor networks.[4] Early warning systems
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are made possible by sensors that can identify intermittent pollution from fertilizer usage and crop burning in
rural districts. Health-risk evaluations are supported by real-time monitoring close to homes that cook with
kerosene or biomass, especially for women and children. In rural areas like Madurai, where centralised
monitoring infrastructure is limited, loT networks cover gaps in coverage. Low-cost optical particle counters
(like PMSAQO3 and Nova SDS) and gas sensor modules (like MQ-series) can detect gases (like CO, NO,, SO,,
O3, and VOCs) and fine particulate matter (like PM5.5, PM1g). Arduino, ESP32, or Raspberry Pi platforms
handle data acquisition, preprocessing, and cloud connectivity. Wi-Fi, LoRaWAN, and cellular networks
transmit sensor readings to off-grid areas, continuous operation is ensured by solar panels or battery
solutions.[5] Real-time maps, time-series data, and alarms are shown on platforms such as ThingSpeak or
customised dashboards. AQI level predictions and pollution source attribution utilising weather, traffic, and
sensor data are made possible by regression and classification algorithms. When pollutant levels above health-
based thresholds, authorities or citizens are notified via threshold-triggered SMS/email warnings.rban: Locate
residential areas, school zones, industrial zones, and busy streets. Rural: Select regions that reflect scattered
communities, residential fuel consumption, and agricultural methods. Stations that are fixed: Install 10-20
IoT nodes in rural and urban areas to gather data continuously. Platforms for mobile devices: Install IoT
devices on local transportation vehicles (autorickshaws, buses, etc.) to record spatial gradients. To calibrate
sensor readings, place a few chosen nodes next to CPCB reference stations or other verified equipment. Gather
baseline information on various seasons, climates, and pollution incidents. To see temporal spikes and hot
regions in pollution, use GIS mapping. Examine the trends in pollutants over time and between rural and
urban areas. Connect increases to events like crop burning seasons, cooking cycles, industrial shifts, and school
drop-off hours. Examine the relationship between traffic volumes and climatic factors (temperature, humidity,
and wind). Make focused strategy recommendations based on data: clever ventilation systems, localised urban
planning guidelines, farmer awareness initiatives, and traffic laws based on the time of day. Provide both urban
and rural areas with high-resolution pollution datasets that provide light on the causes of pollution and its
spatiotemporal variations. Provide evidence-based suggestions for local government, including the best
locations for parks, schools, traffic control, and agricultural stubble control. Present a scalable approach for
the deployment, calibration, data analytics, and cloud integration of inexpensive IoT sensors in resource-
constrained environments. Give people easy access to real-time data so they may make educated choices and
advocate for cleaner environments. Frequent calibration against reference instruments is necessary for low-cost
sensors to maintain data dependability over time. Rural locations may have sporadic connectivity; thus, hybrid
communication methods (such as satellite or LoRaWAN) or data caching techniques are required. Low-power
sensor designs and solar or battery solutions are necessary for sustained power in off-grid areas. Strong database
administration and effective analytics pipelines are necessary for handling large volumes from dense sensor
networks. ML model adoption has to be locally verified and customised to local pollution phenomena.

With its combination of industrial clusters, ancient urban centres, active agricultural, and rural villages,
Madurai is typical of mid-sized Indian towns with mixed urban-rural dynamics. While investigating
deployment feasibility in various community contexts, the use of contemporary loT devices in this context
promises to provide important insights regarding differential pollution trends. The results may help develop
scalable models that can be used in other Tamil Nadu districts and beyond.

LITERATURE REVIEW

Present an ESP32-based air quality sensor node optimized for ultra-low power, leveraging MICS 5524 (CO)
and MQ 135 (gas) sensors. By implementing a deep sleep/resume cycle, the authors considerably increase
battery life while keeping the sample frequency suitable for indoor settings. Wi-Fi is used to send data to a
cloud gateway for analytics. When calibrated against reference-grade equipment, the error for CO readings is
less than 10%, while for PM, estimates, it is around 15%. Importantly, their approach verifies deployment
feasibility in off-grid and rural environments, which directly influences energy and hardware choices in
Madurai's rural units. [6]This project links real-time loT data with Al models (ANN, SVM, kNN, SARIMA) by
deploying a dense network of gas (NO,, NHz, CO, SO,, O3) and particle sensors. The predicting accuracy is
up to 95%, according to the results (RMSE <3 pg/m3). In conjunction with local meteorology, the authors
describe seasonal pollution patterns associated with fireworks and agricultural burning. Their research supports
sophisticated forecasting models for proactive pollution management by reflecting circumstances like to those
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seen in Madurai's periurban borders. In a Tamil Nadu community, [7] created an Arduino Raspberry Pi hybrid
equipped with temperature/humidity, CO,, NO,, and SO, sensors. ANN, SVM, and decision-tree algorithms
are used in conjunction with data collecting. With an accuracy of almost 92%, ANN had the greatest predicting
performance. Data was uploaded to the IBM Cloud in order to be visualised. Their approach provides a tried-
and-true framework for pollution detection and prediction analytics in low-industrial environments, making it
immediately applicable to Madurai's rural areas.[8] A Raspberry Pi is used to monitor and filter the air with
MQ 2/135 and PMSAOQO03 sensors. When pollution thresholds are surpassed, the system actively employs a
PWM-controlled fan and HEPA filter. ThingSpeak receives real-time data uploads, allowing for remote
monitoring and notification. The potential for combining sensing with remediation, a possible anchor for
smart-construction ventilation modules, is highlighted finding of a 70% decrease in PMj.5 after 10 minutes of
activation. [9]In an urban Indian environment, the team built up a sensor network to monitor PM,, CO, and
NO,. Data were analysed using SVM and decision tree models after being delivered to a cloud server via
MQTT. They were able to identify abnormalities such abrupt industrial emissions with an accuracy of around
90%. Sliding-window regression time-series predictions accurately predicted AQI. A blueprint for scalable
sensor integration and real-time public health notifications is provided by their layered IoT + analytics pipeline,
which is suitable to the infrastructure of metropolitan Madurai. In order to anticipate AQI, [10] installed
outdoor sensor systems in Hyderabad and combined LSTM/BLSTM models. The BLSTM model out
performed traditional ARIMA, achieving an RMSE of 4 pg/m3. Additionally, they examined the effects on
hospitalisations for respiratory conditions, linking elevated AQI to a rise in emergency room admissions.
Theoretically, an Al-based public-health connection supports Madurai intervention planning based on
anticipated pollution peaks.[11] set up 49 PM sensors in Hyderabad, some of which were placed next to CPCB
stations for calibration. Sparse government sensors failed to detect Diwali PM 3.5 increases up to 450 ug/m?3,
but their network did. To find hotspots, they used GIS mapping and spatial interpolation. Strategies for
Madurai's rural-urban gradients are informed by their deployment techniques and calibration
procedures.[12]Thing Speak-enabled integrated MQ)-series sensors and Python-based dashboards were
employed in an indoor air quality (IAQ) system. They put in place real-time notifications for dangerous levels.
Its warning system and cloud-based architecture might be modified for use in smart-building modules for urban
development projects in Madurai. [13]IoT integration in environmental monitoring is highlighted in this
analysis, with a focus on public health, environmental planning, and policymaking. Benefits including
enhanced geographical coverage, public participation, and real-time government assistance are examined.
Additionally, it emphasises the need of public-private partnerships—a strategic paradigm for Madurai's
municipal rollout—and urges for multi-sector engagement.[14] developed an Internet of Things system with gas
and particle sensors based on the ESP8266 that communicates with Node-RED dashboards over MQTT. For
predictive analytics, they use LSTM and SVM. The project has a strong emphasis on low-cost hardware,
scalability, and user-friendly online dashboards. This end-to-end system serves as a solid model for building
comparable platforms in Madurai's rural and urban areas.[15]

METHODOLOGY

The district of Madurai will be separated into rural (villages, agricultural fields, homes that rely on biomass
fuel) and urban (such as the regions close to arterial routes, marketplaces, industrial sectors, and residential
neighbourhoods) zones. To guarantee spatial representation, install 20-30 fixed IoT sensor nodes (10-12 in
urban and rural areas), according to recommendations from: Install [oT sensors on neighbourhood buses and
autorickshaws to track travel routes, fill in data gaps, and dynamically identify pollution hotspots.[16]
For PM1¢/2.5, use inexpensive optical PM sensors (like SDS011 or PMSAQ03) and electrochemical/metal-
oxide sensors (such CO, NO,, SO,, and Os). Utilise ESP32/ESP8266 modules for data collection and
transmission (via GSM, LoRa, or Wi-Fi). Make use of rechargeable batteries and solar panels with energy-saving
sleep-wake cycles. [17] To develop corrective functions, temporarily co-locate three to four sensors of each kind
of pollution with CPCB-grade devices in Madurai. Apply statistical corrections (e.g., multivariate regression)
to local meteorological variables, such as humidity and temperature, reflecting the following methodologies:
To ensure accuracy, recalibrate every two months using the methods outlined. [17]

Log local parameters (timestamp, geolocation, and sensor measurements) and take readings every five to ten
minutes. Wi-Fi is used by fixed nodes, whereas LoRa or GSM are used by rural/mobile units to accommodate
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sporadic network circumstances. Use local buffering to reduce connection loss while routing raw data to a
central cloud server. [18] For data ingestion, set up ThingSpeak or a custom MQTT/Node RED server. Display
alert levels, node health statuses, and real-time AQI distributions using time-series charts and GIS-based maps.
Incorporate threshold-based email and SMS alerts for public health warnings when pollution levels surpass
national guidelines.[19] Determine the trends in urban and rural pollutants, compute hourly and daily
averages, and track weekly and daily cycles. Utilising techniques influenced by Train time-series models (such
as SARIMA or LSTM) with pollutant and meteorological data to anticipate AQI and help proactive policy,
create heatmaps to identify hotspots: To link pollution spikes to possible causes like transportation, agricultural
burning, household fuel, and industry, use multivariate regression or PCA.[20] Utilise sensors installed on cars
or other vehicles to detect microenvironments and monitor changes in pollution levels throughout commuting
routes. To evaluate event-driven exposure, compare readings across time (such as during school hours, festivals,
and harvest burning seasons).
Test sensor-triggered ventilation systems in homes and workplaces to enhance indoor air flow in specific areas
in cooperation with nearby builders. To increase awareness, hold focus groups, provide localized AQI maps to
locals, and send out cell phone notifications. Make recommendations for sensor-based warning systems for
educational institutions and medical facilities, agricultural burn prohibitions during peak times, and traffic
rerouting schedules.

RESULT AND DISCUSSION
Table 1: Locations of [oT Sensor Deployment in Madurai District

|Sensor ID”Area Type”Location Name ||Latitude “Longitude ||Installed Sensors |
501 |[Urban |[Periyar Bus Stand][9.9252° N |[78.1198° E|[PM2.5, PM10, NO,, CO, SO,
1502 |lUrban  ||AnnaNagar  ]9.9343° N |[78.1385° E|[PM2.5, PM10, CO |
503 |[Urban  |[Matruthavani  ][9.9449° N |78.1572° E|[PM2.5, NO,, SO, |
504  |Rural | [110.0833° N|[77.9833° E||PM2.5, PM10, CO |
505 |[Rural  |[Melur 19.9550° N_[78.3364° E||[PM2.5, NO, |
506 |[Rural  ||Alanganallur  ][10.0000° N|[78.0000° E|[PM2.5, PM10, CO, SO, |

In the Madurai district, the installation of Internet of Things (IoT)-based air quality sensors in a few chosen
urban and rural areas provides a calculated method for tracking geographical changes in pollutant
concentration and source attribution. In addition to agriculturally active and residential rural regions like
Vadipatti, Melur, and Alanganallur, the places include high-traffic, commercial, and residential zones in
metropolitan Madurai, such as Periyar Bus Stand, Anna Nagar, and Mattuthavani. A thorough grasp of air
pollution variability is ensured by this geographical distribution, which is essential in areas like Madurai that
have both urbanisation and agricultural activity. Location-specific sources of pollution were taken into
consideration while choosing the sensor combination. For example, NO, and CO sensors, which are mostly
related to combustion and vehicle emissions, are installed in urban centres (S01-S03).[21]Sensors for PM2.5
and SO, are installed at rural locations (S04-S06) to monitor pollution from burning biomass, cooking at
home, and burning agricultural residue .Because of the increased population density and the fluctuating
pollution from industrial, construction, and transportation, metropolitan areas have greater sensor coverage
densities. Even though they are less populated, rural regions are monitored to record pollution from solid fuel
consumption and seasonal agricultural operations, which are sometimes overlooked in conventional
frameworks for monitoring air quality.[22]

Table 2: Average Monthly Concentrations of Air Pollutants (pg/m?3) - in Urban Areas

[Month_][PM2.5 lPMi0 [[No, l[co llso, ﬂ
January |[78 12 44 1.9 182 ﬂ
ﬂFebruaw\H\?O HH104 HV42 \H\l 6 7.5 ﬂ

March Ol 6 8
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[Month_][PM2.5 M0 ][O, llco llso, ﬂ
lApril_][62 197 137 L2 159 ﬂ
May 59 |EX 134 [0 |l5.4 ﬂ

With concentrations of PM2.5, PM10, NO,, CO, and SO, steadily declining from winter to late summer,
Table 2 shows seasonal changes in urban air pollution in the Madurai district from January to May. This
pattern is typical of tropical metropolitan settings, where pollution build up and dispersion are greatly
influenced by meteorological conditions including temperature, wind speed, and air dispersion. Levels of
PM2.5 and PM 10, which peaked in January at 78 pg/m3 and 112 pg/m3, respectively, progressively decrease
to 59 pg/m3 and 91 pg/m? by May. Particularly during the winter, these values above the Indian National
Ambient Air Quality Standards (NAAQS), suggesting low wind movement that traps particles, concentrated
vehicle emissions, and construction dust.[23] The trafficrelated pollutants NO, and CO also exhibit a
significant decrease, going from 44 pg/m?3 and 1.9 mg/m?3 in January to 34 pg/m?3 and 1.0 mg/m?3 in May. This
points to a possible decrease in the intensity of fuel burning or better dispersion brought on by more sunshine
and summertime thermal mixing.[24] SO,, which is often associated with industrial emissions and the burning
of fossil fuels, is still comparatively low but exhibits a similar downward tendency, going from 8.2 pg/m? in
January to 5.4 pg/m? in May. This is in line with seasonal domestic energy consumption, such as a decrease in
the burning of coal and wood during warmer months.

Table 3: Average Monthly Concentrations of Air Pollutants (ug/m?) - in Rural Areas

[Month J[PM2.5 Jfpmi0 |No, l[co llso, ﬂ
Danuary Jli2— Jfes oo | ISt l4.2 ﬂ
[Eebruan][3o — Jleo — Jfis I[1.0 |EE ﬂ
March |6 s [t 0.9 3.7 ﬂ
pril B4 5 s lo8 |EE ﬂ
May Jpo 1 [ Jlo.7 |EXE ﬂ

The Madurai district's rural areas' monthly average concentrations of major air pollutants are shown in Table
3, which also demonstrates a consistent drop in pollutant levels from January to May. Although these trends
are far lower than urban values, they do represent pollution sources unique to rural areas, including home fuel
usage, biomass burning, and agricultural activities. Beginning at 42 ng/m? and 63 pg/m? in January and
dropping to 30 pg/m? and 51 pg/m?3 by May, PM2.5 and PM10 levels are still moderate. Seasonal crop burning,
open cooking with firewood, and uncontrolled dust from rural roads are often associated with these
concentrations. These readings may still be higher than WHO recommendations even if they are lower than
urban statistics, especially for PM2.5, which has a stricter annual mean threshold of 5 pg/m?3. Because there
are fewer cars and less industrial operations, the NO, and CO levels are much lower than in metropolitan
areas. Measurable levels, such as 20 pg/m? of NO; in January, however, draw attention to the continuous use
of kerosene, biomass fuels, and sporadic emissions from tractor/diesel pumps in agricultural operations .Small-
scale businesses and coal usage are often linked to the lowest levels of SO, (4.2 ng/m? in January and 2.9 pg/m?3
in May), suggesting that sulphurbased combustion is not very prevalent in these regions.
A decrease in winter heating practices and better air dispersion brought on by warmer summer temperatures
and more solar radiation are consistent with the seasonal decrease in all pollutants that has been documented.
[25] IoT-based rural air monitoring in Tamil Nadu and found that the usage of biomass fuels was the main
source of particle emissions, also documented this trend. In a similar vein, [26] underlined the need of air
quality policies targeted at rural areas, cautioning that extended exposure to PM and CO in enclosed,
inadequately ventilated dwellings may still provide significant health concerns even with lower absolute levels.

Table 4: Diurnal Variation in PM2.5 Levels (Urban Vs. Rural)
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[Time Slot [[PM2.5 (Urban) I[PM2.5 (Rural) ﬂ
[06:00-09:00 i85 146 |
[09:00-12:00 75 142 |
[12:00-15:00 |65 [EB |
[15:00-18:00 0 140 |
[18:00-21:00 |80 144 |
[21:00-00:00 2 141 |

Table 4 shows the daily fluctuation in PM2.5 concentrations in the Madurai district's urban and rural areas,
emphasising how human activity patterns, transportation emissions, cooking habits, and meteorological
conditions affect the levels of fine particulate matter. Urban Trends: During the morning and evening rush
hours, when traffic emissions are at their maximum, PM2.5 levels in urban areas peak between 6:00 and 9:00
(85 pg/m3) and 18:00 and 21:00 (80 pg/m3).The observed noon fall (65 pg/m? between 12:00 and 15:00) is
probably caused by increased solar radiation and wind speeds, which encourage the dispersion of suspended
particles. Due to lower boundary layer heights that trap pollutants closer to the ground, the evening's slow
increase again points to the start of commercial and transportation activity. Rural Trends: PM2.5 levels in rural
regions likewise exhibit two little peaks, with early morning readings of 46 pg/m?3 and evening readings of 44
pg/m?3. Cooking with biomass fuels and agricultural practices, such as burning stubble and dust from unpaved
roads, are associated with these rises. The lack of industrial and high traffic sources is reflected in the relative
stability and smaller magnitudes when compared to metropolitan regions. These diurnal trends are in line with
research such as that of [27], which discovered that boundary layer dynamics cause PM2.5 concentrations in
Indian cities to peak between morning and evening traffic hours. In a similar vein, [28] found that in Tamil
Nadu's rural districts, cooking time had a direct correlation with both indoor and outdoor PM2.5 levels, which
are further aggravated by inadequate ventilation in the early morning. This trend emphasises how crucial time-
targeted actions are to lowering peak PM exposure, such as limiting the movement of large vehicles during
peak hours in cities and encouraging clean cooking options in communities.

Table 5: Correlation Between Traffic Volume and NO, Concentration (Urban Zones)

HLocation “ “Avg‘ Vehicle Count/Day H HAvg. NO;, Concentration (ug/m?3) H
[Periyar_][48,000 [[44 ﬂ
[Anna Nagar ][36,000 [0 ﬂ
HMattuthavaniH HS 2,000 H H47 H

Pearson Correlation (r) = 0.91 — Strong positive correlation

Traffic volume and NO, concentrations in major Madurai urban areas have a high positive association
(Pearson's r = 0.91), as shown in Table 5. According to the research, nitrogen dioxide, a major pollutant
produced by internal combustion engines, particularly diesel-powered cars, is found in greater concentrations
in locations with a higher vehicle density. With 52,000 cars per day, Mattuthavani has the highest NO, level
(47 pg/m3). Periyar comes in second with 48,000 vehicles per day (44 pg/m?3). With much less traffic (36,000),
Anna Nagar has a lower NO, concentration (39 pg/m?). This connection emphasises how vehicle emissions
directly affect the quality of the air in cities, especially in areas with heavy traffic. NO and NO, (collectively
NQO,) are released when fossil fuels burn. NO is a respiratory irritant and a precursor to the development of
ozone and fine particulate matter (PM2.5). The results are in line with a research by, which found a high
correlation between peak traffic volumes and NO,, levels in Indian metropolitan centres, particularly close to
junctions and bus terminals. Smart traffic rerouting is a possible air quality solution, as shown via loT-based
monitoring that real-time NO, surges correlate with traffic bottlenecks and signal congestion. The strong
correlation value in Madurai indicates that low-emission zones, traffic flow optimisation, and EV promotion
are examples of urban planning strategies that might dramatically lower NO, levels and enhance public health
outcomes.

Table 6: Sources of Air Pollution Identified (Qualitative Survey)
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ﬂSource H HUrban (%) H HRural (%) “
HVehicle Emissions H H46 H HZI H
ﬂlndustrial Emissions H H24 H HS H
ﬂBiomass/ Domestic Fuel Use“ H 12 H H4 1 H
ﬂAgricultural Burning H H5 H HZI H
ﬂConstruction Activities H H 13 H H 12 H

Table 6 presents findings from a qualitative community survey that was carried out throughout Madurai
district's urban and rural areas, indicating the main causes of air pollution that were thought to exist in each
area. The findings emphasise the necessity for location-specific mitigation techniques by clearly illustrating
source-specific disparities between urban and rural contexts. Urban Areas: Due to severe traffic congestion,
especially in areas like Periyar and Mattuthavani, vehicle emissions (46%) were found to be the main cause.
Two-wheelers and diesel-powered public transportation are major contributors to NO, and PM2.5 levels, yet
they are essential to urban mobility. Another major urban issue was industrial emissions (24%), which came
mostly from tanneries, textile processing plants, and small-scale manufacturing facilities in and around Madurai
city. PM 10 pollution is known to be caused by construction operations (13%), which include dust from building
and road construction, particularly in expanding metropolitan areas. Rural Areas: Traditional cooking
methods using firewood, cow dung, and agricultural leftovers are reflected in the primary issue of biomass and
household fuel consumption (41%). This is a recognised cause of indoor air pollution, which
disproportionately impacts women and children. Rural PM2.5 levels are greatly influenced by agricultural
burning (21%), especially post-harvest stubble and field clearing, during certain seasons. It's interesting to note
that building activities (12%) and car emissions (21%), which are also mentioned in rural regions, point to
growing semi-urbanization, the expansion of road infrastructure, and the usage of private vehicles.
These results are consistent with those of, who observed that the use of biomass fuel is a major source of home
air pollution in rural Indian families, often exceeding WHO criteria. In a similar vein, highlighted that, mostly
as a result of inadequate urban planning and inadequate emission management, emissions from construction
and vehicles are increasing more quickly than those from industry in Indian cities. Clean fuel projects (like
LPG, biogas) in rural houses and green mobility solutions (like EVs, public transport electrification) in
metropolitan Madurai are thus crucial components of a distinct pollution management strategy.

Table 7: Effectiveness of Proposed Interventions (Pilot Study Results)

ﬂlntervention Type H HPollutantH HReduction in (%) H
[Smart Ventilation (Indoor Teso|[PM2.5 ]38 ﬂ
[Traffic Diversion Plan NS ﬂ
HAwareness Program (Rural) H HCO H H17 “
[Air Purifier Installation lIPm2.5 ][40 ﬂ

HCrop Burning Alert System H HPMIO H HZS “

The assessed efficacy of five important treatments to reduce air pollution in both urban and rural settings that
were piloted in the Madurai district is shown in Table 7. The findings demonstrate how behaviour-focused,
technology-driven, and targeted approaches may greatly lower exposure to pollutants. As part of this
intervention, loT-based ventilation systems were installed in houses. These systems used sensors to monitor
PM2.5 levels and automatically adjust airflow using window actuators or fans. This device was especially
successful in rural families that burn biomass inside, reducing indoor particle concentrations by over 40%.
Similar results were found by, who observed that smart ventilation improves interior air quality in semi-urban
homes when paired with behaviour modification (leaving windows open after cooking).NO, concentrations
decreased by 22% in high-traffic places like Periyar Bus Stand as a consequence of a dynamic rerouting
technique. During crucial hours, the intervention diverted large cars from busy residential areas and school
hallways. In rural regions, community-based education about the risks of burning biomass and the advantages

520



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 4,2025
https://theaspd.com/index.php

of clean cooking resulted in a little but significant decrease in CO levels. This result confirms the effectiveness
of non-technological approaches. In Bihar villages, organised rural awareness efforts combined with clean fuel
availability decreased CO exposure by as much as 18%, The largest decrease in PM2.5 (40%) was seen with
indoor air purifiers placed in senior care facilities and metropolitan government clinics. This demonstrates
their effectiveness in confined, high-exposure settings, but cost still limits scalability. show comparable drops
in the usage of HEPA-based purifiers in Delhi residences. Prior to expected fire seasons, a basic mobile-based
alarm system was implemented in rural clusters. It provided incentives for sustainable activities, encouraged
mulching, and issued warnings against open flames. This echoed experimental models in Punjab that were
mentioned by lowering PM10 levels by 25% at seasonal peaks. The pilot projects show that a hybrid approach
that combines community involvement (awareness campaigns, notifications) with Internet of Things
technology (smart ventilation, traffic rerouting) may result in significant indoor and outdoor pollution
reductions. Crucially, even inexpensive behavioural adjustments made a significant difference in air quality,
particularly in rural areas.

CONCLUSION

The research emphasises the vital role that smart technologies play in environmental monitoring and public
health protection by examining how current loT-based sensors are used to improve air quality in Madurai
District, which spans both rural and urban areas. Real-time tracking of pollutants including PM2.5, PM10,
NO,, SO,, and CO was made possible by the installation of loT-enabled air quality sensors in specific places.
This provided detailed information that conventional monitoring systems sometimes ignore, especially in semi-
urban and rural areas. Key findings from the sensor data and comparative analysis show that while biomass
burning, domestic fuel use, and seasonal agricultural practices have a major impact on rural areas, vehicle
emissions, industrial output, and construction activities cause higher levels of air pollution in urban areas.
Targeted mitigation measures were made possible by the IoT infrastructure's ability to record the temporal and
diurnal fluctuation in pollutant levels. This data gave crucial insights into the key sources of pollution,
geographic hot spots, and peak exposure hours. The feasibility of low-cost, scalable, and contextspecific
solutions was highlighted by the notable pollutant reductions shown by the pilot interventions tested in both
urban and rural settings, including smart ventilation systems, traffic diversion plans, awareness campaigns, and
crop burning alert mechanisms. Crucially, the research found that the strongest long-lasting effects on
improving air quality come from a combination of technology-driven monitoring, community involvement,
and governmental support. This study concludes that loT-based air quality monitoring is a driver for proactive
environmental stewardship rather than just a diagnostic tool. It facilitates the creation of intelligent, sustainable
cities and villages, empowers local communities, and enables data-driven decision-making. Adopting such
technology and policies will be crucial to creating communities across Tamil Nadu and beyond that are
healthier, more resilient, and ecologically conscious as Madurai continues to urbanise and grow.
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