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Abstract 
Landslides are a significant natural hazard in the Palakkad district of Kerala, India, causing widespread damage to 
life and property. This study aims to develop a landslide susceptibility map (LSM) for the region using the Frequency 
Ratio (FR) and Dempster-Shafer Theory of Evidence (DST) models. A comprehensive landslide inventory map was 
prepared, consisting of 593 landslide locations, which were divided into two subsets: 70% for model training and 30% 
for validation. The analysis incorporated several landslide causative factors including slope, aspect, drainage density, 
rainfall, geology, geomorphology, soil, land use/land cover, curvature, and road network density. These factors were 
integrated into Geographic Information System (GIS) platforms to produce LSMs using both the FR and DST models. 
The model validation was conducted using receiver operating characteristic (ROC) curves. The results demonstrated 
that the FR model achieved an accuracy of 85%, while the DST model exhibited a higher prediction accuracy of 95%. 
This highlights the superior performance of the DST model in predicting landslide prone areas. The finding provides 
valuable insights for disaster management and planning in the Palakkad district. The DST-based LSM, with its high 
predictive capability, can serve as a reliable tool for mitigating landslide risks and guiding sustainable land-use 
planning in the region. 
Keywords- Landslide susceptibility, Frequency Ratio, Dempster-Shafer Theory of Evidence, GIS, Palakkad district 
 
1. INTRODUCTION 
Landslides are catastrophic geohazards that occur due to the interplay of natural and anthropogenic 
factors, causing severe socio-economic and environmental impacts globally. Landslide causative factors 
include topographical parameters (slope, aspect, curvature), geological and geomorphological 
characteristics, hydrological factors (drainage density and rainfall intensity), soil properties and human 
activities (deforestation, mining, and infrastructure development) (Guzzetti et al., 2005). The intricate 
interaction of these factors underlies the complexity of landslide susceptibility assessments. 
India is one of the most affected countries by landslides with Himalayas and the Western Ghats 
experiencing high frequencies due to their unique topographical and climatic conditions. In the 
Himalayas, active tectonics, steep slopes and high precipitation contribute to significant landslide activity 
(Dai et al., 2002). In Western Ghats a UNESCO World Heritage site, heavy monsoonal rainfall, fragile 
lateritic soils and deforestation are primary contributors (Aleotti & Chowdhury, 1999). The monsoon 
season (June–September) is particularly critical, with rainfall-induced landslides causing widespread 
disruptions annually.The Palakkad district, located within the Western Ghats, is highly susceptible to 
landslides due to its rugged terrain, high rainfall and unregulated anthropogenic activities (Sarkar et al., 
2012). Past landslide events in the region have resulted in considerable loss of life, destruction of property 
and long-term impacts on local livelihoods (Chen et al., 2017). To mitigate these risks, it is essential to 
develop an accurate landslide susceptibility maps (LSMs). 
 Remote Sensing (RS) and Geographic Information Systems (GIS) have emerged as critical tools in 
landslide investigations. RS provides high-resolution and multi-temporal data essential for identifying 
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landslide-prone areas, while GIS enables the integration and spatial analysis of diverse datasets (Pradhan, 
2010; Westen et al., 2008). By combining these technologies, comprehensive landslide susceptibility map 
can be created to support disaster risk management. This study employs two widely recognized modeling 
approaches for landslide susceptibility mapping: the Frequency Ratio (FR) and Dempster-Shafer Theory 
of Evidence (DST). The frequency ratio model evaluates the correlation between landslide occurrences 
and causative factors by calculating statistical likelihoods (Pourghasemi et al., 2012). Dempster-Shafer 
Theory of Evidence, a probabilistic framework, integrates multiple sources of evidence to estimate the 
likelihood of landslides, offering a more robust prediction mechanism (Chen et al., 2017).Model 
performance is validated using the Area Under the Curve (AUC) of Receiver Operating Characteristic 
(ROC) curves. The AUC-ROC method quantitatively evaluates the model accuracy in predicting 
landslide-prone areas, enabling a comparative assessment of FR and DST (Lee & Talib, 2005). This 
investigation work aims to enhance the understanding of landslide susceptibility in the Palakkad district 
by leveraging advanced geospatial tools and statistical models. The findings will contribute to sustainable 
land-use planning and disaster risk reduction strategies, addressing the challenges posed by landslides in 
the vulnerable region. 
 
2. STUDY AREA  
Palakkad District, located in the central part of Kerala, India, spans an area of approximately 4,480 km² 
and is home to a population exceeding 2.8 million (Fig.1) (Shibu & Nair, 2016). Geographically, the 
district is situated between the Western Ghats and Tamil Nadu, with topographical variations ranging 
from steep hills and valleys in the west to gentler plains in the east (Sreekumar et al., 2017). The region 
experiences a tropical monsoon climate, receiving heavy rainfall from June to September, which 
significantly contributes to landslide vulnerability, especially in the hilly areas (Nair & Srinivasan, 2020). 
Major landslide prone zones in the district include the Nelliampathy Hills, Attappady and other regions 
along the Western Ghats, where steep slopes and heavy monsoonal rains are common triggers (Menon et 
al., 2018). 

Fig.1 Study Area (Palakkad district, Kerela) 
Geologically, Palakkad is underlain by precambrian rocks such as granite, gneiss, and schist, which are 
susceptible to weathering and erosion, thereby heightening the risk of landslides (Sreekumar et al., 2017). 
These geological characteristics, combined with heavy rainfall and hydrological factors, create conditions 
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conducive to frequent slope failures during the monsoon season (Thomas et al., 2015). The Western 
Ghats play a pivotal role in shaping the district's climate and hydrological dynamics, further influencing 
landslide occurrences (Menon et al., 2018). In particular, poorly consolidated soils and fractured bedrock 
in the region make slopes prone to instability under intense precipitation (Paul & Mathew, 
2019).Anthropogenic activities such as urbanization, deforestation and infrastructure development have 
exacerbated the landslide risk in Palakkad. The construction of roads, agricultural expansion and 
deforestation in steep terrains has altered natural drainage patterns and destabilizes the slopes (Vinod & 
Shetty, 2021). These changes, coupled with increased soil erosion and surface runoff, have intensified 
landslide susceptibility in the district (Gupta & Rajagopal, 2019). Consequently, the preparation of a 
detailed landslide susceptibility map for Palakkad is critical in disaster risk reduction, informed land-use 
planning, and implementing effective mitigation strategies (Shibu & Nair, 2016). Figure 2 shows the 
schematic representation of proposed Landslide Susceptibility Mapping for Palakkad district. 
 
3. DATA USED FOR THEMATIC MAP PREPARATION 
Satellite imagery and DEM data play crucial roles in geospatial analysis for assessing slope stability and 
erosion potential. Landsat 8 satellite imagery, sourced from Earth Explorer, offers a 30-meter resolution, 
balancing spatial coverage and detail for regional studies. This imagery provides critical land-use and land-
cover information, including vegetation, built-up areas and bare land. Complementing this, the SRTM 
DEM with a 30-meter resolution is pivotal for terrain analysis, offering detailed attributes such as slope, 
aspect, curvature and drainage density. These parameters are instrumental in evaluating terrain stability 
and the susceptibility of regions to landslides. Rainfall data from Nasa Power spans a decade (2012–2022), 
with temporal resolution enabling the identification of trends and anomalies linked to landslides. Soil 
data from the Food and Agricultural Organization (FAO) Soils Portal highlights the texture and 
composition, necessary for evaluating slope stability under heavy rainfall. Road data from BBBike Extract 
quantifies the influence of infrastructure on natural slopes, with proximity intervals of 100m, 150m, and 
200m. Geological data from BhuKosh provides insights into lithology, geomorphology and structural 
features, enhancing understanding of terrain mechanics and rock type differentiation through RGB-
coded litho units. Together, these datasets offer a comprehensive foundation for landslide risk assessment 
and terrain stability studies. 

 
Fig.2. Schematic representation of proposed LSM 
3.1. Landslide inventory map 
The landslide inventory is a database of past landslide events in the study area. It includes spatial locations 
of historical landslides. This data is critical for training and testing the susceptibility models as it explains 
the relationship between environmental factors and landslide occurrences. The landslide locations were 
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collected from government records and satellite images. A total of 848 landslides were identified for the 
study area. Seventy percentage (593) of the landslides are selected for training the models and thirty 
percentage (255) of the landslides are used for validation. 
 
4. Thematic map preparation 
To predict the landslide susceptibility areas different causative factors were selected after carefully 
analyzing the study area. The factors selected for predictive analysis of landslide susceptibility for the 
Palakkad district are slope, aspect, drainage density, rainfall, geology, geomorphology, soil, land use/land 
cover, curvature and road network density. Thematic maps were prepared for the landslide causative 
factors. Figure 3 shows the thematic maps for the respective landslide conditioning factors. 
4.1. Slope: Slope map depicts the steepness of terrain, which directly influences gravitational forces acting 
on slopes, making steeper areas more susceptible to landslides (Ayalew et al., 2004). The slope was mapped 
using DEM data using the surface tool in spatial analysis. Slope map is classified as Very gentle (0 - 3 %), 
Gentle (3 - 8 %), Moderate (8 - 18 %), Moderately steep (18 - 30%), Steep (30 - 50%), Very steep > (50 %) 
and it is vital for identifying high-risk zones. 
4.2. Aspect: Aspect map shows the slope direction, sunlight exposure, vegetation growth and soil 
moisture, all of which affects slope stability (Regmi et al., 2014). Aspect map was prepared by setting the 
DEM as an input to surface tool in spatial analysis in ArcGIS. The classes present in aspect are flat, north, 
northeast, east, southeast, south, southwest, west, northwest. Soil moisture and sunlight exposure 
influences the vegetation growth which affects the slope stability by its root network. Thus aspect is critical 
in understanding the localized landslide susceptibility. 
4.3. Drainage Density: Drainage density map measures the sum of the channel lengths per unit area, 
indicating water flow and erosion potential. Streams are derived by giving DEM as input to flow direction 
and flow accumulation tool. Then hydrology tool in spatial analysis is used to get the drainage lines. The 
line density tool is used to create the drainage density map. The drainage density is classified using natural 
break in to three classes as low, medium and high. High drainage density increases the slope saturation 
and soil erosion and thereby increases the landslide risk (Gokceoglu & Aksoy, 1996). 
4.4. Rainfall: Rainfall map identifies regions with high precipitation, which act as a triggering factor for 
landslides (Crozier, 2010). The rainfall data is collected from the 10 rain gauge stations (Parambikulam, 
Kollengode, Alathur, Erimayur, Chittur, Palakkad, Ottapalam, Pattambi, Thrithala, Mannarkad). The 
rainfall data was given as input and Inverse Distance Weighted method is used to interpret the data to 
generate rainfall map. Rainfall map is classified into 3 classes as low (1600-2030 mm), medium (2031-
2300 mm) and high (2301-2800 mm). 
4.5. Geology: Geological map provides information on lithology and structural features, highlighting 
zones with weak or fractured rock formations prone to failure (Soeters & van Westen, 1996).  Geology 
map was directly obtained from the BhuKosh. The geology of the area is classified as Satyamangalam gp., 
Peninsular gneissic complex-I, Migmatite gneissic complex (southern granulite terrain), Charnockite 
gneissic complex (southern granulite terrain), Khondalite gneissic complex (southern granulite terrain), 
Acid  intrusive / granite / granodiorite, Undiff.fluvial / aeolian / coasta & glacial  sediments. 
4.6. Geomorphology: Geomorphology map categorizes landforms and surface processes, emphasizing 
zones of active erosion or deposition, which influence landslide dynamics. The map was obtained from 
the BhuKosh. BhuKosh is the gateway for all the geo-scientific data of geological survey of India. The 
geomorphology classes present in the study area are Highly Dissected Denudational Hills and Valleys, 
River, Highly Dissected Structural Hills and Valleys, Pediment Pediplain Complex, Active Flood Plain, 
Moderately Dissected Structural Hills and Valleys, Dam and Reservoir, Active Quarry, Pond, Moderately 
Dissected Denudational Hills and Valleys, Low Dissected Structural Hills and Valleys, Water bodies, 
unclassified and Abandoned Quarry 
4.7. Soil: Soil map gives the soil type, which helps to understand the soil texture, permeability and 
cohesion, vital for determining slope stability under various loading conditions. Loose soils with poor 
drainage are particularly landslide-prone (Sidle & Ochiai, 2006). Soil map was prepared using soil data 
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from the BhuKosh. The soil map was classified based on FAO soil code as Ap21-2b (Sandy clay loam), 
Nd48-2/3b (Clay loam), Ah11-2c (Loam), I-Nd-c (Loam), Nd49-2bc (Loam) and Nd2-2b (Loam). 
4.8. Land Use/Land Cover (LULC): LULC map depicts vegetation cover, built-up areas and bare lands, 
which influence runoff, erosion, and slope stability. Changes in LULC often escalate landslide 
susceptibility (Glade, 2003). Classified landuse map was derived from the landsat8 earthexplorer. Water, 
forest, flooded vegetation, crops, built area, bare ground and range land are the classes present in land 
use / land cover in the study area. 

 
Fig.3. Landslide conditioning factors: A-slope, B-aspect, C-drainage density, D-rainfall, E-geology, F-
geomorphology, G-soil, H-LULC, I-lineament density, J-curvature, K-proximity to road 
4.9. Lineament density: Lineament density is the density of the linear geological structures that are 
expressions of underlying geological structures such as faults and fractures, present in each area. 
Lineament shape file was derived by interpreting the faults, fractures and the linear features across the 
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region. Lineament was given as input to line density tool to generate the lineament density map and 
classified as low, medium and high.  
4.10. Curvature: Curvature map is a texture that stores the convexity/concavity of the mesh, which 
affecting water accumulation and soil movement. Concave slopes favor water retention, increasing 
saturation and instability (Meunier et al., 2008). The curvature map was generated from DEM and 
classified as flat, concave and convex. 
4.11. Road Network: Road plays a major role in landslide susceptibility since the road alters the natural 
slopes, leading to destabilization (Loye et al., 2009). The construction activities carried out towards road 
formation like cutting and drilling weakens the bed rock and the soil above making it more susceptible 
to landslides. The road map obtained from the bbbike extract. It was buffered with 100, 150 and 200m 
interval to study the impact of roads on landslides. 
 
5. METHODS 
5.1. Frequency Ratio (FR) 
The Frequency Ratio (FR) model is a widely used statistical technique for landslide susceptibility 
mapping, primarily due to its simplicity and effectiveness in assessing the relationship between landslide 
occurrence and various influencing factors. The method involves calculating the ratio of the frequency of 
landslides in specific class of a factors (e.g., slope angle, soil type, land use) to the frequency of those class 
in the entire area. 
The Frequency Ratio for each factor class (i) is computed as:  

FRi = (Ai / A) ÷ (Bi / B) ----------- (1) 
Where: 

• Ai is the number of landslides within the i-th factor class.  
• A  is the total number of landslides. 
• Bi is the number of pixels within the i-th factor class in the entire study area. 
• B is the total number of pixels in the entire study area. 

 
The resulting frequency ratio for each class indicates the relative likelihood of landslides 

occurring under specific class. A higher frequency ratio signifies a higher likelihood of landslides 
occurring in that class, while a lower ratio indicates lower susceptibility to landslides. 
5.2. Dempster-Shafer Theory of Evidence (DST) 
The Dempster-Shafer Theory of Evidence (DST) is a mathematical framework for reasoning with 
uncertainty, applied in landslide susceptibility mapping to integrate multiple sources of evidence and 
handle incomplete or conflicting data (Dempster, A. P. 1967). DST allows the combination of 
information from various factors (e.g., slope, rainfall, soil type) to quantify the belief in the likelihood of 
landslide occurrence, considering the inherent uncertainty. Unlike traditional probability theory, DST 
assigns belief to evidence without requiring strict assumptions of independence, making it more flexible 
in modeling complex, uncertain geospatial data.In DST, evidence is represented by a basic probability 
assignment (BPA), which quantifies the degree of belief that a particular factor contributes to a landslide 
event. Each factor class (e.g., a specific slope range or land cover type) is assigned a BPA that reflects the 
degree of certainty in its association with landslides. The belief (Bel), disbelief (Dis), uncertainty (Unc) 
and plausibility (Pls) functions are central to DST and are computed as follows: 

• Belief (Bel): The belief function quantifies the support that the evidence provides to a specific 
hypothesis, calculated as the sum of BPAs over subsets of the hypothesis. The formula for belief 
is: 

Bel(A) = ∑(B ⊆ A) m(B) ----------- (2) 
 

where m(B) is the basic probability assignment for subset B of hypothesis A. 
• Disbelief (Dis): The disbelief function quantifies the support against a hypothesis, calculated as 

the sum of BPAs for all subsets that do not support A. The formula for disbelief is: 
Dis(A) = ∑(B ∩ A = ∅) m(B) ----------- (3) 
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• Uncertainty (Unc): The uncertainty function represents the degree to which no definitive belief 

can be made about a hypothesis, calculated as the total BPA that is not assigned to any specific 
hypothesis: 

Unc(A) = 1 - Bel(A) - Dis(A) ----------- (4) 
 

• Furthermore, Plausibility (Pls) is a measure of the potential that a hypothesis could be true, 
defined as the complement of disbelief: 

Pls(A) = 1 - Dis(A) ----------- (5) 
DST is particularly advantageous in mapping the landslide susceptibility mapping because it can 

integrate different factor layers, such as slope, rainfall, soil properties, and geological factors each 
contributing different levels of certainty about landslide occurrence.  
Table.1. Spatial association of each conditioning factor and landslide by FR and DST co-efficient. 

Factors Classes 
No. of 
Landslid
e  

Class 
pixels 

FR 
ratio 

Bel Dis Unc Pls 

Slope 

0 - 3 % (Very 
gentle) 

17 2156458 
0.063
6 

0.004
0 

0.226
6 

0.769
4 

0.773
4 

3 - 8 % (Gentle) 27 1162098 
0.187
5 

0.011
8 

0.196
3 

0.791
9 

0.803
7 

8 - 18 % 
(Moderate) 

93 634660 
1.182
8 

0.074
4 

0.163
2 

0.762
4 

0.836
8 

18 - 30%  
(Moderately 
steep) 

194 517632 
3.025
1 

0.190
5 

0.128
5 

0.681
0 

0.871
5 

30 - 50% (Steep) 241 277052 
7.021
2 

0.442
3 

0.110
5 

0.447
3 

0.889
5 

> 50 % (Very 
steep) 

21 38528 
4.399
5 

0.277
0 

0.175
0 

0.548
0 

0.825
0 

Aspect 

Flat (0˚) 62 529565 
0.945
0 

0.095
9 

0.100
1 

0.804
0 

0.899
9 

North (0–22.5 ̊ ) 46 396384 
0.936
7 

0.095
1 

0.101
6 

0.803
4 

0.898
4 

North-east (22.5-
67.5 ˚) 

39 397708 
0.791
5 

0.080
3 

0.102
9 

0.816
8 

0.897
1 

East (67.5–112.5 
˚) 

47 466126 
0.813
9 

0.082
6 

0.102
2 

0.815
2 

0.897
8 

South-east 
(112.5–157.5 ˚) 

92 537068 
1.382
7 

0.140
3 

0.094
5 

0.765
2 

0.905
5 

 South (157.5–
202.5 ˚) 

89 591165 
1.215
2 

0.123
3 

0.095
6 

0.781
0 

0.904
4 

South-west 
(202.5–247.5 ˚) 

46 499983 
0.742
6 

0.075
4 

0.102
7 

0.821
9 

0.897
3 

West (247.5–
292.5˚) 

45 420938 
0.862
9 

0.087
6 

0.102
0 

0.810
4 

0.898
0 

North-west 
(292.5–337.5 ˚) 

61 465984 
1.056
6 

0.107
2 

0.099
6 

0.793
2 

0.900
4 

North (337.5–
360 ˚) 

66 481507 
1.106
4 

0.112
3 

0.098
8 

0.788
9 

0.901
2 

Drainage 
density 

Low 297 8970 
1.592
8 

0.541
1 

0.246
5 

0.212
4 

0.753
5 
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Medium 245 10818 
1.089
4 

0.366
1 

0.302
0 

0.331
9 

0.698
0 

High 51 8738 
0.280
8 

0.092
8 

0.451
5 

0.455
7 

0.548
5 

Rainfall  

Low 201 10094 
1.011
6 

0.411
4 

0.341
0 

0.247
6 

0.659
0 

Medium 373 17322 
1.093
9 

0.445
6 

0.223
4 

0.331
0 

0.776
6 

High 19 2709 
0.356
3 

0.143
0 

0.435
5 

0.421
4 

0.564
5 

Geology 

Satyamangalam 
gp. 

4 341 
0.598
4 

0.051
4 

0.157
1 

0.791
6 

0.842
9 

Peninsular 
gneissic 
complex-i 

5 1021 
0.249
8 

0.021
3 

0.158
7 

0.820
1 

0.841
3 

Migmatite 
gneissic complex 
(southern 
granulite terrain) 

247 15388 
0.818
9 

0.070
6 

0.123
2 

0.806
2 

0.876
8 

Charnockite 
gneissic complex 
(southern 
granulite terrain) 

325 12029 
1.378
3 

0.120
1 

0.088
5 

0.791
3 

0.911
5 

Khondalite 
gneissic complex 
(southern 
granulite terrain) 

8 56 
7.287
9 

0.721
1 

0.155
3 

0.123
6 

0.844
7 

Acid  intrusive / 
granite / 
granodiorite 

4 1122 
0.181
9 

0.015
5 

0.159
2 

0.825
3 

0.840
8 

Undiff.fluvial / 
aeolian / coasta 
& glacial  
sediments 

0 295 
0.000
0 

0.000
0 

0.158
0 

0.842
0 

0.842
0 

Geomorpholo
gy 

Highly Dissected 
Denudational 
Hiils and Valleys 

158 1598 
5.044
1 

0.384
4 

0.059
9 

0.555
7 

0.940
1 

River 1 256 
0.199
3 

0.013
7 

0.079
9 

0.906
4 

0.920
1 

Highly Dissected 
Structural Hills 
and Valleys 

112 5491 
1.040
6 

0.072
9 

0.071
1 

0.856
0 

0.928
9 

Pediment 
Pediplain 
Complex 

35 17150 
0.104
1 

0.007
2 

0.105
4 

0.887
4 

0.894
6 

Active Flood 
Plain 

0 426 
0.000
0 

0.000
0 

0.080
3 

0.919
7 

0.919
7 

Moderately 
Dissected 
Structural Hills 
and Valleys 

268 4401 
3.106
6 

0.227
1 

0.046
9 

0.725
9 

0.953
1 
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Dam and 
Reservoir 

1 391 
0.130
5 

0.009
0 

0.080
1 

0.910
9 

0.919
9 

Active Quarry 0 21 
0.000
0 

0.000
0 

0.079
7 

0.920
3 

0.920
3 

Pond 0 6 
0.000
0 

0.000
0 

0.079
7 

0.920
3 

0.920
3 

Moderately 
Dissected 
Denudational 
Hills and Valleys 

3 72 
2.125
6 

0.152
3 

0.079
4 

0.768
3 

0.920
6 

Low Dissected 
Structural Hills 
and Valleys 

15 409 
1.871
0 

0.133
4 

0.078
2 

0.788
4 

0.921
8 

Waterbodies – 
unclassified 

0 26 
0.000
0 

0.000
0 

0.079
7 

0.920
3 

0.920
3 

Abandoned 
Quarry 

0 5 
0.000
0 

0.000
0 

0.079
7 

0.920
3 

0.920
3 

Soil 

Ap21-2b (Sandy 
clay loam) 

425 10008 
2.109
9 

0.331
4 

0.062
7 

0.605
9 

0.937
3 

Nd48-2/3b 
(Clay loam) 

41 6757 
0.301
5 

0.045
6 

0.194
5 

0.759
9 

0.805
5 

Ah11-2c (Loam) 11 617 
0.885
8 

0.135
6 

0.183
2 

0.681
2 

0.816
8 

I-Nd-c (Loam) 4 1579 
0.125
9 

0.019
0 

0.188
6 

0.792
5 

0.811
4 

Nd49-2bc 
(Loam) 

90 1585 
2.821
2 

0.449
9 

0.160
8 

0.389
3 

0.839
2 

Nd2-2b (Loam) 22 8917 
0.122
6 

0.018
5 

0.210
2 

0.771
3 

0.789
8 

Landuse/ 
Landcover 

Water 0 744278 
0.000
0 

0.000
0 

0.137
4 

0.862
6 

0.862
6 

Trees 433 
2382410
9 

1.373
8 

0.331
1 

0.050
1 

0.618
9 

0.949
9 

Flooded 
vegetation 

0 3822 
0.000
0 

0.000
0 

0.136
3 

0.863
7 

0.863
7 

Crops 2 7531494 
0.020
1 

0.004
8 

0.148
3 

0.846
9 

0.851
7 

Built area 16 8598567 
0.140
7 

0.033
9 

0.146
7 

0.819
4 

0.853
3 

Bare ground 0 17356 
0.000
0 

0.000
0 

0.136
3 

0.863
7 

0.863
7 

Clouds 0 205 
0.000
0 

0.000
0 

0.136
3 

0.863
7 

0.863
7 

Range land 142 4104408 
2.615
1 

0.630
2 

0.108
6 

0.261
2 

0.891
4 

Lineament 
density 

Low 358 14550 
1.183
0 

0.500
8 

0.227
1 

0.272
1 

0.772
9 

Medium 222 10764 
0.991
6 

0.418
1 

0.329
6 

0.252
3 

0.670
4 
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High 13 3197 
0.195
5 

0.081
1 

0.443
3 

0.475
6 

0.556
7 

Curvature 

Concave  185 984054 
1.522
6 

0.357
1 

0.250
2 

0.392
7 

0.749
8 

Flat 210 3086249 
0.551
1 

0.129
2 

0.522
6 

0.348
2 

0.477
4 

Convex 198 732293 
2.189
8 

0.513
7 

0.227
2 

0.259
1 

0.772
8 

Road 

100m 61 12389 
2.448
2 

0.716
8 

0.166
7 

0.116
5 

0.833
3 

150m 19 15933 
0.592
9 

0.173
0 

0.396
4 

0.430
6 

0.603
6 

200m 14 18417 
0.378
0 

0.110
2 

0.436
9 

0.452
9 

0.563
1 

6.3. AUC-ROC Validation 
The Area under the Receiver Operating Characteristic Curve (AUC-ROC) is a widely used 

method for validating landslide susceptibility models. In ArcGIS, the AUC-ROC is applied to evaluate 
the predictive accuracy of susceptibility maps by comparing predicted landslide probabilities to actual 
landslide occurrences. The ROC curve plots true positive rate (sensitivity) against the false positive rate 
(1-specificity) at various threshold settings. The AUC value quantifies the overall performance of the 
model, with a higher value (close to 1) indicating better predictive capability, while a value close to 0.5 
suggests a model with no discriminatory power. The AUC-ROC approach is particularly useful for 
assessing the effectiveness of landslide susceptibility models, as it provides an objective measure of model 
performance, independent of specific classification thresholds.  

 
7. RESULTS AND DISCUSSION 
7.1. Landslide susceptibility model analysis for FR and DST 
The FR model establishes a relationship between landslide occurrences and associated causative factors. 
Each factor is categorized into distinct classes and for each classes, the number of landslide pixels, total 
class pixels and the resulting frequency ratio (FR) are calculated. The FR value quantifies the likelihood 
of landslide occurrence relative to the spatial distribution of those specific factor classes, where values 
greater than 1 indicate a higher susceptibility. Figure 5 shows the landslide susceptibility map using FR 
model. The integration of the Dempster-Shafer Theory of Evidence (DST) with the Frequency Ratio (FR) 
model provides a probabilistic framework to evaluate landslide susceptibility by incorporating uncertainty 
and evidence-based reasoning. 
 DST allows mapping the degree of belief, disbelief, plausibility, and uncertainty for each factor class, 
complementing the deterministic nature of the FR model. Belief represents the minimum degree of 
support or confidence for a specific factor class contributing to landslide susceptibility. Disbelief 
quantifies the degree to which evidence contradicts a class's contribution to landslide susceptibility. 
Plausibility represents the upper limit of belief, accounting for uncertainty. It combines the degree of 
belief and uncommitted evidence, providing a broader range for decision-making. Uncertainty captures 
the lack of conclusive evidence, balancing belief and disbelief. This hybrid method enables a more robust 
and comprehensive evaluation of landslide susceptibility. Figure 6 shows the landslide susceptibility maps 
using DST model. This detailed assessment of spatial relationships between landslides and causative 
factors provides a robust foundation for landslide susceptibility mapping, enabling researchers and 
policymakers to prioritize high-risk areas for preventive measures and sustainable land-use planning.  
7.1.1. Slope: Steep slopes (30–50%) show the highest landslide frequency, with 241 landslide pixels and 
an FR of 7.0212, followed by moderately steep slopes (18–30%) with 194 landslide pixels (FR 3.0251). 
Very gentle slopes (0–3%) have the lowest landslide occurrences (17 pixels, FR 0.0636), making them the 
most stable. DST confirms this trend, with steep slopes showing high belief (0.4423) and plausibility 
(0.8895), while gentle slopes have negligible belief (0.0040). FR assigns higher weights to slope classes 
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with more observed landslides where DST considers that steep slopes may not always trigger landslides if 
vegetation or rock type resists failure. It assigns partial belief to multiple slope classes and integrates other 
evidence like geology and land use.  
7.1.2. Aspect: The southeast-facing slopes (112.5–157.5°) have the highest landslide occurrence, with 92 
out of 593 landslides and FR of 1.3827, highlighting their susceptibility to landslide. The south-facing 
slopes (157.5–202.5°) follow closely with 89 landslides (FR 1.2152). Conversely, flat terrain exhibits the 
lowest susceptibility, with only 62 landslides (FR 0.79). DST analysis confirms that southeast-facing slopes 
have the highest plausibility (0.9055), while flat areas exhibit significant uncertainty (0.8040). FR only 
considers the direction that historically had more landslides but DST accounts for uncertainty due to 
variable sun exposure, wind and moisture on different slopes, especially when orientation effects vary 
seasonally or topographically. 
7.1.3. Drainage Density: In contrast, to the other works in the literature low drainage density areas 
dominates landslide occurrences with 297 landslides and an FR of 1.5928, indicating that the drainage 
density does not contribute to landslides in this study area. Medium-density areas have 245 landslides (FR 
1.0894). High-density regions contribute only 51 landslides (FR 0.2808). DST analysis also presents the 
similar results, with low-density regions showing the highest belief (0.5411), while high-density areas have 
a high disbelief (0.4515) and uncertainty (0.4557). DST recognizes that drainage effects are nonlinear and 
location dependent. i.e., high drainage density in rocky terrain might be less dangerous than weathered 
soil.  
7.1.4. Rainfall: Medium rainfall zones (2031 -2300 mm) account for the most landslide pixels (373) with 
an FR of 1.0939, followed by low rainfall areas (201 landslide pixels, FR 1.0116). Even though it is 
categorized as Low rainfall class it receives an average annual rainfall between 1600 – 2300 mm. 
surprisingly, high rainfall areas show only 19 landslide pixels (FR 0.3563), indicating other stabilizing 
factors like vegetation or drainage. DST analysis aligns with this, showing medium rainfall zones with the 
highest plausibility (0.7766) and high rainfall areas with high uncertainty (0.4214). DST handles missing 
or inconsistent rainfall values and still contributes plausible risk to certain areas without over committing 
to unreliable data. 
7.1.5. Geology: The Khondalite Gneissic Complex is the most susceptible, with 325 landslide pixels and 
an FR of 7.2879. The Migmatite and Charnockite Gneissic Complexes have moderate FR values (0.8189 
and 1.3783 respectively), while the Satyamangalam Group and Peninsular Gneissic Complex-I exhibit 
low susceptibility with FR 0.5984 and 0.2498, respectively. DST results indicate Khondalite Gneissic 
Complex has the highest belief (0.7211), while acid intrusive formations have low belief (0.0155) and 
high disbelief (0.1592).  
7.1.6. Geomorphology: Highly dissected denudational hills and valleys show the highest landslide 
occurrences (158 landslides and FR 5.0441), while moderately dissected structural hills and valleys have 
268 landslides (FR 3.1066). Lowland flood plains and river corridors exhibit minimal susceptibility, with 
very low or zero FR values. DST analysis shows high belief for dissected hills and valleys, reinforcing their 
landslide vulnerability. FR uses categorical class frequency but DST assigns partial belief to units where 
terrain transitions occur and integrate with other evidence for refined susceptibility. 
7.1.7. Soil: The sandy clay loam class of soil has the highest landslide occurrence (425 pixels, FR 2.1099), 
followed by loam with 2.8212 FR. Sandy clay loam is more susceptible to landslide because the sand 
content makes it is less cohesive and the clay content tends to hold more water and increase the weight 
of the soil. Other soil types such as Nd48-2/3b (clay loam) and Ah11-2c (loam) have lower FR values, 
making them relatively more stable. DST analysis confirms that sandy clay loam has a high belief value, 
suggesting its susceptibility to failure under adverse conditions.  
7.1.8. Land Use/ Land cover: Forest areas have the highest landslide occurrence (433 landslides, FR 
1.3738). The forest area is usually less prone to landslides due to their strong root network system but in 
this study area majority of the landslides are present in the forest region mainly due to the reason that 
the entire forest region falls under the moderately steep and steep region. Next to forest range land has 
the highest landslides (142 landslides). The built-up areas contribute minimal landslides (FR 0.1407). In 
DST model the range land has the highest belief value of 0.6302 followed by forest areas. The range lands 
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are mainly covered by grass which has a weaker root system and make the soil more susceptible to erosion 
and thereby susceptible to landslides.  
7.1.9. Lineament Density: Low lineament density regions have the highest landslide occurrences (358 
landslide pixels, FR 1.1830), while medium density follows with 222 landslide pixels (FR 0.9916). High-
density areas have the least landslides (FR 0.1955), implying that high structural discontinuity may not 
necessarily correlate with instability. DST results align with this, showing low-density regions with higher 
belief values. DST captures the indirect role of fractures and fault systems more realistically by combining 
lineament data with slope, geology, and drainage information using belief modeling. 
7.1.10. Curvature: Convex regions exhibit the highest landslide susceptibility (198 landslides, FR 
2.1898), while concave regions have a moderate landslide frequency (185 landslides, FR 1.5226). Flat 
areas dominate in terms of spatial coverage but have a lower landslide frequency (210 pixels, FR 0.5511). 
DST analysis reinforces this, with convex surfaces showing higher belief values. Surface curvature often 
has context-dependent effects i.e., concave in clay-rich soils is more dangerous than in rocky slopes. DST 
accounts for such interaction effects by integrating multiple evidence sources. 
7.1.11. Proximity to Roads: Areas within 100m of roads have the highest landslide occurrences (94 
landslides, FR 2.4482), while susceptibility decreases with distance 150m (FR 0.5929) and 200m (FR 
0.3780). This suggests human-induced disturbances play a significant role in slope destabilization. DST 
confirms this trend, showing higher belief values near roads and reduced influence further away. It models 
the indirect effects of roads (e.g., water seepage, vibration, slope cutting) by combining with slope, 
drainage, and soil data offering a more realistic susceptibility assessment. 

 
Fig.5. Landslide susceptibility map using FR model 
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Fig.6. Landslide Susceptibility maps using DST model: A-belief, B-disbelief, C-uncertainty, and D-
plausibility 

The landslide susceptibility in Palakkad District is categorized into five levels: Very Low, Low, 
Moderate, High, and Very High, using both Frequency Ratio and Dempster-Shafer Theory of Evidence. 
The Frequency Ratio indicates the total area (in km²) under each susceptibility level, with the largest areas 
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classified as Low (1357 km²) and Very Low (1338 km²), while the Very High susceptibility zone covers 
only 315 km². 732 numbers of settlements were mapped in the base map. In landslide susceptibility map 
from frequency ratio method out of 732 settlements 14 settlements fall under moderate susceptibility 
class and 3 settlements fall under high susceptibility class. No settlement was found in very high 
susceptibility class. 

Belief values represent areas with strong evidence supporting the classification, showing that 
Moderate (1020 km²) and High (961 km²) susceptibility zones have higher certainty compared to Very 
High (681 km²). Conversely, Disbelief values highlight areas where classification is uncertain or 
contradictory, with High (1400 km²) and Moderate (1170 km²) zones having significant disagreement. 
The Uncertainty metric shows the extent of ambiguity in classification, with Moderate (1599 km²) and 
High (1305 km²) areas having the highest uncertainty, indicating the need for further validation. Lastly, 
Plausibility reflects the possible extent of each susceptibility level, with the Moderate category having the 
highest plausible extent (1599 km²), whereas the Very High category remains the lowest at 249 km². These 
variations suggest that while certain areas have strong classification confidence, others require further 
investigation for precise risk assessment. In this model, out of 732 settlements 186 settlements fall under 
moderate susceptibility class, 16 settlements fall under high susceptibility class and 2 settlements 
(Nelliyampathy and  Nooradipalam) fall under very high susceptibility class.  
7.2. Validation of Landslide Susceptibility Mapping 
The accuracy assessment of landslide susceptibility mapping was conducted using the Area Under the 
Curve (AUC) method. Figure 7 represents the landslide susceptibility map using Frequency Ratio (FR) 
model, which achieved an AUC value of 85%, indicating a relatively high predictive capability for 
landslide-prone areas. This suggests that the FR model effectively captures the relationship between 
conditioning factors and landslide occurrences, making it a reliable approach for susceptibility mapping.  
The Dempster-Shafer (DS) model provided a more comprehensive probabilistic assessment of landslide 
susceptibility (Figure 8). The landslide susceptibility map using belief value showed an accuracy of 95%, 
reflecting strong confidence in the model’s ability to predict landslide-prone areas. The disbelief map 
showed an accuracy of 37%, indicating some level of uncertainty and potential misclassification in specific 
regions. The uncertainty and plausibility values both stood at 70%, suggesting a significant degree of 
variability in the model’s assessment. The high uncertainty indicates that additional data or refinement 
in factor weightings might be required to further improve the model’s reliability.  
7.3. Comparative Analysis of Models 
The comparison between the FR and DS models highlights the strengths and limitations of each 
approach. The FR model, with its 85% AUC accuracy, provides a relatively straightforward and effective 
method for landslide susceptibility mapping. However, it lacks the ability to incorporate uncertainty 
explicitly. On the other hand, the DS model, with its 95% accuracy for belief value, offers a more detailed 
probabilistic interpretation, which can be useful in decision-making scenarios where uncertainty needs to 
be accounted for. The relatively high disbelief (37%) and uncertainty (70%) in the DS model suggest that 
while it provides a robust assessment, further refinement in input parameters or additional validation 
may be necessary to enhance its predictive accuracy. 

 
Fig.7. Receiver operating characteristics ROC curve for FR model 
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Fig.8. Receiver operating characteristics ROC curve for DST model: A-belief, B-disbelief, C-uncertainty, 
D-plausibility 
 
8. CONCLUSION 
The study on Landslide Susceptibility Mapping in Palakkad District demonstrates the effectiveness of 
both the Frequency Ratio (FR) and Dempster-Shafer (DS) models in predicting landslide-prone areas. 
The FR model, with an AUC accuracy of 85%, serves as a simple and reliable tool for susceptibility 
assessment; the Dempster-Shafer Theory of Evidence model proves to be more effective due to its 
probabilistic approach, achieving an accuracy of 95%. The DS model's ability to quantify uncertainty 
makes it particularly advantageous in handling complex terrain conditions and incomplete data, a crucial 
aspect in landslide prediction. Unlike the FR model, which relies purely on statistical correlations, the 
DS model incorporates uncertainty measures, making it more robust in decision-making scenarios where 
data inconsistencies exist. This probabilistic advantage allows for a more refined classification of 
susceptibility zones, reducing false positives and enhancing predictive accuracy. Overall, the results 
underscore the importance of integrating multiple models for a comprehensive landslide susceptibility 
assessment. However, given its superior ability to manage uncertainty and provide a more detailed 
probabilistic interpretation, the DS model emerges as a more effective tool for landslide prediction. These 
findings can aid policymakers and local authorities in implementing targeted and data-driven disaster 
management strategies to mitigate landslide risks in Palakkad District. 
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