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Abstract: Microgrids require sophisticated techniques for renewable energy management systems because they integrate 
more renewable sources into their networks. The study investigates neural network methods specifically hybrid CNN-
LSTM models which help maximize energy collection in microgrids. The preprocessing methodology incorporates three 
key steps starting with energy data normalization followed by application of denoising filters for enhancing data quality 
and final execution of temporal dataset synchronization to improve reliability. The Recursive Feature Elimination 
method selects features from which RFE identifies key parameters affecting both energy output and utilization metrics. 
The CNN-LSTM combination uses convolutional layers to extract spatial characteristics while also leveraging long 
short-term memory units to detect temporal patterns within energy datasets. The developed system produces better 
forecasting precision alongside optimized system performance which leads to improved energy distribution and 
diminished energy loss. The developed solution provides scalable interpretation capabilities to manage microgrid energy 
systems for the advancement of sustainable efficient energy platforms. 
Keywords- Neural networks, energy harvesting, microgrid optimization, CNN-LSTM, feature selection, renewable 
energy, smart grid. 
 
INTRODUCTION 
The quick growth of solar and wind energy systems has boosted the demand for microgrid systems to 
improve both energy harvesting and distribution processes. Microgrids function as small-scale electrical 
systems to provide reliable energy service and promote collective power grid distribution while maximizing 
resources throughout distributed networks. The energy distribution unpredictability of renewable sources 
creates challenges for managers who aim to improve energy collection performance. Neural network-based 
artificial intelligence models present advanced solutions that address important challenges during energy 
harvesting operations in microgrids [1].This investigation demonstrates how hybrid CNN-LSTM models 
help increase microgrids' energy harvesting efficiency through their implementation. The combination of 
CNNs and LSTMs performs optimally for time-series forecasting and real-time energy optimization 
through their strengths in spatial and temporal dependency extraction from energy data respectively. The 
effectiveness of neural network models depends significantly on receiving high-quality input data and 
making appropriate feature selections. A structured preprocessing pipeline acts as the proposal to enhance 
data quality for deep learning model training. The preprocessing sequence starts by normalizing energy 
data so different energy sources show consistent readings and minimize variations [2]. The processing 
technique becomes vital because energy consumption and generation patterns exhibit diverse 
characteristics because of environmental factors and grid requirements. The normalization process 
finishes before denoising filters remove disturbances and irregularities from sensor information [3]. Smart 
meter energy measurements along with IoT sensor data face signal degradation because of environmental 
factors which makes the data vulnerable to errors yet denoising strategies empower prediction accuracy 
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[4].The reliability of the model enhances through temporal energy data synchronization. The data 
alignment process among various energy sources operating at different timescales results in correct 
parameter interrelations between input datasets. Data synchronization acts as a preventive measure to 
stop model performance degradation from occurring. Recursive Feature Elimination (RFE) acts as the 
feature selection process to determine the key variables that affect energy harvesting performance through 
systematic evaluation. RFE applies feature reduction methods to eliminate redundant elements which 
results in more effective and accurate performance of the CNN-LSTM model [5].The trained CNN-LSTM 
hybrid model operates on the dataset after refinement to achieve better energy harvesting results in 
microgrid systems. Using deep learning on energy forecasting allows microgrid systems to distribute 
energy resources more efficiently while reducing their energy losses and establishing better stability across 
the system. The research contributes to smart energy management system development which creates 
advanced adaptive microgrid infrastructure solutions. 
 
RELATED WORKS 
The Neural networks have become increasingly important tools for managing energy within microgrids 
during the recent years. Different studies have investigated the use of machine learning methods together 
with deep learning techniques to perform energy forecasting and execute load balancing functions and 
optimization processes [6]. The system needs an advanced robust scheme to address the data noise 
together with feature selection and real-time energy optimization requirements. This section compiles 
literature analysis regarding preprocessing techniques and neural networks for advanced energy harvesting 
that enhances performance in microgrids.Multiple research project works demonstrate that processing 
data before use leads to better performance in machine learning energy forecasting models. Many 
researchers apply normalization techniques for energy data standardization purposes to solve differences 
among various energy production and consumption sources [7]. Research demonstrates that the deep 
learning models used in microgrid systems function better when using min-max normalization as well as 
Z-score standardization. Engineers use noise filtering methods including wavelet transforms and Kalman 
filters to eliminate sensor data inconsistencies and outliers making the predictive signals more reliable. 
Recent investigations address the essential issue of temporal synchronization in their research. Accurate 
forecasting requires the alignment of datasets since microgrids operate with multiple energy sources whose 
operation patterns differ. Energy data temporal consistency is achieved through the application of time-
series interpolation techniques and the dynamic time warping (DTW) method. The methods decrease 
prediction errors by keeping the proper sequence of energy variation dynamics across the time frame [8]. 
Feature selection operates as a critical component that improves both computational efficiency and 
prediction accuracy within energy harvesting systems. The microgrid energy field adopts Recursive Feature 
Elimination (RFE) as its leading approach to eliminate unnecessary features and maintain energy 
production and consumption variables of significance. The implementation of RFE before deep learning 
model training results in performance enhancement alongside faster processing which makes it an 
appropriate method for microgrid applications.Microgrid energy optimization applications have used 
extensive neural network-based models for their power optimization applications. Hybrid CNN-LSTM 
neural models became popular within the last few years because they detect energy data patterns both in 
space and time. The specific spatial patterns in energy distributions make CNNs an effective identification 
tool and LSTM networks are dominant in time-series forecasting. The application of CNN-LSTM 
networks to microgrid systems leads to important advancements in microgrid power conversion rates 
according to research findings [9].More research efforts should occur to improve the effectiveness of 
neural networks used for real-time energy management systems. A promising solution for optimizing 
microgrid energy harvesting and reducing energy waste and improving grid stability emerges from robust 
preprocessing features with identified selection methods and deep learning combinations. 
 
 
RESEARCH METHODOLOGY 
The method for optimizing microgrid energy harvesting through neural networks uses an organized 
framework which includes data normalization followed by feature optimization after which it applies deep 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 4,2025 
https://theaspd.com/index.php/ijes 
 

272 

 

learning algorithms for energy optimization. This process enables effective data management alongside 
meaningful features extraction as well as superior accuracy rates for energy management. This 
methodology uses several sequential steps which begin with normalized energy data processing followed 
by denoising filter application and temporal synchronization after which Recursive Feature Elimination 
selects appropriate features for implementing the hybrid CNN-LSTM model toward energy optimization 
[10]. The chapter presents a complete methodology description in the upcoming sections. The proposed 
methodology flow diagram shown in below Figure 1: 
 

         
 
 
            Figure 1: Shows the flow diagram of the proposed methodology. 
 
The input consists of real-time and historical energy data collected from various microgrid sources, 
including: 
 
3.1 Raw Input Data Sources: 
Renewable Energy Generation Data: 
Solar Power: Solar irradiance, temperature, panel efficiency. 
Wind Power: Wind speed, wind direction, turbine output. 
Grid and Load Data: 
Power consumption patterns from households, industries, and businesses. 
Demand-response data for energy allocation. 
Battery Storage and Energy Storage Data: 
Charge/discharge cycles, storage efficiency, and battery degradation. 
Environmental and Meteorological Data: 
Temperature, humidity, weather forecasts affecting renewable generation. 
Data preprocessing stands crucial in the process of creating reliable and accurate energy forecasting 
models for microgrids. Multiple energy sources that include solar panels, wind turbines, smart meters, 
and weather sensors provide raw data to the system yet this foundation data often contains multiple 
datasets with missing information aside from unwanted noise elements and uncoordinated timestamp 
frequencies [11]. A structured data preprocessing approach uses normalization followed by denoising and 
temporal synchronization to handle the identified challenges. The normalization process involving Min-
Max Scaling standardizes energy measure values between various sources while creating equal numerical 
ranges that improve neural network learning stability. The Wavelet Transform and Savitzky-Golay filters 
are used as denoising filters to eliminate environmental noise and sensor errors while conserving relevant 
energy signal changes. The model uses temporal synchronization techniques to keep different time-series 
inputs from various sources from deviating in sampling rate. The model acquires better energy harvesting 
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predictions and improved microgrid operation due to the high-quality well-structured data processing 
scheme. 
3.2 Feature Selection Using Recursive Feature Elimination (RFE): 
The selection of specific features stands as the essential element to optimize neural network models that 
conduct energy harvesting in microgrids. Recursive Feature Elimination represents an effective technique 
to choose important features and remove unimportant ones from available features. RFE uses an iterative 
process to train machine learning models through feature importance assessment which reduces models 
by least important features until an optimal subset remains [12]. The initial model training process starts 
from using entire features before computing importances based on weight coefficients(wi) from regression 
models or neural network feature contributions.  
Mathematics demonstrates the importance score i calculation as: 

                                            Ii = 
|wi|  

       ∑ |wj|𝑁
𝑗=1   

                         

where Ii denotes the normalized importance of feature i, wi represents the feature weight assigned by the 
model, and N is the total number of features. 
After computing importance scores, the least significant feature (i.e., the one with the lowest Ii) is 
removed, and the model is retrained with the remaining features. This iterative elimination process 
continues until a predefined number of features or an optimal performance threshold is achieved. The 
selection process can be mathematically formulated as: 
                                St+1=St∖ {arg min Ii} 
                                                           i 
where St represents the feature set at iteration t, and the feature with the minimum importance score is 
removed to obtain St+1. 
RFE allows energy harvesting in microgrids to identify the most important factors which include solar 
irradiance, wind speed, grid voltage, power demand and temperature variations so decision complexity 
decreases and model interpretability improves. The CNN-LSTM hybrid model uses RFE to work on an 
optimized feature set which means better forecasting effectiveness and reduced overfitting and improved 
efficiency in microgrid energy systems. 
3.3 Neural Network Model for Energy Optimization: 
A hybrid model between CNNs and LSTMs functions to consolidate the benefits of these particular 
networks for state-of-the-art microgrid energy harvesting applications. The detection system utilizes CNN 
networks effectively to establish spatial patterns in data inputs for monitoring energy use trends and grid 
anomalies and power variations. The convolutional layers enable the detection of vital spatial features in 
time-series energy data using filters before pooling layers decrease both the complexity and dimensions. 
The ability to detect necessary long-term dependencies remains outside the capabilities of CNNs when 
used alone. The analyst uses LSTM layers to process energy data while recognizing its sequential structure 
and maintaining long-lasting temporal patterns and trends. The memory cells and gating functions of 
LSTMs enable them to store important historical data while avoiding gradient vanishment thus making 
them best-suited for series time functions including power demand and solar irradiance and wind speed 
variations. The hybrid model combines CNN layers to extract features with sequential learning by LSTM 
layers while performing final output prediction through dense layers [13,14]. The specific design of the 
energy optimization architecture produces precise energy predictions for short-term and long-term 
sessions which enables better control of renewable resources and reinforces microgrid stability while 
achieving optimized load distribution. 
The CNN component consists of multiple convolutional layers, which apply filters (kernels) W to extract 
spatial features from the input energy data X. The convolution operation can be represented as: 
 
                 Zi,j

(l) = f(∑ Wm,n(l)⋅X(i+m),(j+n)+b(l)) 
 
where: 
Zi,j(l) is the output of the convolution operation at layer l, 
Wm,n(l) represents the learnable kernel weights, 
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X(i+m),(j+n) is the input energy data, 
b(l) is the bias term, and 
f(⋅) is the activation function (e.g., ReLU). 
After convolution, max pooling is applied to reduce the dimensionality of the extracted features: 
               Pi,j=max(Z2i,2j,Z2i+1,2j,Z2i,2j+1,Z2i+1,2j+1) 
where Pi,j is the pooled feature map, reducing computational complexity while retaining essential 
information. 
The extracted features from the CNN layers are then flattened and passed to the LSTM network, which 
captures sequential dependencies in energy consumption and generation patterns [15]. The LSTM cell is 
defined by three key gates: input gate, forget gate, and output gate, controlling the flow of information: 
The following are the main equations that control LSTM operations:    
  Forget Gate:  
         ft = σ (Wf . [ ht-1, xt ] + bf ) 
Input Gate: 
                       it = σ (Wi . [ ht-1, xt ] + bi ) 
         ct = tanh (Wc . [ ht-1, xt ] + bc ) 
Memory Cell Update: 
                       Ct = ft ⊙ Ct-1 + it ⊙ ct 

      Output Gate: 
         Ot = σ (Wo . [ ht-1, xt ] + bo ) 
         ht = Ot ⊙ tanh(Ct) 
where: 
xt is the input at time t, 
ht-1 is the previous hidden state, 
Ct-1 is the previous cell state, 
W and b are the weights and biases, 
σ is the sigmoid activation, and 
⊙ denotes element-wise multiplication 
After processing through the LSTM layers, the final feature representation is passed through fully 
connected (dense) layers: 
                               Y=f(Wd⋅ht+bd) 
where: 
Wd and bd are the weight and bias of the dense layer, 
Y is the final energy output prediction. 
The hybrid model consists of the following layers: 
Input Layer: Receives pre-processed and normalized energy data. 
Convolutional Layer (CNN): Extracts spatial dependencies using multiple filters. 
Max Pooling Layer: Reduces dimensionality and retains important features. 
Flatten Layer: Converts CNN outputs into a suitable format for LSTM processing. 
LSTM Layer: Processes sequential patterns in energy data. 
Fully Connected (Dense) Layer: Maps extracted features to energy predictions. 
Output Layer: Generates final energy harvesting forecasts 
By combining CNN for spatial feature extraction and LSTM for sequential learning, the CNN-LSTM 
hybrid model effectively predicts energy harvesting patterns in microgrids [16,17]. This architecture 
enables better forecasting accuracy, optimized energy distribution, and improved microgrid stability, 
contributing to sustainable energy management. 
3.4 Performance Evaluation and Postprocessing: 
A complete performance evaluation and postprocessing framework examines how well the proposed 
CNN-LSTM hybrid model performs for microgrid energy harvesting tasks. The model’s performance 
accuracy determination depends on three statistical metrics which are Root Mean Squared Error (RMSE) 
and Mean Absolute Percentage Error (MAPE) and R² Score (Coefficient of Determination). RMSE 
determines complete prediction-experiment value differences but MAPE gives relative performance 
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insights through error percentage assessment [18,19]. The R² value reveals the extent to which the model 
clarifies the energy harvesting variability. The model predictions receive an explanation through SHapley 
Additive Explanations (SHAP) which reveals feature contribution insights about solar irradiance 
parameters and wind speed variables and power demand impacts on energy optimization. The actual and 
predicted energy patterns are compared through time-series plots and heatmaps to enable better decision-
making [20,21]. Methods of postprocessing create a model with enhanced reliability alongside 
transparency that makes it suitable for implementation in microgrid applications. 
                           

IV. RESULTS AND DISCUSSIONS 
Energy optimization using the proposed CNN-LSTM hybrid model required evaluation through five 
performance indicators which included Root Mean Squared Error (RMSE) and Mean Absolute 
Percentage Error (MAPE) and Coefficient of Determination (𝑅2) and Dynamic Time Warping (DTW) 
Distance in addition to SHapley Additive Explanations (SHAP) Score. The predictive model succeeded 
in attaining a prediction accuracy represented by RMSE 0.18 and MAPE 3.7% which demonstrates 
minimal variations between forecasted and measured energy values. Signal clarity and forecasting accuracy 
improved through data normalization procedures and addition of denoising filters. 
The model demonstrates excellent behavior regarding energy pattern detection through its 𝑅2 Score of 
0.94 which indicates outstanding predictive capability. Through a process of feature selection, the 
Recursive Feature Elimination (RFE) method chose important energy variables while safeguarding against 
overfitting. The model established accurate temporal consistency because the DTW distance 
measurement reached a value of 0.62. Time-sensitive energy synchronization methods enabled the 
accurate realignment of different energy supply systems. The SHAP Score evaluation proved solar 
irradiance together with wind speed and power demand as the top features which supported the selection 
of essential variables. 
The CNN-LSTM hybrid model succeeds in enhancing microgrid energy prediction accuracy along with 
being effective for stability maintenance along with resource distribution compared to traditional 
approaches. 
The graph shows the performance of the proposed framework in Figure 2: 
 

 
                    Figure 2: Performance Metrics of Proposed Framework  
 
 
The proposed CNN-LSTM hybrid model performs a performance evaluation against three other methods 
including Random Forest, Standard LSTM, and CNN-Based Energy Prediction by using multiple key 
performance metrics consisting of RMSE, MAPE, R² Score, DTW Distance, and SHAP Feature 
Importance.The proposed method delivers the minimum RMSE value of 0.18 that reduces prediction 
errors substantially against Random Forest with 0.42 and LSTM with 0.30 and CNN with 0.25. The 
proposed model demonstrates the lowest MAPE value of 3.7% to provide highly precise energy forecasting 
results above competing models. The proposed model exhibits superior generalization abilities and 
advanced energy pattern detection because it achieves an R² score of 0.94.The DTW Distance of 0.62 
stands as the smallest value for the proposed model indicating that it achieves superior temporal 
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consistency for time-series fluctuations. The CNN-LSTM model demonstrates optimal interpretability 
according to SHAP Feature Importance because it combines spatial (via CNN) and temporal (via LSTM) 

dependency analysis with single-feature interpretation from the other models.The hybrid CNN-LSTM 
model stands as a superior solution for microgrid energy management because it demonstrates enhanced 
accuracy and interpretability together with better energy harvesting efficiency when compared to 
traditional approaches shown in Table 1.       
      Table 1: comparison table of proposed method with various approaches 
 
 
 
 
A comparative evaluation of Precision and Energy Distribution Efficiency and Energy Loss Reduction 
exists between Random Forest Standard LSTM plus CNN-Based Energy Prediction and the proposed 
Hybrid CNN-LSTM model based on the analysis in the Figure 3.The proposed CNN-LSTM model 
exhibits the best precision level at 96.3% which establishes its superiority in microgrid energy harvesting 
and consumption trend predictions. Other than Random Forest (85.2%), Standard LSTM (89.5%) and 
CNN-Based Prediction (92.1%) maintain lower precision because their systems fail to effectively track 
spatial-temporal dependencies in their models.The proposed model delivers an outstanding 93.5% energy 
distribution efficiency which surpasses all other assessment approaches. The combined ability of the CNN 
component to detect spatial energy flow patterns along with LSTM component learning long-term 
dependencies makes the system produce more efficient energy distribution.An analysis shows that the 
proposed method eliminates energy loss by 4.2% while Random Forest produces 12.6% energy loss and 
LSTM results in 9.8% energy loss and CNN generates 7.3% energy loss. The combination of RFE with 
enhanced preprocessing along with advanced techniques strengthens prediction results thus improving 
the efficiency of both energy collection and distribution processes.Due to its superior capabilities 
including enhanced precision and optimized energy management and reduced losses the Hybrid CNN-
LSTM model proves to be the top selection for microgrid advanced energy harvesting tasks. 

 
 
Figure 3: Graph compares the values of the proposed framework against other methods. 
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Random Forest) 0.42 7.90% 0.82 1.1 Limited 
Standard LSTM Model 0.3 5.50% 0.88 0.85 Moderate 
CNN-Based Energy Prediction 0.25 4.20% 0.91 0.7 High 
Hybrid CNN-LSTM (Proposed Method) 0.18 3.70% 0.94 0.62 Very High 
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CONCLUSION 
A combined model of CNN-LSTM serves to enhance microgrid energy harvesting through superior 
preprocessing methods and deep learning solution optimization. The approach consists of data 
normalization followed by filter denoising and temporal data synchronization to develop high-standard 
training inputs. RFE selects the most important parameters for the model which reduces both 
computational complexities along with enhancing interpretability. The combination of CNN-LSTM 
technology yields strong energy prediction results because CNN extracts spatial elements from data while 
LSTM sustains long-term relationships between sequential information in time-series data. The proposed 
system achieves effective performance through low RMSE scores of 0.18 in addition to 96.3% precision 
and 93.5% energy distribution efficiency with 4.2% reduced energy loss when compared to traditional 
machine learning approaches. The research enhances microgrid system development through improved 
energy optimization and reduced losses and optimized resource allocation. The proposed approach needs 
future development that should combine real-time reinforcement learning methods for managing energy 
dynamically in developing grid systems. 
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