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Abstract 
The proposed energy consumption monitoring and forecasting system aims to enhance energy monitoring by seamlessly integrating 
electricity meters with RS485 to Ethernet TCP/IP converters, enabling efficient real-time data collection and analysis. It entails 
generating graphical depictions of electricity meter use, drawing insightful conclusions from data analysis to offer useful information on 
energy usage trends and monitoring the state of meters to guarantee optimal performance. The endeavor to present gathered data, 
graphs, and insights for simple interpretation includes the creation of an intuitive dashboard. Various real-time power consumption 
parameters through building a robust connection infrastructure are gathered for monitoring and analysis. Upon data collection, it is 
processed and resampled to form machine learning models to predict time series. The primary aim is to accurately predict energy 
consumption by employing historic consumption patterns, which would make better decision-making possible and effective resource 
allocation. By enabling more precise forecasting and monitoring, the system promotes energy conservation and reduces unnecessary 
power usage, thereby contributing to lower greenhouse gas emissions. This research supports sustainable energy management practices 
that help mitigate environmental impact and foster a greener future. 
Keywords: Sustainable Environment, LSTM, Neural Networks, Machine Learning, Appearance Power, and Convolutional Neural 
Networks  

  
INTRODUCTION  
The rise in energy demand, accompanied by the increased demand for sustainable and optimized energy use, has made it 
necessary for new, innovative methods of tracking and predicting energy consumption. Conventional techniques of 
managing energy tend to be lacking in precise prediction of consumption rates and maximizing usage, giving way to 
inefficiency and increased expenses. In this regard, applying sophisticated machine learning methods offers a viable 
solution to improve the precision and reliability of monitoring and forecasting of energy consumption. Energy 
consumption monitoring and forecasting systems with machine learning involve massive records of past data along with 
real-time data for predicting future energy usage, detecting trends, and optimizing energy management. These systems 
collect information from diverse sources, such as smart meters, IoT sensors, and environmental data providers, and 
combine it to form an inclusive and dynamic model of energy consumption. The core aim of this study is to create a 
robust machine learning platform that is able to accurately monitor and predict energy consumption. This entails several 
critical components: data collection, preprocessing, exploratory data analysis, and the deployment of advanced machine 
learning algorithms. Through successful utilization of these elements, the system proposed is expected to offer actionable 
information that can result in considerable energy saving and enhanced operation efficiency. We will proceed to discuss 
the minute methodology of designing this system, such as data collection and preprocessing techniques, the exploratory 
data analysis (EDA) process, and implementation of different machine learning models, in the subsequent sections. The 
objective is to illustrate how machine learning can be utilized to design a complex energy management system capable of 
not just predicting future use with high accuracy but also ensuring proactive and optimized energy use.   
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With the suggested system, individuals and organizations can now predict and understand domestic energy consumption. 
The suggested system learns usage patterns through analysis of data like voltage, current, and appliance usage. The system 
assists energy suppliers to provide customized plans, maximize distribution, and detect prospective infrastructure 
requirements; homeowners monitor usage, determine areas for saving, and create individual energy objectives; 
researchers have insights into larger consumption patterns and create innovative energy-saving technologies. All these 
services are rendered by the capability of the system to predict and provide insight. Overall, the system inspires 
stakeholders to make informed decisions and facilitates efficient energy utilization. To obtain multiple metrics associated 
with power consumption, the project involves integrating the converter with electricity meters. Following preprocessing 
of this data to receive the required data, machine learning algorithms for time series forecasting will be created and 
evaluated. Due to its intuitive interface, scalability, and real-time monitoring feature, the system will provide stakeholders 
with accurate information on energy consumption patterns for well-informed decision-making and efficient resource 
management.  
LITERATURE SURVEY  
The interplay between energy consumption forecasting and machine learning has attracted significant scientific and 
industrial attention over the last few years. There have been many studies, which have applied various 
methodologies and techniques to increase the accuracy and effectiveness of models for energy forecasting. This 
section discusses major advancements and contributions within the field by presenting important trends, methods, 
and results found in the existing literature. 
One of the original studies in the field is from [1] that first developed the application of LSTM for predicting energy 
consumption. Their research opened the door to future work as it showed what was possible for LSTM models 
when it came to learning consumption habits. After this, the development of machine learning algorithms 
represented a big step in the domain, and artificial neural networks (ANNs) and support vector machines (SVMs) 
were identified as very efficient tools for complex and non-linear data modelling. Researchers in [2] compared the 
state-of-the-art machine learning models based on modelling approach, type of energy, type of prediction, and area of 
application. According to the study, ensemble and hybrid models show enhanced performance and accuracy. In 
addition, it suggests that applying advanced data preparation methods—such as dealing with missing values, for 
instance—can enhance input data and model quality.  
Authors in [3] reported accurate prediction techniques are crucial for optimizing the use of renewable energy. The review 
examined model analysis, with particular attention on parameter selection, data pretreatment, and performance 
assessment. To improve real-time data collecting for more accurate renewable energy projections, it also recommended 
merging ML models with sensor networks and Internet of Things devices. For accurate predictions of building energy 
use, authors in [4] compared machine learning algorithms. Authors in [4] considered variables related to input/output, 
building kinds, and historical data. Because energy consumption data is temporally oriented, it is also recommended 
using specialized time series forecasting methods like LSTM and ARIMA to get better forecasts. Smart grids are created 
when IoT is integrated with the electrical grid, increasing sustainability and efficiency. Two-way communication is made 
possible by smart meters, which also provide comprehensive use data but cause privacy issues. Building energy 
management systems use automation and Internet of Things sensors to optimize use. IoT facilitates the integration of 
distributed solar and storage, lowering dependency on the main grid. For an energy system to be robust, cybersecurity 
and analytics development must continue to get priority [5]. Conventional electrical metering systems are labor-intensive, 
error-prone, and hampered by manual procedures. To address these issues, the suggested Smart Energy Meter makes use 
of Internet of Things technologies to offer real-time monitoring, remote control, and automated payment via mobile 
devices. Smart meters through the Internet of Things have benefits such as reduced labor expense and improved quality 
of services. But due to the history of meter tampering, the implementation of such systems in India is challenging. 
Nonetheless, IoT-based smart meters are still a viable choice for automated billing and monitoring of energy through 
their projected benefits such as improved efficiency and reduced pilferage [6]. Power systems get smarter by incorporating 
advanced metering infrastructure (AMI) and smart meters, enhancing reliability and efficiency. Two-way communication 
enables customers and utilities to track detailed energy usage, and this enhances billing accuracy and reduces costs. 
Advanced consumption details assist consumers in making informed decisions, and integrated control simplifies 
management of dispersed generating assets. Strong security measures are required to ensure privacy, and 
communications infrastructure is needed to connect smart devices [7]. Advanced metering infrastructure (AMI), which 
converts traditional meters into "smart meters" to monitor energy in real time, is facilitated through the integration of 
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smart devices. Remote reading automates costs and enhances billing accuracy, and advanced consumption statistics 
stimulate energy conservation on the customers' side.  But aggressive governmental responses are needed to address 
privacy and security issues. For electrical grids to become more sustainable and efficient, smart meter infrastructure is 
essential, which means that cybersecurity and communication systems innovation must continue [8]. Conservation 
initiatives are hampered by legacy metering, which depends on manual procedures. Smart grids allow for the transfer of 
consumption data in real time while modernizing infrastructure. Making the switch to advanced metering infrastructure 
(AMI) lowers expenses and increases billing precision. Customers can see use trends more clearly, which helps with 
conservation efforts. To ensure sustainable power infrastructure and realize the full potential of AMI, ongoing 
innovation is essential [9]. The growing demand for energy in homes is being addressed by smart metering technology, 
which makes efficient distribution possible and gives users the ability to monitor use. To better understand customer 
behavior and how it relates to power rates, this study examines data from smart meters. Efficient techniques for real-time 
consumption analysis are demonstrated via case studies and ARIMA modelling. Subsequent investigations may examine 
sophisticated modelling methodologies to augment prediction precision and encourage energy preservation [10]. 
Predicting energy consumption is a critical component of effective energy management in buildings, which is essential for 
sustainability. This study investigates the support vector machine, artificial neural network, and k-neighbor techniques 
using cloud-based machine learning on Microsoft Azure to generate predictive models. Applications in Malaysian 
commercial buildings demonstrate how successful Support Vector Machines are in making precise predictions in real-
world scenarios. The paper outlines the benefits of cloud-based predictive modelling and makes recommendations for 
future lines of inquiry to raise prediction accuracy even more [11]. Forecasting energy use accurately is essential for all 
industries as it affects everyday living, business, and competition at home. Three time series models are examined in this 
paper, which focuses on the importance of demand forecasting: CNN, LSTM neural network, and ensemble (Facebook 
Prophet and XGBoost). An analysis of historical data from 2020 and 2014–2019 reveals the difficulties brought on by 
the COVID-19 epidemic. Even though the models' RMSE is larger, their MAPE indicates that they are performing rather 
well, and adding more features like temperature and COVID-19 variables should help. The study highlights the necessity 
of improving forecasting techniques to achieve greater accuracy in changing socioeconomic contexts [12]. To facilitate 
effective energy monitoring and management, the study suggests a state-of-the-art Commercial Building Energy 
Management System (CBEMS) that utilizes Internet of Things-based Smart Compact Energy Meters (SCEMs). The 
system maximizes energy efficiency and enables Demand Side Management (DSM) techniques by utilizing cutting-edge 
hardware and real-time operating systems. Considerable decrease in peak demand and energy utilization are shown in a 
real-world deployment. The ability of IoT-based SCEMs to identify power quality faults with high accuracy highlights 
their disruptive potential to improve operational efficiency in commercial buildings [13]. Authors in [14] investigated 
machine learning techniques such random forest, KNN, XGBOOST, linear regression, and ANN to predict the power 
use with accuracy is essential for sustainability, cost-cutting, and energy management electricity use. Following a 
comprehensive analysis, KNN emerges as the most accurate agricultural production forecaster, with a 90.92% accuracy 
rate. For accurate predictions, choosing the right characteristics and models is essential. This highlights the necessity of 
ongoing observation and model update to accommodate shifting circumstances. 
From the study of various literatures of the domain it appears that the area of unmet research need is in the combination 
and refinement of machine learning methods especially designed for renewable energy forecasts in various building 
contexts. The convergence of machine learning, renewable energy, and building environments is not well-focused upon, 
even though several studies touch on energy consumption prediction and building energy management. Particularly, 
research is required on the following subjects: modifying machine learning models to account for various building 
settings, including types of buildings, localities, and energy sources, to anticipate energy in the short-, medium-, and long-
term. Using cutting-edge machine learning architectures, such LSTM, to capture intricate reexamining how sensor 
networks and Internet of Things devices might be integrated into buildings to improve data collecting and produce more 
precise and timely projections of renewable energy. Relationships between building environment data and energy use.  
RESEARCH DATA 
This study uses an eight-factor dataset of energy consumption, which is the average of readings from three electric 
meters during a one-minute period for different energy characteristics. The energy in watt-hour spent by each meter 
is indicated by the following: global voltage (in volts), global intensity (current intensity in ampere), global active 
power (in kilowatts), global reactive power (in kilowatts), and sub_metering_1, sub_metering_2, and 
sub_metering_3. 
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DATA SOURCE 
The Kaggle repository hosted the dataset utilized in the study, which was supplied by the UC Irvine Machine 
Learning Repository. The dataset is made up of 2075259 measurements that were taken during a 47-month period, 
from December 2006 to November 2010.  
Algorithms:  
This study employs five machine learning approaches to forecast energy usage. Since we have a minute-average 
dataset, four of the five strategies are time series prediction algorithms. The methods employed are:  

a. Long Short-Term Memory (LSTM)  
b. Long Short-Term Memory (LSTM) with K-Fold  

Cross Validation  
c. Convolutional Neural Network (CNN) with K-Fold  

Cross Validation  
d. K-Fold Cross Validation combined with Convolutional Neural Network (CNN) and Long  

Short-Term Memory (LSTM)  
e. Lasso Regression   

Time-Series Techniques 
Since time-series data are capable of recording complex patterns and temporal relations apparent in sequential data, 
machine learning algorithms such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
often utilize them [15]. LSTMs excel at modeling long-term relationships for applications such as forecasting and 
anomaly detection, while CNNs are more suited to extracting spatial-temporal features from time-series data. The 
model can execute better in activity recognition and time-series forecasting by combining the advantages of CNNs 
and LSTMs, allowing it to recognize both local and long-distance patterns. Moreover, the use of methods such as K-
Fold Cross Validation strengthens the model's testing and makes it robust against various segments of time series 
data, leading to more precise predictions and conclusions.  
 
METHODOLOGY  

  
Figure 1. System Architecture 

Figure 1 depicts the entire system architecture, and the detailed description of the architecture is given below 
Backend:   
The processing and storing of the information gathered from the energy meters falls under the purview of this module. 
It is composed of the following sub-modules and is constructed with Node.js and Express.js: API An interface for the 
Frontend module to access and work with the data is provided by this sub-module. Database: This sub-module houses 
the gathered information.  
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Frontend:  
This module oversees giving the system an interface. It is constructed with React.js and shows information in the form of 
a graph, including real-time energy consumption predictions and a comparison of actual and expected energy use.  
Hardware connection with system:  
The task of gathering information from the energy meters falls to this module. It communicates with the meters and 
gathers data on several parameters, such power and current, using a Modbus RTU TCP Gateway. The Backend module 
receives the data after that for processing and storing.  

 
Energy Consumption Prediction:  
The data is cleaned and ready for use by the ML model in this sub-module. This module oversees applying machine 
learning to forecast energy usage. Utilizing preprocessed data that will be trained using a variety of machine learning 
models, it is constructed in Python. Next, future time periods' energy use is predicted using the learned model.  
 
Machine Learning Techniques for Prediction 
 Preprocessing for time-series techniques:  
2 million rows of minute-by-minute electricity meter values are examined in this extensive undertaking. The data is then 
pre-processed for machine learning models so that they may be used to extract insightful information and forecast future 
usage. The data is further refined by condensing minute-level measurements into hourly snapshots. Sub-metering 
information is then aggregated into a single "meter value" characteristic to comprehend overall energy consumption. 
Reactive power has no direct effect on consumption; thus, we purposefully eliminate these columns to make the study 
easier and more targeted. The data is then divided into two sets (76% for training and 24% for assessing the model's 
predictive power usage forecasting capability) to train the model. 

  
Long short-term memory (lstm):  
A sequential model, which is a linear stack of layers, is the first model in architecture. The model is extended with 
two LSTM layers: a 300-unit layer and a 200-unit layer. Return_sequences=True indicates that the first LSTM layer 
sends the output for every input time step. Following each LSTM layer are dropout layers with a 0.2 dropout rate. 
There are then two Dense (completely linked) layers with one and one hundred neurons, respectively. The ReLU 
activation function is utilized in the initial Dense layer, while the second Dense layer adopts a default linear 
activation if no specific function is specified. LSTM layers capture sequential dependencies within the data, while 
dropout layers mitigate overfitting by randomly eliminating connections during training. Predictions are then 
generated from the learned features by the dense layers [16-17]. 
 

 
Figure 2 LSTM Architecture 

As shown in figure 2 the LSTM cell is a crucial element in the LSTM architecture, serving as a specialized form of 
recurrent neural network (RNN) unit. Its goal is to solve the problem of vanishing gradients and efficiently capture long-
term dependencies in data. Here's the mathematical representation of the LSTM cell: 
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𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)             
𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)          
𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)           

Where,  
• 𝑖𝑡: input gate output  
• 𝑓𝑡: forget gate output.  
• 𝑜𝑡: output gate output  
• 𝜎: sigmoid function  
• 𝑤𝑥: weight matrix for corresponding gate(𝑥)  
• ℎ𝑡−1: previous LSTM block output at t-1  
• 𝑥𝑡: current input  
• 𝑏𝑥: biases for the corresponding gate(𝑥)  

  
The following are the equations for the cell state, candidate cell state, and final output: 

𝑐̅𝑡 = tanh(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)             
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡̅                  
ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)                 

Where,  
• 𝑐𝑡: cell state at time t  
• 𝑐̅𝑡: candidate for cell state at time t  

The Adam optimizer and mean squared error as the loss function are used to construct the model. With a batch size of 
64, it is trained for 50 epochs and assessed using RMSE and 𝑅2 Score. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                    

Where,  
• 𝑛: number of samples  
• 𝑦𝑖: actual value  
• 𝑦̂𝑖: predicted value  

𝑅2 = 
1

𝑛
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1
1

𝑛
∑ (𝑦𝑖−𝑦̅𝑖)2𝑛

𝑖=1

                  

Where,  
• 𝑦̅𝑖: mean of actual values.  

K-Fold Cross Validation for Long Short-Term Memory (LSTM) Application: 
The model architecture remains consistent with the prior method; it consists of an LSTM layer, dropout regularization is 
applied to prevent overfitting, an additional LSTM layer is incorporated, and entirely connected dense layers employ the 
ReLU activation function. Adam optimizer is utilized for optimization, while the mean squared error loss function is 
employed for training [18]. By using k-fold cross-validation with five splits, robust evaluation is guaranteed. As shown in 
figure 3, for each fold, the data is divided into training and testing sets. The model's performance is evaluated using the 
𝑅2 Score (Coefficient of Determination) and RMSE (Root Mean Squared Error). The model's overall efficacy is 
determined by averaging the RMSE and 𝑅2 Score values over all folds. 
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    Figure 3 K-Fold demonstration 

  
Convolutional Neural Network (CNN) with K-Fold Cross Validation:  
Time series forecasting is done using a Convolutional Neural Network (CNN) model, and k-fold cross-validation is 
used to make sure the model is thoroughly evaluated as depicted in figure 3. Convolutional layers are used to extract 
features, max-pooling layers are used to reduce dimensionality, and dense layers are used to make predictions in 
CNN architecture [19]. The detailed architecture of CNN is shown in figure 4. Convolutional layers use filters to 
find patterns input data that are spatial. To preserve important information, the feature maps are down-sampled 
using max-pooling layers. The extracted features are converted into predictions using dense layers.   
 

 
Figure 4 CNN architecture 

 
The model is constructed by using the Adam optimizer for compilation and the mean squared error loss function. Using 
k-fold cross-validation with 5 splits, we make sure that the model's performance is thoroughly evaluated. For every fold, 
the dataset is split into training and testing sets [19-20].  
 
 Convolutional Neural Network (CNN) integrated with Long Short-Term Memory (LSTM) with K-Fold Cross 
Validation:  
To make the output size compatible with later layers, the model starts with a ZeroPadding1D layer. For feature 
extraction, convolutional layers (Conv1D) with ReLU activation are included. The inclusion of a MaxPooling1D layer 
reduces the dimensionality of the feature maps. The output of the CNN layers is then flattened and reshaped to fit the 
LSTM layer's input shape after that. Using ReLU activation, an LSTM layer is added to capture temporal dependencies. 
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Finally, a Dense layer for regression is appended with linear activation. This entire processing pipeline is depicted in 
figure 5. 

 
Figure 5 Hybrid of CNN and LSTM architecture 

 
The model employs k-fold cross-validation for training. The data is divided into training and testing sets for each fold. 
Min-Max scaling is used to scale the training set of data. The hybrid model is trained with the Adam optimizer with 
mean squared error (MSE) loss on the scaled training data.   
Preprocessing for Lasso Regression involves converting the 'Date' and 'Time' columns to string type. Any missing values 
marked as '?', 'nan', or numpy.nan are replaced with -1 across all columns using the ‘replace’ method. Subsequently, a 
SimpleImputer object is instantiated to replace -1 values (representing missing values) with the mean of every column, 
especially those that are listed in num_vars. The 'power_consumption' variable, which appears to be an estimate taken 
from the difference between 'Global_active_power' normalized to kW and the sum of sub-metering readings, is calculated 
using equations 1 and 2. 
In Lasso Regression, the model is trained on the training dataset using the preprocessed data, and then predictions are 
made on the test dataset. When the Lasso Regression model is first initialized, no hyperparameters are specified. The 
target variable ('Global_active_power') for the test dataset is then predicted using the predict method after the model has 
been fitted to the training data (X_train and Y_train) using the fit technique. A regularization term that penalizes the 
absolute size of coefficients is incorporated into Lasso Regression. The Lasso Regression goal function integrates the L1 
regularization term with the mean squared error (MSE).   

𝑝 
 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸 + 𝜆 ∑ |𝛽𝑗|              

𝑗=1  
• MSE: measures the average squared difference between the actual and predicted values.  
• 𝛽𝑗: coefficient of 𝑗𝑡ℎ feature  
• 𝜆: regularization parameter that controls the strength of the regularization. Higher values of result in 

more regularization, leading to sparser coefficient estimates.  
• 𝑝: number of features  

  
By changing the feature weights or coefficients to reduce prediction error and punishing large coefficient values to 
discourage overfitting and promote feature selection, the aim is to minimize this objective function.  
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RESULT AND DISCUSSION  
LSTM Model  
Single LSTM model has an RMSE of 0.561 and 𝑅2 Score of 0.501. LSTM with k-fold cross-validation (k=5) has 
slightly worse performance with RMSE of 0.615 and 𝑅2 Score of 0.530. This indicates some overfitting or instability 
in the model's performance across different data splits.  
Cnn Model  
CNN with k-fold cross-validation (k=5) performs significantly better than both single LSTM and LSTM with k-fold in 
terms of RMSE, with an RMSE of 0.095, and similar R2 score to LSTM with k-fold, indicating a better generalization 
capability.  
Hybrid LSTM and CNN Model 
The fusion of CNN and LSTM with k-fold cross-validation (k=5): Demonstrates comparable performance to the CNN 
model regarding RMSE (0.094) and R2 score (0.534). This indicates that integrating CNN and LSTM does not yield 
notable enhancement over employing CNN alone under these circumstances.  
 Lasso Regression  
Performs competitively with the neural network models in terms of RMSE (0.230) and significantly better in terms of 
R2 score (0.95). Lasso Regression's high R2 score suggests that it captures most of the variance in the data, possibly 
indicating a good fit to the underlying patterns.  
Table 1 and figure 6 represent the detailed comparative analysis of the performances of algorithms, namely- LSTM, 
LSTM with K-fold 5, CNN with K-Fold 5, CNN+LSTM with K-fold 5. 
 
Table 1: Comparison of algorithms  

Algorithm   Parameters   

Epochs  Batch Size  RMSE  𝑅2 Score 

LSTM  50  64  0.561  0.501  

LSTM with K-Fold 
(k = 5)  

50  64  0.615  0.530  

CNN with K-Fold 
(k = 5)  

50  64  0.095  0.534  

CNN + LSTM with 
K-Fold (k=5) 
(k = 5)  

50  64  0.094  0.534  

Lasso Regression  -  -  0.230  0.950  
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- 
Figure 6 Comparative Analysis of Algorithms 
 

Figure 7 illustrates the prediction results of the LSTM model compared to actual data. The graph shows how 
closely the model's output follows true values over time, indicating its effectiveness in capturing temporal 
patterns and trends in the dataset. 

 
Figure 7.  LSTM Model Prediction 
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Figure 8 illustrates the prediction results of the LSTM model using K-fold cross-validation. The plot 
demonstrates how the model generalizes across different data splits, with predicted values closely aligning with 
actual observations, highlighting its robustness and consistency. 

  
Figure 8 LSTM with K-fold model Prediction 

 
Figure 9 illustrates the prediction results of the CNN model using K-fold cross-validation. The graph shows how 
well the model captures patterns across different data folds, with predicted values closely matching the actual 
data, indicating good generalization performance. 

  
Figure 9 CNN with K-fold model Prediction 
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Figure 10 illustrates the prediction results of the hybrid LSTM-CNN model. The plot demonstrates the 
combined strength of temporal feature extraction from LSTM and spatial pattern recognition from CNN, 
resulting in predictions that closely align with the actual values and enhanced overall accuracy. 

 
Figure 10 represents Hybrid of LSTM and CNN Model Prediction 
 

Figure 11 depicts the prediction results of the LASSO regression model. The graph shows how the model 
captures the underlying trend in the data, with predicted values approximating the actual observations while 
enforcing sparsity to reduce overfitting and enhance model interpretability. 

 
Figure 11 LASSO Regression Model Prediction 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 6s, 2025  
https://www.theaspd.com/ijes.php 

 

895 
 

To sum up, the CNN model exhibits superior performance over the LSTM model in terms of RMSE. Combining 
CNN and LSTM doesn't yield substantial improvement compared to using CNN alone. Lasso regression shows 
competitive performance with neural network models in RMSE and significantly outperforms them in R2 score, 
suggesting a strong fit to the data. However, it's essential to weigh the interpretability of coefficients in Lasso 
regression against neural network models.  
  
CONCLUSION 
The research paper presents a comprehensive strategy to improve energy monitoring and consumption prediction by 
integrating RS485 to Ethernet TCP/IP converters with electricity meters, alongside employing machine learning 
algorithms. Energy use patterns are correctly forecasted based on real-time data from energy meters and are pre-
processed for machine learning. Five of the machine learning methods used are Long Short-Term Memory (LSTM), 
Convolutional Neural Networks (CNN), and Lasso Regression, for prediction of energy usage. The techniques are 
evaluated under careful preprocessing and model training through the study of metrics such as RMSE and R² Score. 
The results show that although LSTM models suffer from some overfitting, CNN models show better performance 
than LSTM models as measured by RMSE, with the hybrid model of CNN-LSTM showing similar performance. 
Lasso Regression surprisingly shows competitive performance compared to neural network models, indicating its 
potential as an alternative and simpler yet efficient method for energy consumption prediction. Further, the design 
of the system is carefully developed to include hardware interfaces for data gathering, a frontend for easy data 
display, and a backend for processing and storing data. 
Using state-of-the-art machine learning methods and powerful preprocessing, the suggested system provides rich 
insights into energy usage patterns, which will allow informed decision-making at the individual, organizational, and 
energy provider levels. The combination of IoT devices and sensor networks also makes the system even more 
accurate. In general, the research paper emphasizes the use of both traditional and sophisticated machine learning 
methods with IoT infrastructure as a means of transforming energy consumption and usage forecasts, leading 
towards more effective use of resources as well as better energy practices. The proposed energy consumption 
monitoring and forecasting system effectively integrates advanced IoT hardware with robust machine learning 
techniques to provide accurate and real-time insights into energy usage. The combination of precise data collection, 
comprehensive preprocessing, and predictive modeling enables better energy management and decision-making. 
Importantly, by facilitating optimized resource allocation and promoting energy conservation, this system 
contributes significantly to reducing environmental impact. The approach outlined in this research paves the way 
for smarter, more sustainable energy practices that benefit individuals, organizations, and energy providers alike. 
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