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Abstract 
Sports students frequently encounter considerable stress due to the dual demands of intense physical training and 
academic responsibilities. Conventional methods for detecting stress, such as self-reports and clinical evaluations, tend 
to be subjective and unsuitable for real-time applications. This study investigates the use of machine learning to 
objectively detect stress among different students from sports background examining their vocal traits. Speech samples 
were gathered from 670 undergraduates at the North Eastern Regional Centre (NERC) of the Lakshmibai National 
Institute of Physical Education (LNIPE), which is located in Sonapur, near Guwahati, and stress levels were 
confirmed using the Beck Depression Inventory (BDI). Essential acoustic features, such as Mel-Frequency Cepstral 
Coefficients (MFCC), pitch, Zero-Crossing Rate (ZCR), and Formant frequencies, were derived from the audio 
recordings. Three machine learning algorithms - Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and 
Long Short-Term Memory (LSTM) RNN - were utilized to categorize stress levels. The findings showed that KNN 
surpassed the other models, achieving the highest accuracy (94.72%) and F1-score (94.67%), followed by LSTM at 
90.90% accuracy. The SVM exhibited the lowest performance (62.01% accuracy), underscoring its challenges in 
managing intricate vocal stress features. These results indicate that machine learning-based vocal analysis offers a 
promising method for real-time stress detection in sports students, potentially facilitating early intervention and better 
stress management strategies. 
Keywords: Sports students, Stress detection, Machine learning, Acoustic feature, KNN, SVM, LSTM 
 
INTRODUCTION 
Stress is a significant challenge faced by athletes, particularly sports students, who must balance intense 
physical training with academic responsibilities (Saleh et al., 2017). The demands of rigorous training 
schedules, competition, and academic pressures can lead to heightened stress levels, which, if left 
unmanaged, can negatively impact performance, well-being, and overall mental health. Research has 
shown that chronic stress among athletes can impair cognitive functions, such as focus, decision-making, 
and reaction time, ultimately affecting athletic performance and increasing the risk of injury (Kumar & 
Ankayarkanni, 2022). Thus, early detection and management of stress in sports students are crucial for 
ensuring optimal performance and long-term well-being. 
Traditional stress detection methods, such as self-report questionnaires and clinical evaluations, are often 
subjective and rely heavily on an individual’s ability to recognize and articulate their stress levels (Narzary 
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et al., 2025). These approaches may not provide real-time insights, making them less effective for athletes 
who require immediate and data-driven stress assessments to adjust their training routines accordingly. 
Consequently, there is a growing interest in leveraging technology, particularly machine learning, to 
develop objective real-time systems for stress detection. 
Machine learning techniques have demonstrated significant promise in detecting stress through various 
physiological and behavioural signals such as heart rate, skin conductance, and speech patterns (Shanbhog 
M & Medikonda, 2023). Among these, vocal and acoustic signals have emerged as reliable indicators of 
stress because an individual’s vocal characteristics, including pitch, tone, and speech rate, tend to change 
under stress. Analysing these vocal features using machine learning algorithms can enable early stress 
detection, allowing for timely intervention and improved stress management strategies in athletes. 
This study aimed to explore the application of machine learning to stress detection in sports students by 
analysing vocal and acoustic signals. Specifically, the research was guided by the following key questions. 
 Q1: How accurately can machine learning models detect stress in sports students based on vocal 
characteristics? 
 Q2: Which vocal features are the most indicative of stress in athletes? 
 Q3: In what ways can incorporating a machine learning driven stress detection system enhance stress 
management and boost performance among sports students? 
To address these questions, this study tested the following hypotheses. 
 H1: Machine learning models can accurately detect stress in sports students by analysing vocal 
characteristics from audio recordings, thereby providing a reliable method for real-time stress detection. 
 H2: Specific vocal features, such as pitch variability, speech rate, and Mel-Frequency Cepstral 
Coefficients (MFCC), show a significant correlation with elevated stress levels in athletes. 
 H3: Integrating a machine-learning-based stress detection system into sports training will improve stress 
management, leading to enhanced performance and better mental health outcomes for sports students. 
This study employed multiple machine-learning models, including Support Vector Machines (SVM), 
LSTM Recurrent Neural Networks (RNN), and K-Nearest Neighbours (KNN), to classify stress levels 
based on speech signals. The model utilized key audio features, including MFCC, Pitch, Zero-Crossing 
Rate (ZCR), Formant Extraction, Tempo Beat Extraction, and Tonnetz Extraction to assess stress in 
athletes. Additionally, techniques such as data augmentation and the synthetic minority oversampling 
technique (SMOTE) are applied to improve the robustness of the model and address class imbalances in 
the dataset. The dataset used in this study was pre-processed by applying noise filtering, feature extraction, 
and standardization techniques before being fed into the models for training and evaluation. 
The model put forward seeks to deliver a scalable, real-time approach for identifying stress in sports 
students, assisting coaches, trainers, and mental health experts in creating more effective training and 
mental health support systems. By bridging the gap between traditional stress assessment methods this 
study contributes to the advancement of machine learning applications in sports psychology and athletic 
well-being. These findings could lead to the development of an automated stress monitoring system that 
enables early detection, timely intervention, and personalized stress management strategies, ultimately 
enhancing both the mental resilience and athletic performance of sports students. 
Background 
In recent years, there has been a growing interest in detecting stress through the use of machine learning 
and deep learning methods. Numerous classifiers, such as K-Nearest Neighbours (KNN), LSTM Recurrent 
Neural Networks (RNN), and Support Vector Machines (SVM) have been widely utilized to evaluate stress 
levels by examining physiological, textual, and audio features. This review explores previous studies on 
stress detection and analyses the performance of various classification models. Machine learning has been 
extensively used for stress classification across various modalities, including physiological signals, speech, 
and textual data.   
Enrique Garcia Ceja, Venet Osmani, and Oscar Mayora examined smartphone-based stress detection 
using accelerometer data. They conducted an 8-week study with 30 subjects from two different 
organizations, where stress levels were self-reported three times daily. Using statistical models, they 
achieved a maximum accuracy of 71% for user-specific models and 60% for similar-user models, relying 
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solely on accelerometer data [(Garcia-Ceja et al., 2016). This research underscores the promise of using 
smartphone sensors for detecting stress, while also highlighting the necessity for enhanced data modelling 
methods. 
Similarly, in 2020 Bobade & Vani proposed some deep learning techniques for stress detection using 
multiple datasets from wearable sensors (Bobade & Vani, 2020). Their machine learning approaches 
achieved accuracy rates of up to 81.65% for classifying three categories and 93.20% for binary 
classification. Meanwhile, their deep learning models reached accuracies of 84.32% and 95.21%, 
respectively. 
Another study focused on speech analysis, such as that by Gupta et al. (Gupta Megha V & Vaikole 
Subhangi, n.d.) (n.d.), demonstrated the effectiveness of CNNs for stress detection, achieving accuracies 
between 94.26% and 94.3%. Wearable sensor-based stress detection has been a growing research area. 
Schmidt et al. (Schmidt et al., 2018) introduced a dataset named WESAD, that integrates multiple modals 
for the purpose of stress and affect detection, where DT, KNN, RF, LDA, SVM, and AdaBoost achieved 
accuracies of 80% and 93%. Sandulescu et al. (2015) also employed SVM on wearable physiological 
sensors and achieved an accuracy of 82% (Sandulescu et al., 2015). Ahuja and Banga (2019) focused on 
stress detection using ECG, respiration, skin conductance, and EMG signals, with KNN achieving 80% 
accuracy (Ahuja & Banga, 2019).  
 Emotional recognition has also been explored for stress detection. Pandey (2017) used physiological 
responses to music to classify emotional arousal, achieving 70% accuracy (Pandey, 2017). Ferdinando et 
al. (2016) applied SVM for emotion recognition based on heart rate variability, but the accuracy was 
relatively low at 48.5% (Ferdinando et al., 2016). By comparing different machine learning models, 
Ghaderi et al. (2016) found that KNN and SVM provided high accuracies of 92.06% and 96.82%, 
respectively, for stress detection using physiological signals (Ghaderi et al., 2016).  
Mumtaz et al. (2018) evaluated multiple classifiers, including MLP, DT, KNN, SVM, and deep learning, 
and reported that decision trees had the best performance, with 95% accuracy (Mumtaz et al., 2018; 
Rosales et al., 2019). Similarly, Rosales et al. (2019) compared linear regression, Naïve Bayes, RF, and 
SVM for stress detection among university students, where the highest accuracy achieved by SVM around 
85.71% (Rosales et al., 2019). 
Text-based stress detection has also been explored. (Lin et al., 2017) Lin et al. (2017) developed a stress 
detection system using natural language processing and machine learning techniques, where SVM 
achieved an accuracy of 90%, with a recall of 90%, precision of 94%, and an F1-score of 92%. Hossain 
et al. (2022) studied stress detection in social media users using SVM, Naïve Bayes, Decision Trees, and 
Random Forest, with SVM provided the highest accuracy of 75% and an F1-score of 80% (Hossain et al., 
2022). Furthermore, Nijhawan et al. (2022) proposed a physiological-based smart stress detector using 
LR, KNN, and SVM, where SVM achieved the highest accuracy of 95 to 96.67% (Nijhawan et al., 2022).  
Additionally, Swaymprabha Alias Megha Mane and Arundhati Shinde proposed a novel architecture, 
Stress Net, that integrates a 2D CNN with a LSTM network for stress detection in EEG signals. These 
EEG signals were broken down into their alpha, beta, and theta components, which were subsequently 
transformed into images of azimuthal projection. Azimuthal projection-based images were processed using 
a 2D CNN for feature extraction, followed by an LSTM to capture the temporal dependencies. Using 
fully connected layers the model classifies the different states of stress. Evaluated on the SEED and DEEP 
datasets, Stress Net outperformed the traditional human stress detection methods, achieving an 
impressive accuracy of 97.8% (Mane & Shinde, 2023). 
Phutela et al. (2023) proposed a stress classification system using EEG signals acquired from a 4-electrode 
Muse EEG headband. This study analysed EEG signals from thirty-five volunteers who were exposed to 
stress- and non-stress-inducing movie clips. The stress classification model compared Multilayer 
Perceptron (MLP) and Long Short-Term Memory (LSTM) networks. The highest accuracy of 93.17% was 
achieved using a two-layer LSTM architecture, thereby demonstrating the effectiveness of deep learning 
in EEG-based stress detection(Phutela et al., 2022). 
Acikmese and Alptekin (2023) explored passive mobile phone sensor data for stress detection using deep 
learning approaches. They employed LSTM, CNN, and CNN-LSTM models on the Student Life dataset, 
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which contained passive mobile sensing data and stress feedback from college students. Their LSTM 
model achieved an accuracy of 62.83% for 460 test instances, although the study highlighted limitations 
owing to the small dataset size. The findings suggest that while LSTM models show promise, larger and 
more diverse datasets are required to improve model generalization (Acikmese & Alptekin, 2019). 
Another study, Md. Saif Hassan Onim and Hima explored the integration of behavioral time series sensor 
data, including Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Skin Temperature (ST), 
for stress prediction. Using RNNs and LSTM networks, the relationship between cortisol biomarker levels 
and physiological signals was examined. Their study, conducted on 40 older adults, reported an 
impressive accuracy of 94% for RNN and 96% for LSTM models, highlighting the effectiveness of time-
series-based machine learning in stress monitoring applications (Onim & Thapliyal, 2024).  
 
METHODOLOGY 
This research utilized a machine-learning technique to identify stress in sports students by analysing vocal 
features from audio recordings. The process involves several phases, such as gathering data, preprocessing, 
extracting features, choosing a model, training and evaluating it, and analysing its performance. Figure 1 
illustrates the schematic flow diagram of the proposed stress detection system, highlighting the sequential 
process from audio data acquisition to feature extraction, model training, and stress classification. 

 
Fig 1: Schematic Flow Diagram of Stress Detection 
 
Data Collection 
For this research the speech samples were collected from UG students currently enrolled at the North 
Eastern Regional Centre (NERC) of the Lakshmibai National Institute of Physical Education (LNIPE), 
which is located in Sonapur, near Guwahati, Assam. The sample dataset consists of 670 number of both 
male and female students. Participants were administered the Beck Depression Inventory (BDI), an 
internationally acknowledged questionnaire, to evaluate their stress levels. The collected speech samples 
and responses to the questionnaire were cross-matched to validate the predictions of stress levels based 
on the speech analysis. 
To gather their speech samples during the interview process, some particular questions were asked which 
are similar to those in the BDI. The participants answered eight questions, expressing their perspectives. 
Before the procedure, participants were briefed about the study and guaranteed confidentiality. Both the 
participant and the investigator signed a consent form, with a copy given to the participant for their 
records.Participants were questioned about their responses to hypothetical scenarios that they had faced 
in the previous month during the surveys. Their responses were assigned specific weights to generate the 
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stress level scores. For the interview recordings, a set of predefined questions were asked in a calm 
environment, and the voice samples were stored for analysis. The main goal of cross-matching these 
datasets is to verify and validate the stress-level predictions made from speech samples.The dataset for this 
study comprises audio recordings of sports students under normal (non-stressed) and stressed states. The 
stress conditions were induced through controlled experiments that involved intense training sessions, 
cognitive stressors, such as academic problem-solving tasks, and self-reported stress assessments. A clinical 
psychiatrist validated the stress labels that were assigned to each audio sample. The collected data were 
stored in .wav format, ensuring high-quality audio recordings for analysis. Each recording session 
included multiple speakers and the dataset was balanced to include variations in speech patterns, pitch, 
and tone across different individuals. 
 
Data Preprocessing 
To ensure the quality and usability of the dataset, several pre-processing steps were applied. 
Noise Filtering: Digital noise reduction methods, including spectral subtraction and adaptive filtering, 
are used to eliminate the background noise and other unwanted disturbances. 
Data Augmentation: To increase dataset diversity and robustness, augmentation techniques, such as 
adding Gaussian noise and time stretching, were applied. 
Handling of Missing Values: Any missing or erroneous data entries were identified and removed. 
Standardization: The audio recordings were normalized to ensure uniformity in the feature extraction. 
3.3 Feature Extraction 
Using signal processing techniques, the vocal and acoustics features were extracted from the pre-processed 
audio recordings. The audio dataset contained key extracted features as shown in Table 1: 
Table 1: Key Speech Features Used in Stress Detection 

Features Descriptions 

MFCC (Mel-Frequency 
Cepstral Coefficients) 

Represents the short-term power spectrum of sound, capturing the 
phonetic characteristics of speech. 

Energy Refers to the overall power or amplitude of the audio signal, which can 
indicate loudness or intensity. 

LPCC (Linear Predictive 
Cepstral Coefficients) 

Used to model the vocal tract and analyse speech characteristics. 

ZCR (Zero-Crossing Rate) The rate at which the audio signal changes sign (crosses zero). It is often 
used to differentiate between voiced and unvoiced speech. 

Pitch Relates to the perceived frequency of sound, which is important in 
determining the tone or pitch of speech. 

Formant extraction Formants are resonant frequencies in speech that give clues about vowel 
sounds and speaker characteristics. 

Tempo beat extraction Extracts the tempo or rhythm of the sound, which could indicate stress 
based on speaking speed. 

Tonnetz extraction 
 

Captures harmonic and tonal relationships in the sound, often used in 
music analysis but can provide additional information about speech 
patterns. 

 
These features were extracted using digital signal processing techniques and stored numerically for further 
machine learning analysis. After extracting the features, a sample of the extracted feature results is shown 
in Figure 2. 
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Fig 2: Sample of Extracted Audio Features Used for Stress Detection. 
Experimentation And Simulations 
The experimentation phase involved designing and implementing a machine learning pipeline for stress 
detection in sports students using vocal characteristics. The entire process was executed in a controlled 
experimental environment to ensure reliable and repeatable results. In this study, three classification 
algorithms were used to detect stress in sports students based on speech features. Each model follows a 
distinct mathematical approach to learn patterns from the extracted features and classify speech samples 
into stressed or non-stressed categories. Below are the classification algorithms along with their 
mathematical formulations. 
Support Vector Machine (SVM) 
SVM is a supervised learning algorithm that finds the optimal hyperplane to separate different classes in 
a high-dimensional space. It aims to maximize the margin between the closest points (support vectors) of 
different classes. 
For the classification, the following formula is used: 
< 𝑤𝑤. 𝑥𝑥 > + 𝑏𝑏0 ≥ 1, ∀𝑦𝑦 = 1        (1) 
< 𝑤𝑤. 𝑥𝑥 > + 𝑏𝑏0 ≤ −1, ∀𝑦𝑦 = −1       (2) 
Where (x, y) represents a pair of training sets and b0 stands for the bias condition (Narzary & Sharma, 
n.d.). 
The trained SVM model was assessed using standard performance metrics, including accuracy, precision, 
recall, and F1-score. Figure 3 illustrates the confusion matrix for the SVM model used in stress detection, 
showcasing its classification performance. The model successfully identified 166 non-stressed individuals 
(true negatives) but mistakenly classified 213 non-stressed individuals as stressed (false positives). 
Additionally, it correctly recognized 304 stressed individuals (true positives) while incorrectly labelling 75 
stressed cases as non-stressed (false negatives). This distribution of predictions highlights the model’s 
strengths in correctly identifying stressed individuals while struggling with distinguishing non-stressed 
cases, which could affect its overall precision and recall. 
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Fig 3: Performance Metrics of    Fig 4: Confusion Matrix of SVM Model 
SVM Model for Stress Detection.    for Stress Detection. 
 
K-Nearest Neighbours (KNN) 
In this study, K-Nearest Neighbors (KNN) was implemented as one of the machine learning models to 
classify speech samples into stressed and non-stressed categories based on extracted vocal features. 
The decision for classification is determined by a majority vote among the K nearest training samples. 
The distance between a test sample 𝑥 and a training sample 𝑥𝑖 was calculated using the Euclidean 
distance, which is given by: 

𝒅(𝒙, 𝒙𝒊) = √∑ (𝒙𝒋 − 𝒙𝒊𝒋)𝟐𝒏
𝒋=𝟏         (3) 

where 𝑥𝑗 represents the jth feature of the test sample, 𝒙𝒊𝒋 represents the j-th feature of the training sample, 
and 𝑛 is the total number of extracted features (Tatiur Rahman, 2015). After computing distances, the 
algorithm selects the K nearest samples, and the final classification label 𝒚̂  is determined 
through majority voting, expressed as: 

𝒚̂ = 𝐚𝐫𝐠 𝒎𝒂𝒙 ∑ 𝑰(𝒚𝒊 = 𝐲)
𝑲

𝒊=𝟏
        (4) 

Where 𝐼(𝑦𝑖 = y) is an indicator function that counts the occurrences of class y among the 𝐾 nearest 
neighbors. 
To enhance KNN’s classification performance, hyperparameter tuning was conducted 
using GridSearchCV. The optimal K value was determined by testing different values such as 3, 5, 7, 9, 
11, 13, and 15, with the best K selected based on accuracy and F1-score. The distance metric used 
was Euclidean distance, as it yielded superior results compared to Manhattan distance for this dataset. 
Additionally, a uniform weighting scheme was applied, ensuring that all K neighbors contributed equally 
to the classification decision.  
Below is the performance metrics and confusion matrix for the KNN model, visually representing its 
classification results: 

 
Fig 5: KNN Model Performance    Fig 6: Confusion Matrix for KNN  
Metrics for Stress Detection.     Model in Stress Detection. 
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Long Short-Term Memory (LSTM) 
In this study, Long Short-Term Memory (LSTM) networks were employed to classify speech samples 
into stressed and non-stressed categories by leveraging the temporal dependencies present in vocal 
features. Unlike traditional classifiers such as KNN and SVM, which treat each audio feature 
independently, LSTM effectively models the sequential patterns in speech by maintaining long-range 
dependencies, making it particularly suitable for analysing time-series data like speech signals (Winata et 
al., 2018). 
LSTM is a type of Recurrent Neural Network (RNN) that overcomes the vanishing gradient problem by 
incorporating memory cells that regulate information flow through input, forget, and output gates. The 
mathematical formulation of LSTM is as follows: 
Forget Gate: Determines which information should be discarded from the previous cell state: 
 𝒇𝒕 = 𝝈(𝑾𝒇. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇)      (5) 
Where 𝑓𝑡 is the forget gate activation, 𝑊𝑓 and 𝑏𝑓)  are learnable weights and biases, ℎ𝑡−1 is the hidden 
state from the previous step, and 𝑥𝑡 is the current input.  
Input Gate: Decides which new information should be stored in the cell state: 
𝒊𝒕 = 𝝈(𝑾𝒊. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊)      (6) 
𝑪𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝑪. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪)     (7) 
where 𝑖𝑡 is the input gate activation, and  𝐶𝑡 represents the candidate cell state. 
Cell State Update: It combines previous and new information: 
𝑪𝒕 = 𝒇𝒕. 𝑪𝒕−𝟏 + 𝒊𝒕. 𝑪𝒕       (8) 
Where 𝐶𝑡 is the updated cell state. 
Output Gate:  Determines the hidden state ℎ𝑡 which influences the next time step: 
𝒐𝒕 = 𝝈(𝑾𝒐. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐)      (9) 
𝒉𝒕 = 𝒐𝒕.tanh(𝑪𝒕)       (10) 
Where 𝑜𝑡 is the output gate activation and ℎ𝑡 is the new hidden state (Mane & Shinde, 2023). 
The LSTM network was trained using the cross-entropy loss function, which is well-suited for 
classification tasks, and the Adam optimizer, known for its adaptive learning rate and efficient 
convergence. To enhance model performance, hyperparameter tuning was conducted 
using GridSearchCV, systematically exploring multiple configurations to identify the optimal values. 
The number of LSTM units was varied among 64, 128, and 256, with 128 units providing the best 
balance between model complexity and performance. Similarly, different batch sizes of 16, 32, and 
64 were tested, and a batch size of 32 yielded the most stable and efficient training. The learning rate, a 
critical parameter controlling weight updates, was tuned across 0.001, 0.005, and 0.01, 
with 0.001 proving optimal for minimizing loss and improving generalization. Additionally, dropout 
regularization was applied to prevent overfitting, with dropout rates of 0.2, 0.3, and 0.5 tested; a dropout 
rate of 0.3 was found to be the most effective in balancing regularization while maintaining model 
performance. These optimized hyperparameters ensured that the LSTM network effectively captured 
temporal dependencies in speech features, making it a robust classifier for stress detection. 
A batch size of 32 and 150 epochs are selected based on validation performance. The model employs the 
binary cross-entropy loss function because it is designed to handle binary classification tasks, such as 
distinguishing between stressed and not stressed. 
The training process involves monitoring accuracy and loss across both training and validation datasets. 
The training accuracy and loss graphs demonstrate that the model achieves convergence effectively, as 
evidenced by the simultaneous improvement in both validation and training accuracy, which suggests 
minimal overfitting. 
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Fig 7: Training and Validation Accuracy & Loss Curves for LSTM Model. 
The confusion matrix shows that the model correctly classifies most instances, with 336 true negatives 
and 353 true positives and 43 false positives and 26 false negatives. Additionally, the bar chart 
summarizing model performance metrics confirms that accuracy, precision, recall, and F1-score all remain 
consistently high, supporting the model’s effectiveness this study.  
The model is evaluated using standard classification metrics, including accuracy, precision, recall, and F1-
score. The confusion matrix provides insights into misclassification rates. The results are summarized as 
follows: 

 
Fig 8: LSTM Model Performance    Fig 9: Confusion Matrix for LSTM 
Metrics for Stress Detection.    Model in Stress Detection. 
Data Augmentation and Preprocessing 
Data augmentation and preprocessing are crucial steps in ensuring that the machine learning models 
generalize well to real-world data. In this study, two augmentation techniques were applied to enhance 
the dataset, followed by preprocessing steps to standardize and normalize the extracted features. Since the 
dataset consisted of vocal recordings under different stress conditions, data augmentation techniques 
were used to artificially expand the dataset, improving model robustness and reducing overfitting 
(Mumuni & Mumuni, 2022). The following augmentation methods were applied: 
Gaussian Noise Addition: To make the model more robust to background noise variations, random 
Gaussian noise was added to the speech features (EL Bilali et al., 2021). The noisy signal was generated 
using the formula: 
𝒙𝒂𝒖𝒈𝒎𝒆𝒏𝒕𝒆𝒅 = 𝒙 + 𝑵(𝟎, 𝝈𝟐)      (11) 
Where 𝑥 is the original feature vector, and 𝑁(0, 𝜎2) represents Gaussian noise with zero mean and 
variance 𝜎2. 
Feature Scaling: Random scaling factors were applied to speech features to simulate variations in vocal 
intensity and microphone sensitivity (Ozsahin et al., 2022). This was performed using: 
𝒙𝒂𝒖𝒈𝒎𝒆𝒏𝒕𝒆𝒅 = 𝒙 × ∝       (12) 
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Where ∝ is a random scaling factor in the range [0.9,1.1], ensuring small variations in amplitude without 
distorting the speech signal. 
These augmentation techniques were applied systematically to generate multiple variations of each 
original sample, significantly increasing the dataset size and improving the model’s ability to generalize. 
Results and Discussions: 
The effectiveness of three machine learning models Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), and LSTM Recurrent Neural Network (RNN) was assessed using four critical performance 
metrics: Accuracy, Precision, Recall, and F1-Score. These metrics provide a comprehensive evaluation of 
each model's ability to classify stress levels accurately.  
 The summarized results are presented in Table 2. 
Table 2: Classification Results of SVM, KNN, and LSTM (RNN) Models 
 
 
 
 

Performance Comparison 
The comparative analysis of the classifiers reveals that the KNN model significantly outperformed both 
SVM and LSTM (RNN) across all performance metrics. KNN achieved the highest accuracy of 94.72%, 
indicating its robustness in distinguishing stress levels in vocal data. Additionally, its high precision of 
95.69% suggests that it had minimal false positives, making it highly reliable for stress classification. 
Furthermore, with a recall of 93.67% and an F1-score of 94.67%, KNN demonstrated a strong balance 
between identifying true stress instances and avoiding misclassification. 
The LSTM (RNN) model followed closely behind with an accuracy of 90.90%, which is still significantly 
higher than SVM. Notably, LSTM exhibited a recall of 93.14%, the highest among the three classifiers. 
This suggests that LSTM was highly effective in capturing and correctly identifying stress instances from 
the vocal features. However, its precision of 89.14%was slightly lower than KNN’s, meaning it had a 
slightly higher rate of false positives. Nevertheless, its F1-score of 91.10% confirms its ability to maintain 
a good trade-off between precision and recall. 
Conversely, the SVM model delivered the weakest performance, achieving an accuracy of 62.01%, which 
is considerably lower than both KNN and LSTM. Although its recall of 80.21% was relatively high, 
the precision of 58.80% suggests that the model struggled with false positives, resulting in an F1-score 
of 67.86%. This suggests that SVM had difficulty generalizing well for stress detection from vocal data 
and was not as effective in distinguishing stress and non-stress instances compared to KNN and LSTM. 

 
Fig 10: Comparison of Classification Results Across Models. 

Classifier Accuracy Precision Recall F1-Score 

SVM 62.01% 58.80% 80.21% 67.86% 

KNN 94.72% 95.69% 93.67% 94.67% 

LSTM (RNN) 90.90% 89.14% 93.14% 91.10% 
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Implications of Findings 
The strong performance of KNN suggests that stress-related vocal features exhibit clear separability in the 
feature space, making KNN’s distance-based classification approach highly effective. This model’s success 
could be attributed to the nature of vocal stress patterns, which may form distinct clusters in high-
dimensional space, making nearest neighbour based classification particularly advantageous. 
The effectiveness of LSTM further highlights the importance of sequence learning in vocal analysis. Since 
LSTMs are designed to capture temporal dependencies and patterns, their ability to achieve a high recall 
suggests that stress signals in voice recordings may have sequential characteristics that the model 
successfully identified. This finding supports the notion that deep learning techniques can enhance stress 
detection by leveraging time-dependent patterns in speech. 
On the other hand, the underwhelming performance of SVM indicates that a linear or kernel-based 
approach may not be optimal for this dataset. The model’s relatively low precision and overall accuracy 
suggest that stress-related vocal features are not linearly separable, which limits SVM’s effectiveness. This 
highlights the need for advanced feature engineering or the use of non-linear classifiers when dealing with 
complex and high-dimensional datasets like vocal stress signals. 
 
CONCLUSION 
The findings from this study indicate that the KNN classifier is the most effective model for stress 
detection based on vocal features, achieving the highest accuracy and F1-score. The LSTM model also 
performed well, particularly in recall, which suggests its potential for applications where correctly 
identifying stressed individuals is crucial. However, SVM underperformed, highlighting its limitations in 
handling vocal stress features without further optimization. 
These results contribute to ongoing research on machine learning applications for stress detection, 
particularly among sports students. Future research should explore larger datasets, ensemble learning 
approaches, and advanced feature extraction techniques to further enhance the accuracy and reliability 
of the stress classification models. The integration of multimodal data sources, such as physiological 
signals combined with vocal features, may also improve model performance in real-world scenarios. 
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