ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php # Star - In - Coloring Of Herschel, General Theta And Corona Graphs T. Namachivayam¹, P. Kasirajan², M. Arun kumar³ ^{1,3} Department of Mathematics, Kalaignar Karunanidhi Government Arts College, (Affiliated to Thiruvalluvar University) Tiruvannamalai - 606 603, Tamil Nadu, India. ² Department of Mathematics, 127 - Government Polytechnic College, Nagapadi, Tiruvannamalai - 606 705, Tamil Nadu, India. Email: ¹namachisiva1968@gmail.com; ²kasirajanmaths@gmail.com ³ drarun4maths@gmail.com #### **ABSTRACT** A proper coloring of a graph G = (V, E) is a mapping $f: V \to N$ such that if $v_i v_j \in E$ then $f(v_i) \neq f(v_j)$. In this paper we prove that Herschel graph, General Theta graph and Corona graph are star-in-coloring graphs and give the exact value of the Star – in – Chromatic number of these graphs. Also provide the bounds for Star – in – Chromatic number of the corona between cycles and paths. Key Words: Star-in-coloring; Herschel graph; General Theta graph; Corona graph. AMS Subject Classification: 05C15, 05C20. # 1. INTRODUCTION Graph coloring is a fundamental concept in graph theory that involves assigning labels, known as colors, to the vertices or edges of a graph subject to specific constraints. The most common form, vertex coloring, requires that no two adjacent vertices share the same color. This ensures that each edge connects vertices of distinct colors. The notion of acyclic coloring was introduced by B. Grunbaum in 1973 [3]. Star coloring is a concept in graph theory that involves assigning colors to the vertices of a graph such that no path of four vertices is bicolored. This means that every path consisting of four vertices must include at least three distinct colors [1,6].In-coloring of a directed graph is a type of vertex coloring where in any path P_3 of length 2 with end vertices share the same color, the edges are directed towards the middle vertex. Building upon the foundational ideas of star-coloring and in-coloring, S. Sudha, V. Kanniga [7,8] introduced the innovative concept of star-in-coloring for graphs. This new approach integrates the principles of both star-coloring and in-coloring, ensuring that no path of length three (P₄) is bicolored and that in any path of length two (P₃) with identical end vertices, the edges are directed towards the central vertex. Expanding on this concept, A. Sugumaran, P. Kasirajan [9-13] conducted further studies to determine the lower and upper bounds of the star-in-chromatic number for various graph classes. This study investigates the concept of star-in-coloring applied to specific Herschel graph, General Theta graph, Corona graph. The analysis begins by outlining essential definitions and observations foundational to graph theory, as detailed in Harary [4]. Definition 1.1[7] The star-in-chromatic number of a graph G, symbolized as χ_{si} (G), signifies the smallest count of distinct colors necessary to achieve a star-in-coloring of G. Definition 1.2 [4] A general theta graph $\theta(m,n)$ is a simple graph consisting of two vertices joined by n internal disjoint paths of length m. ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php Definition 1.3 [2,5] The corona G_1o G_2 of two graphs G_1 with $(m_1$ vertices and n_1 edges) and G_2 (with m_2 vertices and n_2 edges) is defined as the graph obtained by taking one copy of G_1 and m_1 copies of G_2 , and then joining the ith vertex of G_1 with an edge to every vertex in the ith copy of G_2 . #### 2. MAIN RESULTS **Theorem 1.** The Herschel graph H_s admits star-in-coloring and its star-in-chromatic number is 5. **Proof:** Let H_s be a Herschel graph, which consists of 11 vertices and 18 edges. Let v_0 be the central vertex and $v_i (1 \le i \le 10)$ be the remaining vertices of H_s . Let V be the vertex set of H_s and E be the edge set of H_s . We define a function $f: V \to \{1,2,3,...\}$ such that $f(v_i) \neq f(v_i)$ if $v_i v_i \in E$, as follows: $$f(v_0) = f(v_9) = 4 \text{ and } f(v_{10}) = 5$$ $$f(v_i) = \begin{cases} 1, & \text{if } i \equiv 1 \pmod{2} \\ 2, & \text{if } i \equiv 2 \pmod{4} \\ 3, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$ Fig. 1. Star-in-coloring of H_s In this pattern of coloring, the Herschel graph H_s is star-in-colored and its star-in-chromatic number is χ_{si} (H_s) = 5. Theorem 2. The general theta graph $\theta(m,n)$ admits star-in-coloring and its star-in-chromatic number is $\chi_{si} [\theta(m,n)] = 3$. **Proof:** The graph consists of (m-1)n+2 vertices and mn edges. The vertex set V in $\theta(m,n)$ are partioned into n vertex sets denoted by $V^1, V^2, V^3, ..., V^n$ where each vertex set consists of m-1 vertices. The vertex set V^j consists of the vertices $v_1^j, v_2^j, ..., v_{m-1}^j$ for all $1 \le j \le n$ and the end vertices are denoted by u_0, v_0 . Let V be the vertex set of $\theta(m,n)$ and E be the edge set of $\theta(m,n)$. We define a function $f:V \to \{1,2,3,...\}$ such that $f(v_i) \neq f(v_j)$ if $v_i v_j \in E$, as the following two cases: Case 1: $m \equiv 0 \pmod{4}$ or $m \equiv 3 \pmod{4}$ $$\begin{split} f(u_0) &= f(v_0) = 1 \\ f\left(v_i^j\right) &= \begin{cases} 2, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 3, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 1, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases} \end{split}$$ Case 2: $m \equiv 1 \pmod{4}$ or $m \equiv 2 \pmod{4}$ $$f(u_0) = 1, \quad f(v_0) = 3$$ ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php $$f\left(v_{i}^{j}\right) = \begin{cases} 2, & \text{if } i \equiv 1 \pmod{2} \\ 3, & \text{if } i \equiv 2 \pmod{4} \\ 1, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$ $$v_{1}^{1} \quad v_{2}^{1} \quad v_{3}^{1} \quad v_{4}^{1} \quad v_{5}^{1} \quad v_{m-2}^{1} \quad v_{m-1}^{1} \\ 2 \quad 3 \quad 2 \quad 0 \quad 2 \quad 3 \quad 2 \\ v_{1}^{2} \quad v_{2}^{2} \quad v_{3}^{2} \quad v_{4}^{2} \quad v_{5}^{2} \quad v_{m-2}^{2} \quad v_{m-1}^{2} \\ 2 \quad 3 \quad 2 \quad 0 \quad 2 \quad 3 \quad 2 \\ v_{1}^{3} \quad v_{2}^{3} \quad v_{3}^{3} \quad v_{3}^{3} \quad v_{4}^{3} \quad v_{5}^{3} \quad v_{m-2}^{3} \quad v_{m-1}^{3} \\ 2 \quad 3 \quad 2 \quad 0 \quad 2 \quad 3 \quad 2 \\ v_{1}^{n} \quad v_{2}^{n} \quad v_{3}^{n} \quad v_{4}^{n} \quad v_{5}^{n} \quad v_{m-2}^{n} \quad v_{m-1}^{n} \end{cases}$$ Fig. 2. Star-in-coloring of $\theta(m, n)$, $m \equiv 0 \pmod{4}$ or $m \equiv 3 \pmod{4}$ Fom the above two cases, we conclude that the general theta graph $\theta(m,n)$ is star-in-colored and its star-in-chromatic number is $\chi_{si}\left(\theta(m,n)\right)=3$ **Theorem 3.** The corona C_3 o P_n is star-in-coloring for all odd n except n=5,7. **Proof:** Consider the corona graph C_3 o P_n with 3(n+1) vertices and 6n edges. The vertices of C_3 are denoted by u_1, u_2 , and u_3 . The vertices of P_n are denoted by v_i^j , where v_i^j represents the i^{th} vertex in the j^{th} copy of P_n attached to u_i , where $1 \le i \le n$ and j = 1,2,3. Let V be the vertex set of C_3 o P_n and E be the edge set of C_3 o P_n . We define a function $f: V \to \{1,2,3,...\}$ such that $f(v_i) \neq f(v_j)$ if $v_i v_j \in E$, as the following two cases: Case 1: n = 1 $$f(u_{j}) = j, j = 1,2,3$$ $$f(v_{i}^{j}) = \begin{cases} j+1, & \text{if } j = 1,2\\ j-2, & \text{if } j = 3 \end{cases}$$ Case 2: $n = 3 \text{ or } n \ge 9$ Sub case 2.1: j = 1 $$f(v_i^j) = \begin{cases} 4, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 2, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 5, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 2.2: j = 2 $$f(v_i^j) = \begin{cases} 4, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 3, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 5, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php Sub case 2.3: j = 3 $$f\left(v_{i}^{j}\right) = \begin{cases} 4, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 1, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 5, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ From the above two cases, we conclude that the graph C_3 o P_n is star-in-colored and its star-in-chromatic number satisfies the inequality $3 \le \chi_{si}$ (C_3 o P_n) ≤ 5 . Fig. 3. Star-in-coloring of C_3 o P_1 Fig. 4. Star-in-coloring of C_3 o P_3 ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php Fig. 5. Star-in-coloring of C₃ o P₉ **Theorem 4.** The corona C_m o P_n is star-in-coloring for all $m \equiv 0 \pmod{2}$ and for all odd $n \geq 9$. **Proof:** Consider the corona graph C_m o P_n with m(n+1) vertices and 2mn edges. The vertices of C_m are denoted by $u_1, u_2, u_3, ..., u_m$ and the vertices of P_n are denoted by v_i^j , where v_i^j represents the i^{th} vertex in the j^{th} copy of P_n attached to u_j , where $1 \le i \le n$ and $1 \le j \le m$. Let V be the vertex set of C_m o P_n and E be the edge set of C_m o P_n . We define a function $f: V \to \{1,2,3,...\}$ such that $f(v_i) \neq f(v_j)$ if $v_i v_j \in E$, as the following two cases: Case 1: $m \equiv 0 \pmod{4}$ $$f(u_j) = \begin{cases} 1, & \text{if } j \equiv 1 \text{ (mod 2)} \\ 2, & \text{if } j \equiv 2 \text{ (mod 4)} \\ 3, & \text{if } j \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 1.1: $j \equiv 1 \pmod{2}$ $$f(v_i^j) = \begin{cases} 4, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 5, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 6, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 1.2: $j \equiv 2 \pmod{4}$ $$f(v_i^j) = \begin{cases} 3, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 4, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 5, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 1.3: $j \equiv 0 \pmod{4}$ $$f(v_i^j) = \begin{cases} 2, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 4, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 5, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Case 2: $m \equiv 2 \pmod{4}$ ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php $$f(u_j) = \begin{cases} 1, & \text{if } j \equiv 1 \text{ (mod 2)} \\ 2, & \text{if } j \equiv 2 \text{ (mod 4)} \\ 3, & \text{if } j \equiv 3 \text{ (mod 4)} \text{ and } j \neq m \\ 4, & \text{if } j = m \end{cases}$$ Sub case 2.1: $j \equiv 1,2 \pmod{6}$ $$f(v_i^j) = \begin{cases} 3, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 5, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 6, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 2.2: $j \equiv 3.4 \pmod{6}$ $$f(v_i^j) = \begin{cases} 4, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 5, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 6, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ Sub case 2.3: $j \equiv 0.5 \pmod{6}$ $$f(v_i^j) = \begin{cases} 2, & \text{if } i \equiv 1 \text{ (mod 2)} \\ 5, & \text{if } i \equiv 2 \text{ (mod 4)} \\ 6, & \text{if } i \equiv 0 \text{ (mod 4)} \end{cases}$$ From the above two cases, we conclude that the corona graph $\,C_m\,\,o\,\,P_n\,$ is star-in-colored and its star-in-chromatic number is $\,\chi_{si}\,(\,C_m\,\,o\,\,P_n)=6.$ Fig. 6. Star-in-coloring of C₄ o P₉ ISSN: **2229-7359** Vol. 11 No. 7s, 2025 https://www.theaspd.com/ijes.php Fig. 7. Star-in-coloring of C₆ o P₉ ## 3. CONCLUSION The findings of this study are summarized in the following results: - 1. $\chi_{si}(H_s) = 5$. - 2. $\chi_{si}(\theta(m,n)) = 3$ - 3. $3 \le \chi_{si}$ ($C_3 \circ P_n$) ≤ 5 , for all odd n except n = 5,7 - 4. χ_{si} ($C_m \circ P_n$) = 6, for all $m \equiv 0 \pmod{2}$ and for all odd $n \ge 9$ ### **REFERENCES** - [1] G. Fertin, A. Raspaud, B. Reed, (2001), On star coloring of graphs, Graph Theoretic Concepts in Computer Science, 27th International Workshop, WG 2001, Springer Lecture Notes in Computer Science 2204, 140-153. - [2] R. Frucht, F. Harary, (1970), "On the corona of two graphs", Aequationes Math, 4 (1970), 322-325. - [3] B. Grünbaum, (1973), Acyclic colorings of planar graphs, Israel J. Math. 14, 390-408. - [4] F. Harary, Graph Theory (Narosa Publishing House, 2001). - [5] S. Nada, A. Elrokh, E.A. Elsakhawi and D.E. Sabra, (2017), "The corona between cycles and paths", Journal of the Egyptian Mathematical Society, 25 (2017), 111-118. - [6] J. Nesetril and P. Ossona de Mendez,(2003), Colorings and homomorphisms of minor closed classes, Discrete and Computational Geometry: The Goodman Pollack Festschrift (ed. B. Aronov, S. Basu, J. Pach, M. Sharir), Springer Verlag, 651-664. - [7] S. Sudha and V. Kanniga, (2014), Star-in-coloring of Complete bi-partite graphs, Wheel graphs and Prism graphs, International Journal of Research in Engineering and Technology, Vol 2, Issue 2, 97-104. - [8] S. Sudha and V. Kanniga, (2014), Star-in-coloring of Some New Class of Graphs, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Vol 2, Issue 4, 352-360. - [9] A. Sugumaran and P. Kasirajan, (2017), Star-in-coloring of Some Special Graphs, Journal of Computer and Mathematical Sciences, Vol.8(12), 788 801. - [10] A. Sugumaran and P. Kasirajan, (2018), "Cartesian / Tensor product of some new class of Star-in-coloring graphs", International Journal of Research in Engineering and Technology, Vol. 6, Issue 6, PP. 9-20. - [11] A. Sugumaran and P. Kasirajan, (2018), "Star-in-Coloring of Some Splitting Graphs", International Journal of Scientific and Innovative Mathematical Research (IJSIMR), Vol. 6, Issue 9, PP. 16 24. - [12] A. Sugumaran and P. Kasirajan, (2022), "Star-in-Coloring of Theta and Plus graphs", International Journal of Research in Engineering and Technology, Vol. 10, Issue 6, PP. 53-64. - [13] A. Sugumaran and P. Kasirajan, (2023), "Star-in-Coloring of Half Gear graphs", International Journal of Applied Engineering Research ISSN 0973-4562, Vol. 18, Number 1, PP. 12-16.