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Abstract 

Microplastics (MPs), small plastic fragments ranging from 1 µm to 5 mm, pose a growing threat to aquatic ecosystems 
and human health due to their persistence, toxicity, and ability to bioaccumulate. Conventional methods for identifying 
MPs are often limited by their dependence on labor-intensive procedures, long analysis times, and sensitivity to 
environmental interference. Raman spectroscopy (RS), known for its non-destructive nature and molecular specificity, has 
emerged as a promising technique for MP detection. However, standalone RS suffers from challenges such as weak signal 
intensity, spectral noise, and manual interpretation constraints. This study explores the integration of RS with machine 
learning (ML) techniques—including Random Forest, Support Vector Machine, Multilayer Perceptron, k-Nearest 
Neighbors, and deep learning models such as Convolutional Neural Networks (CNNs) and Autoencoders—to improve MP 
classification and analysis. The results indicate that ML-assisted RS significantly enhances detection accuracy, reduces 
reliance on manual analysis, and supports high-throughput, real-time environmental monitoring. Notably, CNN-based 
models achieved classification accuracies exceeding 99%, even in complex matrices and low signal-to-noise conditions. This 
hybrid approach demonstrates strong potential for scalable and precise microplastic detection across various environmental 
domains. 
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1. INTRODUCTION 
Plastic pollution has become an escalating global concern, particularly in aquatic environments where plastic 
debris fragments into smaller particles termed microplastics (MPs). Defined as plastic particles ranging from 
1 µm to 5 mm in size, MPs originate from the degradation of larger plastic items, synthetic textiles, and 
cosmetic microbeads [1,2]. These particles are ubiquitous in water bodies and exhibit diverse shapes, colors, 
and chemical compositions, often accumulating in marine organisms and transferring through the food chain 
to humans [3–5]. MPs have been shown to disrupt aquatic ecosystems by affecting growth, reproduction, and 
behavior of marine species, while also serving as vectors for hazardous pollutants [6,7]. 

The exponential rise in plastic production and its subsequent environmental degradation have led 
to a sharp increase in MP abundance, thus intensifying their ecological and health-related implications [8]. 
Despite numerous efforts to monitor MP contamination, accurate quantification remains challenging due to 
significant variability in particle size and distribution across environmental samples [9,10]. Traditional 
analytical methods such as stereomicroscopy, FTIR, and Py-GC–MS are limited by low resolution, lengthy 
processing times, and labor-intensive workflows [11–13]. Among modern analytical techniques, Raman 
spectroscopy (RS) stands out due to its non-destructive nature, minimal sample preparation, and high 
molecular specificity. Figure 1 showed the schematic raman spectroscopy analysis mechanism. 
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Figure 1. Raman specroscopy schematic 
 

RS enables precise polymer identification through vibrational fingerprinting, making it highly suited 
for MP detection, especially in aqueous environments where interference from water is minimal [14–16]. 
However, RS also has limitations, including weak scattering intensity, fluorescence interference, and the 
complexity of interpreting raw spectral data [17,18]. To address these challenges, researchers have increasingly 
integrated machine learning (ML) techniques with RS to automate and enhance MP detection. ML models 
such as Support Vector Machines (SVM), Random Forest (RF), Decision Trees (DT), and k-Nearest Neighbors 
(KNN) have demonstrated superior classification accuracy and robustness in distinguishing MP types based 
on their Raman spectra [19–21]. For instance, Lei et al. utilized RF, KNN, and Multilayer Perceptron (MLP) 
models on Raman spectral datasets, achieving over 95% accuracy in identifying common polymers [22]. 

Deep learning (DL) methods such as Convolutional Neural Networks (CNNs) have further advanced 
MP identification. CNNs can automatically learn complex patterns from raw data, eliminating the need for 
manual feature engineering. Zhang et al. reported a CNN-based system achieving 95.8% accuracy using raw 
Raman spectra of ten MP types [23]. Similarly, Lee et al. achieved 99.54% accuracy in identifying MPs mixed 
with natural organic matter using a deep CNN approach [24]. Other studies, like that of Luo et al., employed 
Sparse Autoencoders (SAEs) and Softmax classifiers to identify MPs in diverse water matrices with over 99% 
accuracy, surpassing conventional neural networks and SVMs [25]. 

Ensemble and multi-modal ML models have also been explored to overcome the limitations of single 
classifiers. Feng et al. developed a multi-model approach combining PCA-LDA, PCA-KNN, and MLP, 
achieving 99.3% classification accuracy in distinguishing weathered and standard MPs [26]. Autoencoders, 
another class of unsupervised neural networks, have been applied for denoising and reconstructing Raman 
spectra in low signal-to-noise conditions. Josef et al. showed that autoencoders could effectively reconstruct 
distorted spectra, outperforming traditional smoothing techniques like Savitzky-Golay filtering [27]. 

Specialized applications of ML-assisted RS include the use of Raman Tweezers (RT) for analyzing tire 
and road wear particles, which are categorized as MPs due to their polymeric content. Gillibert et al. 
demonstrated the capability of RT combined with ML to differentiate particles as small as 600 nm in liquid 
media, bypassing the need for sample drying [28]. Additionally, integrating RS with Surface-Enhanced Raman 
Spectroscopy (SERS) and logistic regression has enabled on-site MP detection with high sensitivity and 
minimal preprocessing [29]. 
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Araujo et al. study presents a critical overview of Raman spectroscopy as a tool for microplastic 
identification. The authors address issues like fluorescence interference and spectral overlap while proposing 
advanced data processing techniques. They emphasize the potential of integrating machine learning to 
improve automation, precision, and reproducibility in microplastic detection. [30]. Anger et al. review 
highlights the strengths and limitations of Raman micro spectroscopy in microplastic analysis. The authors 
advocate for the development of automated data classification methods and suggest that machine learning 
algorithms can help tackle challenges such as large spectral datasets and variability in environmental 
microplastic samples [31]. 

Lin et al. explore how different machine learning techniques—including decision trees, support vector 
machines, and deep learning—have been effectively used to classify and identify microplastics in the 
environment. The paper discusses the integration of spectral data from Raman systems with these models, 
showing notable improvements in detection speed and classification accuracy. [32]. Qi et al. article reviews 
recent developments in the intersection of Raman spectroscopy and machine learning. Applications discussed 
include material identification, noise filtering, and real-time analysis. Specific case studies show how 
microplastic classification in aquatic systems can be improved through convolutional neural networks and 
unsupervised clustering methods. [33]. Schedl et al. paper  compares multiple machine learning approaches 
(random forests, neural networks, SVMs) for analyzing spectroscopic data from microplastic samples. The 
dissertation concludes that supervised learning techniques significantly outperform traditional multivariate 
statistical methods, especially when dealing with heterogeneous particle sizes and complex environmental 
samples. [34]. Xu et al. primarily focused on cancer metabolism, this study demonstrates the power of 
advanced Raman spectroscopy techniques in detecting subtle molecular differences. The authors show how 
spontaneous and coherent Raman scattering, when combined with data-rich methods like stable isotope 
probing, generate complex spectral data suitable for machine learning analysis. The paper underscores the 
broader applicability of such enhanced spectroscopic approaches, including their potential in the precise 
identification of microplastics in complex aquatic systems [35]. Phan et al. present a futuristic perspective on 
combining Raman spectroscopy with long-term environmental monitoring tools, including AI and machine 
learning. The review suggests that continuous learning models can adapt to new types of microplastics and 
changing environmental conditions, supporting sustainable monitoring practices in marine ecosystems [36]. 

 
In summary, the integration of Raman spectroscopy with machine learning has substantially 

improved the identification, classification, and monitoring of microplastics in environmental samples. This 
hybrid approach enhances analytical accuracy, reduces manual intervention, and offers scalable, automated 
solutions for real-time pollution assessment. As plastic pollution continues to rise, such advanced 
methodologies are essential for developing effective environmental monitoring and mitigation strategies. 
 
2. METHODOLOGY 
The methodology employed in this study involves the strategic integration of Raman spectroscopy with 
machine learning algorithms to enable the efficient and accurate detection of microplastics (MPs) across 
diverse environmental matrices. The approach consists of several essential phases, starting with sample 
preparation, followed by spectral data acquisition, preprocessing of raw spectra, and culminating in the 
application of supervised and deep learning models for classification and prediction. 

To begin with, MPs such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene 
terephthalate (PET), and polyvinyl chloride (PVC) were either obtained commercially or isolated from 
environmental samples like rainwater, lake water, tap water, seawater, and mussel tissues. The collected 
samples were filtered using membrane filters of appropriate pore sizes, and organic impurities were removed 
using oxidative treatments involving hydrogen peroxide or potassium permanganate. These chemical 
treatments were followed by multiple rinsing steps with deionized water to ensure the purity and visibility of 
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MPs for Raman analysis. For nanoplastics or smaller particles, additional ultrasonication or density separation 
steps were incorporated. 

Spectral data were acquired using a confocal Raman microscope equipped with diode lasers of 532 
nm or 785 nm wavelength, depending on the requirement to minimize fluorescence and maximize spectral 
resolution. The Raman spectra were collected over a spectral range typically extending from 200 to 3200 
cm⁻¹, using objective lenses ranging from 20× to 100× magnification. The exposure time for each acquisition 
varied between 1 and 30 seconds based on the required signal-to-noise ratio. In some advanced cases, Surface-
Enhanced Raman Spectroscopy (SERS) was employed by depositing the MP samples onto metallic 
nanoparticle substrates to enhance weak Raman signals. Laser power was carefully optimized to prevent 
thermal degradation of MPs while ensuring sufficient signal intensity. 

Given that raw Raman spectra are often complex and contain background noise, multiple 
preprocessing steps were implemented prior to machine learning. Baseline correction was conducted using 
asymmetric least squares or polynomial fitting to remove fluorescence backgrounds. Spectral smoothing was 
applied using Savitzky-Golay filtering to reduce random fluctuations. Normalization techniques were used to 
ensure spectral intensity consistency across different samples, while spectral cropping and truncation focused 
the analysis on the most informative Raman shift regions. Dimensionality reduction techniques, particularly 
Principal Component Analysis (PCA) and autoencoders, were employed to minimize data redundancy while 
retaining critical spectral variance. 

Following preprocessing, the cleaned spectral datasets were fed into various machine learning models 
for classification and analysis. Traditional supervised learning methods included Random Forest (RF), 
Support Vector Machine (SVM), Decision Trees (DT), k-Nearest Neighbors (KNN), and Multilayer 
Perceptrons (MLP). RF utilized ensemble learning through bootstrapped samples and randomized feature 
selection to enhance classification robustness and reduce overfitting. SVM, especially with radial basis 
function kernels, proved effective for datasets exhibiting nonlinear separability. KNN classified samples based 
on similarity in feature space, while MLP applied multiple hidden layers and nonlinear activation functions 
to capture complex patterns within the spectra. In addition to these, dimensionality reduction techniques 
like PCA-LDA and Partial Least Squares Discriminant Analysis (PLS-DA) were also integrated into the 
classification pipeline to optimize the feature space and improve separation among MP classes. Figure 2 
showed the raman spectroscopy pre-processing mechanism. Table 1 depicted the advantages and 
disadvantages of ML models. 
 
Table 1: Advantages and disadvantages of different ML models 

ML Model Advantages Disadvantages 

KNN 
Easy to implement, handles multi-

class cases. 
Slow prediction, sensitive to irrelevant 

features. 

SVM Effective in high-dimensional spaces. 
Complex kernel tuning, not ideal for 

large datasets. 

MLP Captures non-linear relationships. 
Requires careful hyperparameter 

tuning. 

PCA-LDA 
Dimensionality reduction with class 

separation. 
Assumes linear separability. 

PLS-DA 
Handles multicollinearity, suitable 

for classification. 
Interpretability of components is 

difficult. 
DT Simple and interpretable. Prone to overfitting. 

RF Reduces overfitting and variance. Slower prediction, complex structure. 
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Figure 2 Raman spectroscopy pre-processing mechanism 
 

Deep learning techniques further advanced classification accuracy. Convolutional Neural Networks 
(CNNs), particularly one-dimensional CNNs (1D-CNN), were trained on raw Raman spectra and 
demonstrated excellent pattern recognition capabilities. These models comprised convolutional layers for 
feature extraction, pooling layers for dimensionality reduction, and fully connected layers for final 
classification. Autoencoders, a type of unsupervised neural network, were also employed to learn compressed 
latent features from spectral data and reconstruct denoised representations. Sparse autoencoders (SAEs) were 
especially useful in emphasizing only the most relevant spectral features, improving both model 
interpretability and performance. 

All models were trained and validated using appropriate statistical protocols. The datasets were 
typically split into training (70%), validation (15%), and testing (15%) subsets to ensure unbiased evaluation. 
Cross-validation techniques, particularly k-fold cross-validation, were employed to further validate model 
performance and minimize overfitting. Performance metrics such as accuracy, precision, recall, and F1-score 
were computed to assess the classification efficacy of each model. Confusion matrices were generated to 
visualize classification accuracy across MP types. In the case of deep learning models, regularization techniques 
such as dropout and early stopping were used to improve generalization and reduce training time. 

To assess real-world applicability, several models were tested using blind datasets comprising MPs 
collected from actual environmental samples, including mussels and rainwater. The CNN and RF models 
consistently demonstrated robust performance, often achieving classification accuracies above 95%, even 
under challenging conditions. In advanced applications, logistic regression models were used to classify 
Raman mapping data obtained from MPs distributed on SERS-active substrates. Furthermore, portable 
Raman spectrometers and Raman Tweezers (RT) were utilized in specific studies to facilitate on-site detection 
and manipulation of MPs as small as 600 nm, without the need for sample drying or extensive pretreatment. 

In conclusion, the methodology leveraged the synergy between Raman spectroscopy and modern 
machine learning techniques to provide a reliable, scalable, and high-throughput approach for microplastic 
detection. The workflow not only improves the efficiency of MP analysis but also enhances the accuracy and 
repeatability of spectral classification, making it a valuable tool for environmental monitoring and pollution 
mitigation. 
 
Table 2 Research Results Raman Spectroscopy & ML for Microplastic Detection 

Sr. 
No. 

Reference Dataset/ 
Sample Used 

Methodology ML/AI Used Key Results 
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1 Araujo et al. Environmental 
water samples 

Raman with 
chemical 
mapping 

Not directly 
applied 

High identification accuracy; 
spectral overlaps still a challenge 

2 Anger et al. 
(2018) [11] 

Plastic particles 
from lab and 

field 

Raman micro 
spectroscopy 

ML 
proposed 

Demonstrated potential for ML-
aided high-throughput analysis 

3 Lin et al. 
(2022) [16] 

Simulated and 
field spectra 

Preprocessing 
+ 

classification 

SVM, KNN, 
CNN 

CNN showed >90% accuracy; 
robust to noise and overlapping 

peaks 
4 Qi et al. 

(2023) [17] 
Mixed polymer 

samples 
Raman + 

unsupervised 
clustering 

CNNs, 
autoencoders 

ML significantly improved signal 
denoising and feature extraction 

5 Schedl 
(2020) [18] 

Raman 
spectral 
database 

Model 
comparison 

study 

RF, SVM, 
ANN 

SVM yielded highest 
classification accuracy; ANN 

needed more data 
6 Yang et al. 

(2023) [20] 
Marine surface 
water samples 

Raman micro-
imaging 

automation 

Automated 
ML pipeline 

Reduced uncertainty by 30%; 
faster than manual identification 

7 Phan & 
Luscombe 
(2023) [12] 

Global ocean 
modeling 
datasets 

Modeling and 
AI 

frameworks 

Adaptive ML 
models 

ML enables predictive 
monitoring and scalable long-

term tracking 
8 Jinadasa et 

al. (2021) 
[23] 

Industrial 
polymer 
datasets 

Spectral 
prediction 
with DL 

Deep Neural 
Networks 

Improved classification precision 
with fewer training samples 

9 Luo et al. 
(2022) [24] 

Aggregated 
Raman studies 

Review of DL 
applications 

DL 
architectures 

DL helps automate baseline 
correction, denoising, and 

detection 
10 Jin et al. 

(2022) [27] 
Aquatic 

microplastic 
samples 

Raman + 
PCA + 

clustering 

PCA + ML 
algorithms 

Combined approach achieved 
accurate type and size 

classification 
11 Nava et al. 

(2021) [28] 
Freshwater and 

marine 
samples 

Raman 
spectroscopy 

No ML used Raman detected microplastics 
<50 µm; but manual analysis 

time-consuming 
12 Asamoah et 

al. (2021) 
[29] 

Conceptual 
review 

Portable 
optical sensor 

design 

ML 
suggested for 

future 

Highlighted importance of AI 
for in-situ microplastic sensing 

13 Jung et al. 
(2021) [22] 

Literature-wide 
analysis 

Raman + data 
fusion 

methods 

Analytical 
ML 

frameworks 

ML is critical for integrating 
Raman with other detection 

tools 
 
3. RESULTS AND DISCUSSION 
The integration of Raman spectroscopy with machine learning (ML) techniques has demonstrated a 
significant advancement in the field of microplastic (MP) detection and classification. Various ML models, 
both traditional and deep learning-based, were evaluated in terms of their classification accuracy, robustness, 
and ability to handle diverse spectral datasets obtained from real and synthetic MP samples. The results 
consistently indicate that ML-enhanced Raman analysis outperforms conventional spectral interpretation 
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techniques in terms of speed, accuracy, and scalability. Figure 3 and 4 showed the distinguishing microplastics 
from mixed surface spectrum and schematic representation of microplastic detection mechanisms 
respectively. 
 

 
Figure 3 Distinguishing microplastics from mixed surface spectrum 

 
Figure 4 Schematic representation of microplastic detection mechanism 
 

Among the traditional ML approaches, Random Forest (RF), Support Vector Machine (SVM), 
Multilayer Perceptron (MLP), k-Nearest Neighbors (KNN), and Decision Trees (DT) were extensively 
benchmarked. Lei et al. utilized these models on a dataset comprising high-resolution Raman spectra of 
commercially sourced and lab-generated MPs. The RF model, although effective at high signal-to-noise ratios 
(SNRs), demonstrated reduced performance at shorter acquisition times. In contrast, KNN and MLP models 
maintained high classification accuracies of over 95% even at minimal acquisition durations of 1 ms, 
highlighting their potential for rapid and real-time detection applications [22]. 

In a parallel study by Vinay et al., RF classifiers trained on Raman spectra of MPs extracted from 
mussel tissues achieved a 100% classification accuracy. This reinforces the suitability of RF models for 
analyzing complex biological matrices. The same study also demonstrated the practical use of focal plane array-
based micro-FTIR and micro-Raman spectroscopy in tandem with machine learning, validating the robustness 
of hybrid spectroscopic-ML systems for field applications. 

Deep learning models, especially Convolutional Neural Networks (CNNs), exhibited even higher 
performance metrics. Zhang et al. reported a classification accuracy of 95.8% with a 1D-CNN model trained 
on Raman spectra of ten MP types. Interestingly, the performance remained consistent even when raw spectral 
data was used, negating the need for extensive preprocessing. This is particularly useful for large-scale 
environmental screening where preprocessing is time-consuming. Similarly, Lee et al. achieved 99.54% 
accuracy in distinguishing MPs from natural organic matter using CNN, underscoring the model’s ability to 
handle complex spectral interference. 
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In more specialized cases, such as the classification of nanoplastics and weathered MPs, deep learning 
models continued to excel. Xie et al. demonstrated that RF outperformed both SVM and back-propagation 
(BP) neural networks when applied to a dataset of nanoplastics derived from commercial and environmental 
sources. The RF model achieved a test accuracy of 98.1%, significantly higher than SVM (68%) and BP 
(88.5%), confirming the advantage of ensemble methods in high-noise spectral environments. 

Furthermore, data augmentation techniques were shown to enhance classification performance. In 
experiments involving the SLoPP and SLoPP-E datasets, RF models trained with augmented data improved 
their classification accuracy from 89% to 93.81%, demonstrating the benefit of synthetic data expansion in 
enhancing model generalizability. 

Autoencoders were effectively used for reconstructing low-SNR spectra and denoising complex 
Raman datasets. Luo et al. employed Sparse Autoencoders (SAEs) combined with a Softmax classifier to 
detect six MP types in various water bodies. The classification success rate was recorded at 99.1%, 
outperforming traditional SVM (93.7%) and basic neural networks (75.8%). Josef et al. further validated the 
usefulness of autoencoders by demonstrating their superior performance over the Savitzky-Golay smoothing 
technique for removing distortions in Raman and FTIR spectra. Their results support the use of deep neural 
reconstruction models in environments where data quality is compromised. Table 2 showed the ML model 
results and accuracy to detect the micro plastics. 
 
Table 3: Performance Summary of ML Models for MP Detection 

Model Sample Type Accuracy (%) 

RF Mussel samples 100% 

1D-CNN Ten MP types (raw) 95.8% 

CNN 
MPs with organic 

matter 
99.54% 

RF 
Nanoplastics 

(tap/rainwater) 
98.1% 

RF (augmented) 
Weathered MPs 

(SLoPP-E) 
93.81% 

SAE + Softmax MPs in water matrices 99.1% 

Autoencoder 
Distorted 

Raman/FTIR 
Superior to SG filter 

Logistic Regression On-site SERS High classification 

RT + ML TRWPs 600 nm detection 
 

In terms of visualization and interpretability, dual-PCA techniques enabled the mapping and 
correlation of MP signals with reference spectra. Yunlong et al. demonstrated that dual-PCA analysis not only 
facilitated classification but also supported automated visualization of MPs and nanoplastics. This method 
yielded strong correlation values (up to 0.95) with known MP polymers and could successfully differentiate 
MPs even in natural samples, such as grass pruning residues. 

Real-time applicability was also assessed using portable Raman systems enhanced with CNNs and 
logistic regression. Jun Young et al. fabricated a paper-based SERS platform with embedded gold 
nanostructures, allowing syringe-based MP filtration and detection. The integrated logistic regression model 
accurately classified MPs on the substrate, offering a portable, field-deployable alternative to laboratory 
systems. 
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Lastly, the use of Raman Tweezers (RT) combined with ML was explored for the detection of tire 
and road wear particles (TRWPs), which are also considered MPs. The technique successfully differentiated 
between rubber, brake wear, and environmental particulate matter as small as 600 nm, demonstrating its 
utility in tracking airborne microplastic pollutants. Overall, the results emphasize the transformative impact 
of combining Raman spectroscopy with machine learning. Traditional ML algorithms such as RF, SVM, and 
PCA-LDA offer a balance between interpretability and performance. However, CNNs and autoencoders 
provide superior classification accuracy, especially when dealing with complex mixtures, degraded particles, 
or low-quality spectra. The deployment of ML-assisted Raman systems in field settings further reinforces the 
viability of this approach for large-scale environmental monitoring of MPs. 
 
4. CONCLUSION 
The fusion of Raman spectroscopy with machine learning models represents a transformative step in the 
detection and analysis of microplastics in environmental samples. Through comprehensive evaluation of both 
traditional and deep learning algorithms, it is evident that ML significantly enhances the interpretability, 
sensitivity, and classification performance of Raman spectral data. Models such as Random Forest and CNN 
not only outperform conventional spectral analysis methods but also offer high adaptability to real-world 
conditions, including degraded particles, mixed samples, and noisy spectra. The ability to achieve over 95% 
classification accuracy in diverse applications—including field detection, nanoplastic identification, and 
biological sample analysis—underscores the robustness and scalability of this approach. Furthermore, 
unsupervised techniques like autoencoders prove highly effective in spectral denoising and reconstruction, 
enabling better analysis under low-quality data conditions. While challenges remain in terms of data 
standardization and portability of devices, ongoing advancements in ML frameworks and miniaturized 
spectrometers hold promise for widespread implementation. Overall, the ML-assisted Raman spectroscopy 
framework offers a high-throughput, automated, and accurate solution for tackling the urgent global issue of 
microplastic pollution. 
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