
International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

710

Software Cost Estimation: A Comparative Analysis Of
Traditional And Machine Learning Approaches
Prof. Sachin Baburao Wakurdekar1, Prof. Dr. S.B Vanjale2, Dr. Pallavi Deshpande1, Dr. Tanuja Dhope1,

Prof. V.J. Shinde1, Dr. Datta S. Chavan1, Prof. Dr. A.Y Prabhakar1, Dr. Anand Shinde3
1Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, 411043, Maharashtra, India.
2Corresponding Author, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, 411043, Maharashtra, India.
3Bharati Vidyapeeth Institute of Environment Education and Research, Pune, 411043, Maharashtra, India.

Abstract: Estimating software costs is essential to project management because it helps businesses allocate resources efficiently. Despite
their widespread use, traditional models like COCOMO frequently have drawbacks because they rely on assumptions and predefined
parameters that are not well suited to contemporary software development techniques. Machine learning-based models, on the other
hand, provide a data-driven strategy by utilizing past project data to increase estimation accuracy. This study compares and contrasts
contemporary machine learning methods with conventional cost estimation models. We go over the drawbacks of traditional methods,
investigate sophisticated regression strategies, and suggest a hybrid model that combines neural networks and XGBoost for increased
accuracy. The superiority of our method in reducing estimation errors is shown by empirical results. The findings show that machine
learning-based cost estimation can significantly enhance software engineering decision-making and resource planning. Neural networks,
machine learning, XGBoost, COCOMO model, software cost estimation, and predictive analytics are some examples of index terms.

 Keywords: NLCs, Sitagliptin, diabetes mellitus, bioavailability, drug loading, drug release

INTRODUCTION
Accurate cost estimation is crucial for software development projects in order to guarantee effective
scheduling, budgeting, and resource allocation. Software effort and cost have traditionally been
predicted using estimation models such as the Constructive Cost Model (COCOMO). Although
these models offer an organized method, they typically fall short in capturing the intricacy and
flexibility of contemporary software projects.

Predictive analytics has become a powerful substitute for software cost estimation as machine learning
has progressed. Machine learning models can adjust and increase estimation accuracy over time by
utilizing historical data. Predictions become more accurate when methods such as XGBoost and
neural networks are combined to create a hybrid approach that combines the advantages of both
algorithms. The industry's difficulties in estimating costs.

A. Industry Challenges in Cost Estimation
For the software industry, cost estimation poses several challenges, such as:
Rapid Technological Developments: Because of recent advancements, it is difficult to rely on static
estimation models.Project Complexity: estimating effort becomes more difficult in large-scale projects
due to the numerous dependencies involved.Resource Allocation: Incorrect estimates lead to either
overallocation or underutilization of resources.Scope Creep: Frequent requirement changes affect
initial estimates, resulting in budgetary and timeline deviations. Given these challenges, an adaptive,
data-driven approach is necessary for improving estimation accuracy

B. Proposed Solution and Research Motivation
Our study presents a hybrid cost estimation model that combines machine learning and conventional
estimation methods to address the problems mentioned above. The following are the main drivers of
this strategy: Including Data-Driven Insights: By examining past project data, machine learning
models are able to spot hidden relationships and patterns that conventional models
overlook.Improving Prediction Accuracy: Our strategy makes use of deep learning and feature
importance analysis by fusing neural networks with XGBoost, a tree-based ensemble method.
Increasing Adaptability: As new project data becomes available, machine learning-based techniques

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

711

can continuously learn and adapt, in contrast to static models. Bridging the Gap Between Theory and
Practice: Our model aims to provide a practical tool that software development firms can integrate
into their project management workflows

C. Comparison of Existing Cost Estimation Techniques
Table I summarizes the pros and cons of commonly used cost estimation techniques. Our hybrid
model aims to capitalize on the strengths of traditional models while addressing their shortcomings
using machine learning techniques. The following sections will discuss the dataset used,
implementation details, experimental results, and future research directions To systematically address
the challenges in software cost estimation and validate our proposed hybrid approach, this study
investigates the following research questions:RQ-1: What are the most effective machine learning and
non-machine learning techniques for software cost estimation, and how does their accuracy compare
across different datasets. RQ-2: What key factors influence the accuracy of software cost estimation
using ML techniques, and how can hyperparameter tuning and feature selection improve estimation
performance? RQ-3: How does the integration of XGBoost and neural networks enhance cost
estimation compared to standalone models? RQ-4: What are the most used datasets and benchmark
studies for evaluating software cost estimation techniques? The rest of this paper is structured as
follows: Section II presents a review of existing literature on cost estimation techniques. Section III
discusses the proposed hybrid methodology combining XGBoost and neural networks. Section IV
provides experimental results and performance analysis. Finally, Section V concludes the study and
outlines future research directions.

Table no 1. Analysis of cost estimation techniques discussed in literature

Technique Pros Cons
Expert Judgment [29] Quick estimation, utilizes

domain knowledge
Subjective, inconsistent across

different estimators
COCOMO Model [30] Uses historical data, adaptable to

similar projects
Requires high-quality historical

data, limited to similar past
projects

Function Point Analysis [31] Well-established, parameterized
approach

Relies on predefined
assumptions, less effective for

modern software projects
Machine Learning (ML) [31] Data-driven, self-improving, high

accuracy
Requires large datasets,

computationally expensive
XGBoost [32] High interpretability, efficient

handling of missing values
Requires careful hyperparameter
tuning, prone to overfitting with

small datasets
Neural Networks [32] Captures complex relationships,

excels in deep learning
applications

Computationally intensive,
requires large training data and

tuning
Hybrid Approach (XGBoost

+ Neural Networks) [32]
Combines traditional and ML
strengths, improves accuracy

Needs model training and
validation, requires sufficient

data for both models

LITERATURE REVIEW
Software effort and cost estimation methods have evolved significantly over time. Broadly, these methods
can be categorized into three groups: expert judgment-based approaches, algorithm-based approaches, and
machine learning-driven computational intelligence models. Each approach has distinct advantages and
limitations, as summarized in Table II. The types of software cost estimation are summarized in Fig1.

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

712

Fig1: Types of software cost estimation techniques

Software effort estimation refers to predicting the amount of effort required to develop a software project,
typically in person-hours or person-months. It is crucial for planning, budgeting, and resource allocation.
This estimation can be approached using several models, broadly categorized into five types.
The first category is Algorithmic Models, also known as parametric models. These rely on mathematical
formulas to calculate effort based on input variables such as project size and complexity. A key example
is the COCOMO (Constructive Cost Model), which includes three levels: Basic COCOMO, which
estimates effort using just the size of the software (in thousands of lines of code); Intermediate
COCOMO, which factors in various cost drivers like experience, reliability, and tools; and Detailed
COCOMO, which goes further by estimating effort for individual phases of the development cycle[1].
Function Point Analysis (FPA) [3], which measures the software functionality that the user perceives, is
another well-liked method. There are two types of this: Extended or Modified FPA, which is tailored to
contemporary development platforms like object-oriented or agile (FPA) [2], and Classic FPA, which
estimates inputs, outputs, data, and user interactions. The Bailey-Basili Model is an additional statistical
model that uses regression analysis on historical project data [4]. The second category consists of models
based on machine learning that are trained using past project data to forecast effort. Gaining knowledge
from mapping effort to input Users usually utilize supervised learning models in this area, like decision
trees, support vector machines (SVM), and linear regression, which learn the mapping from input features
to effort. Neural networks, particularly hybrids and Deep Neural Networks (DNNs), possess Artificial
Neural Networks (ANN) coupled with Deep Belief Networks are utilized because they can capture
intricate, non-linear interactions. Ensemble approaches use multiple models to improve performance.
Furthermore, to increase the estimation's accuracy, Metaheuristic-Optimized Models, Genetic Algorithms
(GA), Differential Evolution (DE), Moth-Flame Optimizations, and Forest optimizations Algorithm are

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

713

applied to the parameter or feature selection. To reduce noise and find useful predictors, feature selection
and dimensionality reduction techniques like PCA, feature grouping utilizing clusters, or adaptive
discretization are crucial [5]. The third type of models are expert judgment-based models, which are
derived using human expertise rather than formal techniques or data. Commonly employed techniques
include the Delphi study, a panel method that relies on several rounds of discussion to reach consensus
[6]. Expert Panels and Heuristic Models use expert judgement and general guidelines, respectively, while
Analogy Based Estimation estimates effort by comparing ongoing projects with previously finished ones
[7]. To capitalize on the various capabilities, the fourth model, the Hybrid Model, employs a variety of
estimation methodologies. This could involve combining machine learning with algorithmic models, such
as using the characteristics from algorithmic approaches as input to a learning model, or combining neural
networks and metaheuristics to optimize prediction models. Large Language Models (LLMs) have recently
emerged to help with work estimation as well. Models such as GPT use historical data points and natural
language documentation to estimate effort without structure and to understand requirements. [8] Lastly,
Time-Aware Models and Activity-Specific Models are included in the fifth category. The time elements of
software development related to the software effort are taken into account. Project timetables and
timeframes are incorporated into Time-Aware Effort Models in order to improve estimations [9]. Design,
coding, and testing are examples of development activities that are used to break down effort in Activity-
Based Estimation. Lastly, the iterative and incremental development procedures used in agile software
development are compatible with Agile-Specific Estimation Techniques, such as story points, velocity
tracking, and others [10].
A. Expert Judgment-Based Approaches
Expert-based approaches use experts' subject knowledge and expertise to estimate software development
effort. Expert opinion surveys, Delphi estimating, and an analogy-based approach are a few examples. In
order to improve estimation reliability, the Delphi approach solicits feedback from a number of experts
over the course of numerous rounds [11].
Analogous estimating helps forecast costs for new projects by examining cost information from related
previous initiatives.[12] Although depending on the opinions of experts might be helpful, it frequently
has drawbacks such as subjectivity and inconsistency, particularly for more complicated or large-scale
projects. Therefore, it can be easier and more accurate to estimate costs for new projects with comparable
characteristics by leveraging data from earlier projects.[13]
B. Algorithmic-Based Approaches
Software development expenses are estimated using algorithmic models using statistical and mathematical
methods. One of the most well-known methods in this category is the Constructive Cost Model
(COCOMO) [14]. To improve estimation accuracy, variants like Basic COCOMO, Intermediate
COCOMO, and Detailed COCOMO have been created. However, these models' ability to be applied to
a variety of software projects is limited because they need to be precisely calibrated based on project
specific parameters [15]. Regression-based models [16], Use Case Points (UCP) [17], and Function Point
Analysis (FPA) [13] are additional algorithmic techniques. These methods, which are based on empirical
relationships and predetermined formulas, frequently have trouble managing non-linearity and dynamic
project complexities [18].
C. Machine Learning and Computational Intelligence Approaches
Data-driven methods for software cost estimation have emerged as a result of recent developments in
machine learning (ML). Methods like ensem-ble learning [19], support vector machines (SVM) [20], and
artificial neural networks (ANN) [21] have demonstrated promise in identifying intricate, non-linear
relationships in project data. Khan et al.'s systematic literature review (SLR) emphasized how ML
techniques have become increasingly prevalent.
Hybrid models, which mix several estimating techniques to take advantage of their benefits, have been
the subject of recent research. The following are benefits of hybrid models, such as XGBoost in
conjunction with neural networks [20]:
• Effective feature importance evaluations: XGBoost excels at identifying cost drivers by evaluating

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

714

features that are important.
• Good at identifying non-linear patterns: Neural networks are excellent at identifying non-linear

relationships, and their power boosts estimation accuracy for complex projects.
• Adaptive Learning: Unlike algorithmic model techniques, hybrid models are dynamic and

continuously learn from fresh project data.
After conducting a thorough review of over 1,000 publications, Jadhav et al. [15] concluded that hybrid
machine learning (ML) approaches that include decision trees and neural networks yield the best results
(state-of-the-art) for software cost prediction. E. Comparative Analysis of Methods of Estimation A high-
level comparison of several estimating techniques is provided in Table II, which highlights the advantages
and disadvantages of each strategy. F. Research Gap and Contribution Identified Even though ML-based
cost estimating approaches have improved the literature, issues like feature selection, hyperparameter
optimisation, and model generalisability still exist and are considered outstanding problems. Few research
provide techniques that combine tree-based models (XGBoost) and deep learning (ANN) into a single
framework, whereas some publications claim results that are solely focused on these models [21].
This study addresses this gap by proposing a hybrid model that integrates XGBoost and Neural Networks
for software cost estimation. The key contributions of this research include: • Development of a hybrid
estimation model leveraging the strengths of XGBoost and deep learning. • Comparative analysis of
standalone ML models versus the proposed hybrid approach on benchmark datasets.
creation of an interactive cost estimating and benchmarking dashboard on the web.[22]
The suggested technique is covered in full in the section that follows

METHODOLOGY:
Our methodology employs a structured approach with three primary stages: planning, execution, and
analysis, to guarantee a methodical and objective analysis. With an emphasis on hybridizing XGBoost
and Neural Networks for improved accuracy, the methodology combines machine learning models
with conventional algorithmic cost estimation techniques

A. System Overview
The different phases of the methodological framework are depicted in Figure 1. Among the essential
steps are:
1. Problem Definition: Determining research goals and examining the shortcomings of existing cost

estimation models.
2. Data Collection: Gathering relevant datasets for software projects from publicly available sources
3. Preprocessing: Cleaning and normalizing data to address missing values and outliers
4. Feature Selection: Determine the primary cost drivers by employing statistical techniques and

feature importance ranking.
5. Evaluation: Comparing model performance using common metrics such as RMSE, MAE, and R-

squared

Table no 2. Comparison of software cost

Technique Advantages Limitations
Expert Judgment [29] Utilizes domain knowledge; quick estimation Subjective, inconsistent, difficult to scale

COCOMO Model [30] Structures, parameterized approach; widely Studied Requires predefined assumptions; limited
adaptability

Function Point Analysis [31] Suitable for early-stage estimation; considers software
functionality

Requires detailed documentation; may not
capture modern complexity

Machine Learning (ML) [31] Data-driven; self-improving with more data; high
accuracy

Requires large training dataset;
computationally expensive

XGBoost [32] High interpretability; efficient for tabular data;
feature importance analysis

Requires hyperparameter tuning; prone
to overfitting with small datasets

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

715

Neural Networks [32] Captures complex relationships;
adaptive learning

Computationally intensive; requires
significant training data

Hybrid Approach (XGBoost
+ Neural Networks) [32]

Combines tree-based interpretability with deep
learning accuracy; robust predictions

Requires careful integration and tuning;
increased computational cost

B. Data Collection and Preprocessing
The dataset includes a wide range of software project attributes, including team size, development time,
cost, and effort. Among the preprocessing steps are:
• Handling missing values by applying interpolation techniques.
• Categorical variables are encoded using one-hot encoding.
• Splitting the data into training (20%) and testing (80%) sets.
• Standardizing numerical features to create a consistent scale. Entrapment efficiency

C. Model Development
The To estimate costs, we employ two models:

• One efficient gradient boosting algorithm for capturing feature interactions is called XGBoost.

• Neural Network: A multi-layer perceptron (MLP) architecture for figuring out complex patterns.

A hybridized model is then produced by combining the weighted predictions from the two models.
Stability studies

D. Evaluation and Analysis
Performance is assessed using the following techniques:
• Use the Root Mean Absolute Error (RMAE) to determine how accurate predictions are.
• Mean Absolute Error (MAE) for robustness.
• Use the R-squared Score to assess model fit.
To verify improvements, a comparison with conventional techniques such as COCOMO is also conducted
[25].

E. Framework
This study follows a structured framework to ensure a comprehensive and precise analysis of software cost
estimation models. The framework includes step-by-step instructions for formulating research questions,
choosing datasets, preprocessing, feature engineering, training models, evaluating them, and benchmarking
against traditional estimation models. The following categories are used to group the stages:
1) Research Questions
2) Dataset Selection
3) Feature Engineering
4) Model Training
5) Evaluation and Benchmarking
6) Result Analysis and Discussion
These steps are represented graphically in the flowchart from the previous subsection

F. Dataset
The SEERA dataset, which includes historical software project data with attributes, was used in this
investigation.
pertinent to estimating costs. SEERA was selected for training and assessing cost estimation models because
of its dependability and broad coverage of software development metrics [26].
To guarantee the selection of pertinent data, inclusion and exclusion criteria were used, eliminating projects
with inconsistent or incomplete records [27]. To improve model performance, data preprocessing
procedures included encoding categorical variables, handling missing values, and normalizing numerical
features [28].

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

716

G. Article Search
A systematic search strategy was employed to locate relevant research and techniques related to software cost
estimation. To find literature on hybrid machine learning approaches for cost estimation, Boolean search
strings were used to search multiple databases. The search queries contained the following keywords.
• “Software cost estimation” OR “Software effort estimation”
• “Machine learning” OR “Artificial neural network” OR “XGBoost”
• “COCOMO” OR “Empirical study” OR “Software metrics”
• “Hybrid models” OR “Ensemble learning” OR “Regression analysis”

Filters were applied to limit the search results to peer reviewed research articles published between
2010 and 2024. The literature review served as a foundation for designing and evaluating the proposed
hybrid model.

H. Article Shortlisting
A multi-stage selection process was followed to shortlist relevant studies. Initially, a broad search yielded a
significant number of research articles. The filtering process involved the following steps:
1) Removing duplicate and irrelevant articles based on titles.
2) Screening abstracts for relevance to software cost estimation using machine learning.
3) Applying inclusion-exclusion criteria to retain high quality research studies.
4) Consulting domain experts to validate the selected literature.
After primary screening, a total of 120 relevant articles were identified. Further refinement based on quality
assessment reduced the selection to 45 high-impact studies. These studies provided insights into various cost
estimation techniques, which were used to benchmark our proposed hybrid model.

I. Conclusion
The methodology ensures a systematic approach to software to software cost estimation by leveraging hybrid
ML techniques.

RESULT AND DISCUSSION
This section presents the findings based on the four research questions outlined in the introduction. The
discussion is supported by empirical evidence, comparative analyses, and graphical representations.
A. Publication Trends
Figure 3 illustrates the trend of research publications related to software cost estimation techniques
over recent years. The analysis shows an increasing interest in this domain, particularly in machine
learning-based approaches.

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

717

Figure 3: Trend in the selected articles over the years

B. RQ-1: Comparison of Machine Learning and Non-Machine Learning Techniques
Table I summarizes the pros and cons of various cost estimation techniques, highlighting their advantages
and limitations.
C. RQ-2: Factors Influencing Accuracy in ML-Based Cost Estimation
The performance of ML models for cost estimation is influenced by multiple factors, including:
• extbfFeature Selection: Removing irrelevant features improves model efficiency.
• extbfHyperparameter Tuning: Adjusting parameters like learning rate and tree depth in XGBoost or

hidden layers in Neural Networks enhances accuracy.
• extbfDataset Quality: Balanced datasets with diverse project characteristics yield better

generalization.
• extbfEnsemble Methods: Combining multiple models (e.g., stacking XGBoost and Neural Networks)

reduces bias and variance.

D. RQ-3: Effectiveness of Hybrid Model (XGBoost + Neural Networks)
To evaluate the proposed hybrid approach, we compare it against standalone models using RMSE and
MAE metrics. Table III presents the results.

 Figure 4: Trend in the selected articles over the years
The results indicate that the hybrid approach outperforms individual models in terms of accuracy and
robustness.
E. RQ-4: Commonly Used Datasets and Benchmarking Approaches
The most frequently used datasets for software cost estimation research include:
• extbfSeera Dataset: Primary dataset used in this study.
• PROMISE Repository
• NASA Software Cost Estimation Dataset
• ISBSG Benchmarking Data

Table no 3. Performance comparison of cost estimation models

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

718

Using error metrics like RMSE, MAE, and R-squared values, benchmarking compares model predictions
with actual project costs.

CONCLUSION
Estimating software costs is essential for risk management, resource allocation, and project planning.
Precise estimation methods assist businesses in maximizing expenses and enhance software development's
efficacy. In this, we looked at a variety of machine learning (ML) and non-ML techniques for software
cost estimation, highlighting their benefits and drawbacks, and comparing performance. Our research
demonstrates that traditional models such as expert judgment, COCOMO, and analogical estimation are
still widely used due to their historical significance and interpretability value. However, modern software
projects usually defy these models due to their increasing complexity and variability. Machine learning
techniques, particularly ensemble approaches like XGBoost and deep learning-based strategies like
Artificial Neural Networks (ANN), have shown significant improvements in estimation accuracy. Because
these models use historical data, recognize complex patterns, and adapt to the particular needs of each
project, they are more appropriate for estimating the costs. One of our study's main conclusions is that
hybrid models, which integrate ML with conventional estimation techniques. By combining the
advantages of both models—XGBoost's effective handling of structured data and Neural Networks'
capacity to identify complex relationships in the dataset—the suggested hybrid approach combines
XGBoost and Neural Networks. According to experimental findings, this hybrid strategy performs more
accurately than individual models. Additionally, our research emphasizes the significance of feature
performance. Model generalization across various datasets can be improved and estimation errors can be
greatly decreased by choosing the most pertinent project features and fine-tuning ML model parameters.
The Mean Magnitude of Relative Error (MMRE) is the most commonly used evaluation metric in software
cost estimation studies. Other metrics that further validate the dependability of ML-based cost estimation
approaches include RMSE and PRED.
There are still certain restrictions in place despite the encouraging outcomes.
The availability of high-quality, labeled training data is essential to the performance of machine learning
models. Real-world software projects frequently have distinctive features that may not be fully captured
by existing datasets, even though public datasets like NASA and the PROMISE repository offer useful
benchmarking opportunities. Furthermore, deep learning models necessitate substantial computational
resources and meticulous parameter tuning, even though they can achieve superior accuracy.

FUTURE WORK
There are several possible avenues for future software cost estimation research:
• Integrating machine learning (ML)-based cost estimation into real-time software development

environments, like Agile and DevOps workflows, can yield continuous and adaptive cost predictions,
assisting teams in making well-informed decisions throughout the development process.

• Cost Estimation using Blockchain: based intelligent contracts and decentralized prediction models
can increase cost estimation’s dependability and transparency. Future studies can examine how
blockchain can minimize biases in estimation

• Cost Estimation Using Explainable AI (XAI): Gaining the confidence of stakeholders and project
managers requires interpretability. In order to increase the transparency of ML-based cost estimation
models, future research should concentrate on implementing explainable AI techniques like SHAP
(Shapley Additive explanations) and LIME (Local Interpretable Model-agnostic explanations).

Model RMSE MAE
XGBoost 15.2 11.8
Neural Networks 14.7 11.3
Hybrid (XGBoost +
NN)

13.1 10.5

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

719

• Benchmarking New Datasets: Expanding the evaluation of cost estimation models on more diverse
datasets, including industry-specific and real-world proprietary datasets, can improve the
generalizability of ML-based techniques.

• Cross-Domain Cost Estimation: While most studies focus on software development, similar
estimation techniques can be applied to other domains, such as cloud computing costs, cybersecurity
risk estimation, and IT infrastructure management.

REFERENCES
1. A. K. Bardsiri and S. M. Hashemi, “Software effort estimation: A survey of well-known approaches,”

Int. J. Comput. Sci. Eng., vol. 3, no. 1, pp. 46–50, 2014.
2. P. Singal, A. C. Kumari, and P. Sharma, “Estimation of software development effort: A differential evolution

approach,” Proc. Comput. Sci., vol. 167, pp. 2643–2652, 2020.
3. L. Cao, “Estimating efforts for various activities in agile software development: An empirical

study,” IEEE Access, vol. 10, pp. 83311– 83321, 2022
4. S. S. Gautam and V. Singh, “Adaptive discretization using golden section to aid outlier detection for

software development effort estimation,” IEEE Access, vol. 10, pp. 90369–90387, 2022.
5. J. Shah and N. Kama, “Extending function point analysis effort estimation method for software

development phase,” in Proc. 7th Int. Conf. Softw. Comput. Appl., Feb. 2018, pp. 77–81.
6. M. S. Khan et al., “Metaheuristic algorithms in optimizing deep neural network model for software effort

estimation,” IEEE Access, vol. 9, pp. 60309–60327, 2021Blair, M., Diabetes mellitus review. Urologic nursing,
2016. 36(1).

7. M. Ullah et al., “Software cost estimation—A comparative study of COCOMO-II and Bailey-Basili
models,” in Proc. Int. Conf. Adv. Emerg. Comput. Technol. (AECT), Feb. 2020, pp. 1–5.

8. R. K. Sachan et al., “Optimizing basic COCOMO model using simplified genetic algorithm,” Proc. Comput.
Sci., vol. 89, pp. 492–498, 2016.

9. A. P. Subriadi and A. Y. P. Putri, “The need to critical review of function point analysis,” in Proc. Int.
Seminar Res. Inf. Technol. Intell. Syst. (ISRITI), Nov. 2018, pp. 67–71Dhatariya, K.K., et al., Diabetic
ketoacidosis. Nature Reviews Disease Primers, 2020. 6(1): p. 40.

10. V. Van Hai et al., “Toward improving the efficiency of software development effort estimation via
clustering analysis,” IEEE Access, vol. 10, pp. 83249–83264, 2022

11. M. Rahman et al., “Software effort estimation using machine learning technique,” Int.
J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 1–6, 2023

12. Gupta, N., & Mahapatra, R. P. (2022). Automated software effort estimation for agile development system
by heuristically improved hybrid learning. Concurrency and Computation: Practice and Experience, 34(25),
e7267. https://doi.org/10.1002/cpe.7267

13. Jadhav, A., Kaur, M., & Akter, F. (2022). Evolution of software development effort and cost estimation
techniques: Five decades study using automated text mining approach. Mathematical Problems in
Engineering, 2022, Article ID 5782587.

14. Dhillon Carpenter, J., Wu, C.-Y., & Eisty, N. U. (2024). Leveraging large language models for predicting
cost and duration in software engineering projects. arXiv preprint arXiv:2409.09617.
https://arxiv.org/abs/2409.09617

15. Bosu, M. F., MacDonell, S. G., & Whigham, P. (2020). Time-aware models for software effort estimation.
arXiv preprint arXiv:2012.01596. https://arxiv.org/abs/2012.01596

16. Cao, L. (2022). Estimating efforts for various activities in agile software development: An empirical study.
IEEE Access, 10, 83311–83321. https://doi.org/10.1109/ACCESS.2022.3199187

17. Gautam, S. S., & Singh, V. (2022). Adaptive discretization using golden section to aid outlier detection for
software development effort estimation. IEEE Access, 10, 90369–90387.
https://doi.org/10.1109/ACCESS.2022.3207190

18. Van Hai, V., Nguyen, T. T., & Pham, T. H. (2022). Toward improving the efficiency of software
development effort estimation via clustering analysis. IEEE Access, 10, 83249–83264.
https://doi.org/10.1109/ACCESS.2022.3199115

19. Khan, M. S., Ahmad, M., & Khan, S. (2021). Metaheuristic algorithms in optimizing deep

http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.php

720

neural network model for software effort estimation. IEEE Access, 9, 60309–60327.
https://doi.org/10.1109/ACCESS.2021.3073456

20. Rahman, M., Islam, M. R., & Ahmed, M. (2023). Software effort estimation using machine learning technique.
International Journal of Advanced Computer Science and Applications, 14(4), 1–6.
https://doi.org/10.14569/IJACSA.2023.0140401

21. Singal, P., Kumari, A. C., & Sharma, P. (2020). Estimation of software development effort: A differential
evolution approach. Procedia Computer Science, 167, 2643–2652.
https://doi.org/10.1016/j.procs.2020.03.327

22. Ullah, M., Khan, M. S., & Ahmad, M. (2020). Software cost estimation— A comparative study of COCOMO-
II and Bailey-Basili models. In Proceedings of the International Conference on Advanced Emerging Computing
 Technologies (AECT) (pp. 1–5). https://doi.org/10.1109/AECT50129.2020.00010

23. Sachan, R. K., Singh, A. K., & Singh, R. (2016). Optimizing basic COCOMO model using simplified genetic
algorithm. Procedia Computer Science, 89, 492–498. https://doi.org/10.1016/j.procs.2016.06.097

24. Shah, J., & Kama, N. (2018). Extending function point analysis effort estimation method for software
development phase. In Proceedings of the 7th International Conference on Software and Computer
Applications (pp. 77–81). https://doi.org/10.1145/3185089.3185099

25. Subriadi, A. P., & Putri, A. Y. P. (2018). The need to critical review of function point analysis. In Proceedings
of the International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 67–
71). https://doi.org/10.1109/ISRITI.2018.8864322

26. Bardsiri, A. K., & Hashemi, S. M. (2014). Software effort estimation: A survey of well-known approaches.
International Journal of Computer Science and Engineering, 3(1), 46–50.

27. Kaur, A., & Kaur, K. (2015). A systematic review on software effort estimation using machine
learning techniques. International Journal of Computer Applications, 113(9), 1–5.
https://doi.org/10.5120/19889-1743

28. Jorgensen, M., & Shepperd, M. (2016). A systematic review of software development cost estimation studies.
IEEE Transactions on Software Engineering, 33(1), 33–53. https://doi.org/10.1109/TSE.2007.256943

29. Ali, S., & Abrar, M. (2019). Software effort estimation using machine learning techniques: A review.
International Journal of Advanced Computer Science and Applications, 10(6), 1–7.
https://doi.org/10.14569/IJACSA.2019.0100601

30. Chaudhary, R., & Singh, S. (2017). Software effort estimation using machine learning techniques.
International Journal of Computer Applications, 162(6), 1–5. https://doi.org/10.5120/ijca2017913614.

http://www.theaspd.com/ijes.php

