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Abstract: Estimating software costs is essential to project management because it helps businesses allocate resources efficiently. Despite 
their widespread use, traditional models like COCOMO frequently have drawbacks because they rely on assumptions and predefined 
parameters that are not well suited to contemporary software development techniques. Machine learning-based models, on the other 
hand, provide a data-driven strategy by utilizing past project data to increase estimation accuracy. This study compares and contrasts 
contemporary machine learning methods with conventional cost estimation models. We go over the drawbacks of traditional methods, 
investigate sophisticated regression strategies, and suggest a hybrid model that combines neural networks and XGBoost for increased 
accuracy. The superiority of our method in reducing estimation errors is shown by empirical results. The findings show that machine 
learning-based cost estimation can significantly enhance software engineering decision-making and resource planning. Neural networks, 
machine learning, XGBoost, COCOMO model, software cost estimation, and predictive analytics are some examples of index terms. 
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INTRODUCTION 
Accurate cost estimation is crucial for software development projects in order to guarantee effective 
scheduling, budgeting, and resource allocation. Software effort and cost have traditionally been 
predicted using estimation models such as the Constructive Cost Model (COCOMO). Although 
these models offer an organized method, they typically fall short in capturing the intricacy and 
flexibility of contemporary software projects. 

Predictive analytics has become a powerful substitute for software cost estimation as machine learning 
has progressed. Machine learning models can adjust and increase estimation accuracy over time by 
utilizing historical data. Predictions become more accurate when methods such as XGBoost and 
neural networks are combined to create a hybrid approach that combines the advantages of both 
algorithms. The industry's difficulties in estimating costs.     

A. Industry Challenges in Cost Estimation 
For the software industry, cost estimation poses several challenges, such as: 
Rapid Technological Developments: Because of recent advancements, it is difficult to rely on static 
estimation models.Project Complexity: estimating effort becomes more difficult in large-scale projects 
due to the numerous dependencies involved.Resource Allocation: Incorrect estimates lead to either 
overallocation or underutilization of resources.Scope Creep: Frequent requirement changes affect 
initial estimates, resulting in budgetary and timeline deviations. Given these challenges, an adaptive, 
data-driven approach is necessary for improving estimation accuracy 

B. Proposed Solution and Research Motivation 
Our study presents a hybrid cost estimation model that combines machine learning and conventional 
estimation methods to address the problems mentioned above. The following are the main drivers of 
this strategy: Including Data-Driven Insights: By examining past project data, machine learning 
models are able to spot hidden relationships and patterns that conventional models 
overlook.Improving Prediction Accuracy: Our strategy makes use of deep learning and feature 
importance analysis by fusing neural networks with XGBoost, a tree-based ensemble method. 
Increasing Adaptability: As new project data becomes available, machine learning-based techniques 
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can continuously learn and adapt, in contrast to static models. Bridging the Gap Between Theory and 
Practice: Our model aims to provide a practical tool that software development firms can integrate 
into their project management workflows 

C. Comparison of Existing Cost Estimation Techniques 
Table I summarizes the pros and cons of commonly used cost estimation techniques. Our hybrid 
model aims to capitalize on the strengths of traditional models while addressing their shortcomings 
using machine learning techniques. The following sections will discuss the dataset used, 
implementation details, experimental results, and future research directions To systematically address 
the challenges in software cost estimation and validate our proposed hybrid approach, this study 
investigates the following research questions:RQ-1: What are the most effective machine learning and 
non-machine learning techniques for software cost estimation, and how does their accuracy compare 
across different datasets. RQ-2: What key factors influence the accuracy of software cost estimation 
using ML techniques, and how can hyperparameter tuning and feature selection improve estimation 
performance? RQ-3: How does the integration of XGBoost and neural networks enhance cost 
estimation compared to standalone models? RQ-4: What are the most used datasets and benchmark 
studies for evaluating software cost estimation techniques? The rest of this paper is structured as 
follows: Section II presents a review of existing literature on cost estimation techniques. Section III 
discusses the proposed hybrid methodology combining XGBoost and neural networks. Section IV 
provides experimental results and performance analysis. Finally, Section V concludes the study and 
outlines future research directions. 
 
Table no 1. Analysis of cost estimation techniques discussed in literature 

Technique Pros Cons 
Expert Judgment [29] Quick estimation, utilizes 

domain knowledge 
Subjective, inconsistent across 

different estimators 
COCOMO Model [30] Uses historical data, adaptable to 

similar projects 
Requires high-quality historical 

data, limited to similar past 
projects 

Function Point Analysis [31] Well-established, parameterized 
approach 

Relies on predefined 
assumptions, less effective for 

modern software projects 
Machine Learning (ML) [31] Data-driven, self-improving, high 

accuracy 
Requires large datasets, 

computationally expensive 
XGBoost [32] High interpretability, efficient 

handling of missing values 
Requires careful hyperparameter 
tuning, prone to overfitting with 

small datasets 
Neural Networks [32] Captures complex relationships, 

excels in deep learning 
applications 

Computationally intensive, 
requires large training data and 

tuning 
Hybrid Approach (XGBoost 

+ Neural Networks) [32] 
Combines traditional and ML 
strengths, improves accuracy 

Needs model training and 
validation, requires sufficient 

data for both models 
 
LITERATURE REVIEW  
Software effort and cost estimation methods have evolved significantly over time. Broadly, these methods 
can be categorized into three groups: expert judgment-based approaches, algorithm-based approaches, and 
machine learning-driven computational intelligence models. Each approach has distinct advantages and 
limitations, as summarized in Table II. The types of software cost estimation are summarized in Fig1. 
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Fig1: Types of software cost estimation techniques 

Software effort estimation refers to predicting the amount of effort required to develop a software project, 
typically in person-hours or person-months. It is crucial for planning, budgeting, and resource allocation. 
This estimation can be approached using several models, broadly categorized into five types. 
The first category is Algorithmic Models, also known as parametric models. These rely on mathematical 
formulas to calculate effort based on input variables such as project size and complexity. A key example 
is the COCOMO (Constructive Cost Model), which includes three levels: Basic COCOMO, which 
estimates effort using just the size of the software (in thousands of lines of code); Intermediate 
COCOMO, which factors in various cost drivers like experience, reliability, and tools; and Detailed 
COCOMO, which goes further by estimating effort for individual phases of the development cycle[1]. 
Function Point Analysis (FPA) [3], which measures the software functionality that the user perceives, is 
another well-liked method. There are two types of this: Extended or Modified FPA, which is tailored to 
contemporary development platforms like object-oriented or agile (FPA) [2], and Classic FPA, which 
estimates inputs, outputs, data, and user interactions. The Bailey-Basili Model is an additional statistical 
model that uses regression analysis on historical project data [4]. The second category consists of models 
based on machine learning that are trained using past project data to forecast effort. Gaining knowledge 
from mapping effort to input Users usually utilize supervised learning models in this area, like decision 
trees, support vector machines (SVM), and linear regression, which learn the mapping from input features 
to effort. Neural networks, particularly hybrids and Deep Neural Networks (DNNs), possess Artificial 
Neural Networks (ANN) coupled with Deep Belief Networks are utilized because they can capture 
intricate, non-linear interactions. Ensemble approaches use multiple models to improve performance. 
Furthermore, to increase the estimation's accuracy, Metaheuristic-Optimized Models, Genetic Algorithms 
(GA), Differential Evolution (DE), Moth-Flame Optimizations, and Forest optimizations Algorithm are 
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applied to the parameter or feature selection. To reduce noise and find useful predictors, feature selection 
and dimensionality reduction techniques like PCA, feature grouping utilizing clusters, or adaptive 
discretization are crucial [5]. The third type of models are expert judgment-based models, which are 
derived using human expertise rather than formal techniques or data. Commonly employed techniques 
include the Delphi study, a panel method that relies on several rounds of discussion to reach consensus 
[6]. Expert Panels and Heuristic Models use expert judgement and general guidelines, respectively, while 
Analogy Based Estimation estimates effort by comparing ongoing projects with previously finished ones 
[7]. To capitalize on the various capabilities, the fourth model, the Hybrid Model, employs a variety of 
estimation methodologies. This could involve combining machine learning with algorithmic models, such 
as using the characteristics from algorithmic approaches as input to a learning model, or combining neural 
networks and metaheuristics to optimize prediction models. Large Language Models (LLMs) have recently 
emerged to help with work estimation as well. Models such as GPT use historical data points and natural 
language documentation to estimate effort without structure and to understand requirements. [8] Lastly, 
Time-Aware Models and Activity-Specific Models are included in the fifth category. The time elements of 
software development related to the software effort are taken into account. Project timetables and 
timeframes are incorporated into Time-Aware Effort Models in order to improve estimations [9]. Design, 
coding, and testing are examples of development activities that are used to break down effort in Activity-
Based Estimation. Lastly, the iterative and incremental development procedures used in agile software 
development are compatible with Agile-Specific Estimation Techniques, such as story points, velocity 
tracking, and others [10]. 
A. Expert Judgment-Based Approaches 
Expert-based approaches use experts' subject knowledge and expertise to estimate software development 
effort. Expert opinion surveys, Delphi estimating, and an analogy-based approach are a few examples. In 
order to improve estimation reliability, the Delphi approach solicits feedback from a number of experts 
over the course of numerous rounds [11]. 
Analogous estimating helps forecast costs for new projects by examining cost information from related 
previous initiatives.[12] Although depending on the opinions of experts might be helpful, it frequently 
has drawbacks such as subjectivity and inconsistency, particularly for more complicated or large-scale 
projects. Therefore, it can be easier and more accurate to estimate costs for new projects with comparable 
characteristics by leveraging data from earlier projects.[13] 
B. Algorithmic-Based Approaches 
Software development expenses are estimated using algorithmic models using statistical and mathematical 
methods. One of the most well-known methods in this category is the Constructive Cost Model 
(COCOMO) [14]. To improve estimation accuracy, variants like Basic COCOMO, Intermediate 
COCOMO, and Detailed COCOMO have been created. However, these models' ability to be applied to 
a variety of software projects is limited because they need to be precisely calibrated based on project 
specific parameters [15]. Regression-based models [16], Use Case Points (UCP) [17], and Function Point 
Analysis (FPA) [13] are additional algorithmic techniques. These methods, which are based on empirical 
relationships and predetermined formulas, frequently have trouble managing non-linearity and dynamic 
project complexities [18]. 
C. Machine Learning and Computational Intelligence Approaches  
Data-driven methods for software cost estimation have emerged as a result of recent developments in 
machine learning (ML). Methods like ensem-ble learning [19], support vector machines (SVM) [20], and 
artificial neural networks (ANN) [21] have demonstrated promise in identifying intricate, non-linear 
relationships in project data. Khan et al.'s systematic literature review (SLR) emphasized how ML 
techniques have become increasingly prevalent. 
Hybrid models, which mix several estimating techniques to take advantage of their benefits, have been 
the subject of recent research. The following are benefits of hybrid models, such as XGBoost in 
conjunction with neural networks [20]:  
• Effective feature importance evaluations: XGBoost excels at identifying cost drivers by evaluating 
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features that are important. 
• Good at identifying non-linear patterns: Neural networks are excellent at identifying non-linear 

relationships, and their power boosts estimation accuracy for complex projects. 
• Adaptive Learning: Unlike algorithmic model techniques, hybrid models are dynamic and 

continuously learn from fresh project data. 
After conducting a thorough review of over 1,000 publications, Jadhav et al. [15] concluded that hybrid 
machine learning (ML) approaches that include decision trees and neural networks yield the best results 
(state-of-the-art) for software cost prediction. E. Comparative Analysis of Methods of Estimation A high-
level comparison of several estimating techniques is provided in Table II, which highlights the advantages 
and disadvantages of each strategy. F. Research Gap and Contribution Identified Even though ML-based 
cost estimating approaches have improved the literature, issues like feature selection, hyperparameter 
optimisation, and model generalisability still exist and are considered outstanding problems. Few research 
provide techniques that combine tree-based models (XGBoost) and deep learning (ANN) into a single 
framework, whereas some publications claim results that are solely focused on these models [21]. 
This study addresses this gap by proposing a hybrid model that integrates XGBoost and Neural Networks 
for software cost estimation. The key contributions of this research include: • Development of a hybrid 
estimation model leveraging the strengths of XGBoost and deep learning. • Comparative analysis of 
standalone ML models versus the proposed hybrid approach on benchmark datasets. 
creation of an interactive cost estimating and benchmarking dashboard on the web.[22] 
The suggested technique is covered in full in the section that follows 

METHODOLOGY: 
Our methodology employs a structured approach with three primary stages: planning, execution, and 
analysis, to guarantee a methodical and objective analysis. With an emphasis on hybridizing XGBoost 
and Neural Networks for improved accuracy, the methodology combines machine learning models 
with conventional algorithmic cost estimation techniques 

A. System Overview 
The different phases of the methodological framework are depicted in Figure 1. Among the essential 
steps are: 
1. Problem Definition: Determining research goals and examining the shortcomings of existing cost 

estimation models. 
2. Data Collection: Gathering relevant datasets for software projects from publicly available sources 
3. Preprocessing: Cleaning and normalizing data to address missing values and outliers 
4. Feature Selection: Determine the primary cost drivers by employing statistical techniques and 

feature importance ranking. 
5. Evaluation: Comparing model performance using common metrics such as RMSE, MAE, and R-

squared 
 
Table no 2. Comparison of software cost 
 

Technique Advantages Limitations 
Expert Judgment [29] Utilizes domain knowledge; quick estimation Subjective, inconsistent, difficult to scale 

COCOMO Model [30] Structures, parameterized approach; widely Studied Requires predefined assumptions; limited 
adaptability 

Function Point Analysis [31] Suitable for early-stage estimation; considers software 
functionality 

Requires detailed documentation; may not 
capture modern complexity 

Machine Learning (ML) [31] Data-driven; self-improving with more data; high 
accuracy 

Requires large training dataset; 
computationally expensive 

XGBoost [32] High interpretability; efficient for tabular data; 
feature importance analysis 

Requires hyperparameter tuning; prone 
to overfitting with small datasets 
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Neural Networks [32] Captures complex relationships; 
adaptive learning 

Computationally intensive; requires 
significant training data 

Hybrid Approach (XGBoost 
+ Neural Networks) [32] 

Combines tree-based interpretability with deep 
learning accuracy; robust predictions 

Requires careful integration and tuning; 
increased computational cost 

 
B. Data Collection and Preprocessing 
The dataset includes a wide range of software project attributes, including team size, development time, 
cost, and effort. Among the preprocessing steps are: 
• Handling missing values by applying interpolation techniques. 
• Categorical variables are encoded using one-hot encoding. 
• Splitting the data into training (20%) and testing (80%) sets.  
• Standardizing numerical features to create a consistent scale. Entrapment efficiency 

C. Model Development 
The To estimate costs, we employ two models: 

• One efficient gradient boosting algorithm for capturing feature interactions is called XGBoost. 

• Neural Network: A multi-layer perceptron (MLP) architecture for figuring out complex patterns. 

A hybridized model is then produced by combining the weighted predictions from the two models. 
Stability studies 

D. Evaluation and Analysis 
Performance is assessed using the following techniques: 
• Use the Root Mean Absolute Error (RMAE) to determine how accurate predictions are. 
• Mean Absolute Error (MAE) for robustness. 
• Use the R-squared Score to assess model fit. 
To verify improvements, a comparison with conventional techniques such as COCOMO is also conducted 
[25]. 

E. Framework 
This study follows a structured framework to ensure a comprehensive and precise analysis of software cost 
estimation models. The framework includes step-by-step instructions for formulating research questions, 
choosing datasets, preprocessing, feature engineering, training models, evaluating them, and benchmarking 
against traditional estimation models. The following categories are used to group the stages: 
1) Research Questions 
2) Dataset Selection 
3) Feature Engineering 
4) Model Training 
5) Evaluation and Benchmarking 
6) Result Analysis and Discussion 
These steps are represented graphically in the flowchart from the previous subsection 

F. Dataset 
The SEERA dataset, which includes historical software project data with attributes, was used in this 
investigation.  
pertinent to estimating costs. SEERA was selected for training and assessing cost estimation models because 
of its dependability and broad coverage of software development metrics [26]. 
To guarantee the selection of pertinent data, inclusion and exclusion criteria were used, eliminating projects 
with inconsistent or incomplete records [27]. To improve model performance, data preprocessing 
procedures included encoding categorical variables, handling missing values, and normalizing numerical 
features [28]. 
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G. Article Search 
A systematic search strategy was employed to locate relevant research and techniques related to software cost 
estimation. To find literature on hybrid machine learning approaches for cost estimation, Boolean search 
strings were used to search multiple databases. The search queries contained the following keywords. 
• “Software cost estimation” OR “Software effort estimation” 
• “Machine learning” OR “Artificial neural network” OR “XGBoost” 
• “COCOMO” OR “Empirical study” OR “Software metrics” 
• “Hybrid models” OR “Ensemble learning” OR “Regression analysis” 

Filters were applied to limit the search results to peer reviewed research articles published between 
2010 and 2024. The literature review served as a foundation for designing and evaluating the proposed 
hybrid model. 

H. Article Shortlisting 
A multi-stage selection process was followed to shortlist relevant studies. Initially, a broad search yielded a 
significant number of research articles. The filtering process involved the following steps: 
1) Removing duplicate and irrelevant articles based on titles. 
2) Screening abstracts for relevance to software cost estimation using machine learning. 
3) Applying inclusion-exclusion criteria to retain high quality research studies. 
4) Consulting domain experts to validate the selected literature. 
After primary screening, a total of 120 relevant articles were identified. Further refinement based on quality 
assessment reduced the selection to 45 high-impact studies. These studies provided insights into various cost 
estimation techniques, which were used to benchmark our proposed hybrid model. 

I. Conclusion 
The methodology ensures a systematic approach to software to software cost estimation by leveraging hybrid 
ML techniques. 
 
RESULT AND DISCUSSION 
This section presents the findings based on the four research questions outlined in the introduction. The 
discussion is supported by empirical evidence, comparative analyses, and graphical representations. 
A. Publication Trends 
Figure 3 illustrates the trend of research publications related to software cost estimation techniques 
over recent years. The analysis shows an increasing interest in this domain, particularly in machine 
learning-based approaches. 
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Figure 3: Trend in the selected articles over the years 
 
B. RQ-1: Comparison of Machine Learning and Non-Machine Learning Techniques 
Table I summarizes the pros and cons of various cost estimation techniques, highlighting their advantages 
and limitations. 
C. RQ-2: Factors Influencing Accuracy in ML-Based Cost Estimation 
The performance of ML models for cost estimation is influenced by multiple factors, including: 
• extbfFeature Selection: Removing irrelevant features improves model efficiency. 
• extbfHyperparameter Tuning: Adjusting parameters like learning rate and tree depth in XGBoost or 

hidden layers in Neural Networks enhances accuracy. 
• extbfDataset Quality: Balanced datasets with diverse project characteristics yield better 

generalization. 
• extbfEnsemble Methods: Combining multiple models (e.g., stacking XGBoost and Neural Networks) 

reduces bias and variance. 
 
D. RQ-3: Effectiveness of Hybrid Model (XGBoost + Neural Networks) 
To evaluate the proposed hybrid approach, we compare it against standalone models using RMSE and 
MAE metrics. Table III presents the results. 

 
                                                Figure 4: Trend in the selected articles over the years 
The results indicate that the hybrid approach outperforms individual models in terms of accuracy and 
robustness. 
E. RQ-4: Commonly Used Datasets and Benchmarking Approaches 
The most frequently used datasets for software cost estimation research include: 
• extbfSeera Dataset: Primary dataset used in this study. 
• PROMISE Repository 
• NASA Software Cost Estimation Dataset 
• ISBSG Benchmarking Data 
 
Table no 3. Performance comparison of cost estimation models  
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Using error metrics like RMSE, MAE, and R-squared values, benchmarking compares model predictions 
with actual project costs. 
 
CONCLUSION 
Estimating software costs is essential for risk management, resource allocation, and project planning. 
Precise estimation methods assist businesses in maximizing expenses and enhance software development's 
efficacy. In this, we looked at a variety of machine learning (ML) and non-ML techniques for software 
cost estimation, highlighting their benefits and drawbacks, and comparing performance. Our research 
demonstrates that traditional models such as expert judgment, COCOMO, and analogical estimation are 
still widely used due to their historical significance and interpretability value. However, modern software 
projects usually defy these models due to their increasing complexity and variability. Machine learning 
techniques, particularly ensemble approaches like XGBoost and deep learning-based strategies like 
Artificial Neural Networks (ANN), have shown significant improvements in estimation accuracy. Because 
these models use historical data, recognize complex patterns, and adapt to the particular needs of each 
project, they are more appropriate for estimating the costs. One of our study's main conclusions is that 
hybrid models, which integrate ML with conventional estimation techniques. By combining the 
advantages of both models—XGBoost's effective handling of structured data and Neural Networks' 
capacity to identify complex relationships in the dataset—the suggested hybrid approach combines 
XGBoost and Neural Networks. According to experimental findings, this hybrid strategy performs more 
accurately than individual models. Additionally, our research emphasizes the significance of feature 
performance. Model generalization across various datasets can be improved and estimation errors can be 
greatly decreased by choosing the most pertinent project features and fine-tuning ML model parameters. 
The Mean Magnitude of Relative Error (MMRE) is the most commonly used evaluation metric in software 
cost estimation studies. Other metrics that further validate the dependability of ML-based cost estimation 
approaches include RMSE and PRED. 
There are still certain restrictions in place despite the encouraging outcomes. 
The availability of high-quality, labeled training data is essential to the performance of machine learning 
models. Real-world software projects frequently have distinctive features that may not be fully captured 
by existing datasets, even though public datasets like NASA and the PROMISE repository offer useful 
benchmarking opportunities. Furthermore, deep learning models necessitate substantial computational 
resources and meticulous parameter tuning, even though they can achieve superior accuracy. 

FUTURE WORK 
There are several possible avenues for future software cost estimation research: 
• Integrating machine learning (ML)-based cost estimation into real-time software development 

environments, like Agile and DevOps workflows, can yield continuous and adaptive cost predictions, 
assisting teams in making well-informed decisions throughout the development process.  

• Cost Estimation using Blockchain: based intelligent contracts and decentralized prediction models 
can increase cost estimation’s dependability and transparency. Future studies can examine how 
blockchain can minimize biases in estimation 

• Cost Estimation Using Explainable AI (XAI): Gaining the confidence of stakeholders and project 
managers requires interpretability. In order to increase the transparency of ML-based cost estimation 
models, future research should concentrate on implementing explainable AI techniques like SHAP 
(Shapley Additive explanations) and LIME (Local Interpretable Model-agnostic explanations). 

Model RMSE MAE 
XGBoost 15.2 11.8 
Neural Networks 14.7 11.3 
Hybrid (XGBoost + 
NN) 

13.1 10.5 
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• Benchmarking New Datasets: Expanding the evaluation of cost estimation models on more diverse 
datasets, including industry-specific and real-world proprietary datasets, can improve the 
generalizability of ML-based techniques. 

• Cross-Domain Cost Estimation: While most studies focus on software development, similar 
estimation techniques can be applied to other domains, such as cloud computing costs, cybersecurity 
risk estimation, and IT infrastructure management. 
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