ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

Technical Efficiency in Wheat Cultivation: An Analytical Study of the Transcendental Production Function and Performance Variations Between Fixed and Pivot Irrigation Systems

Bashar Mohsen Mohamed¹ and Yusra Tarek Bakr²

- ¹ Agricultural Technical College, Northern Technical University, Iraq
- ² Faculty of Agriculture, Tikrit University, Iraq

Emails: Bashar_mohsin.m@ntu.edu.iq, Usraa_Traiq@tu.edu.iq

Abstract

This study examines the technical efficiency of wheat production using Stochastic Frontier Analysis (SFA) and the transcendental production function to evaluate the effectiveness of various agricultural inputs, such as land area, pesticide and fertilizer usage, human and mechanical work hours, water, and seed quantities on productivity. It also explores the role of managerial factors, such as family size, education level, agricultural experience, and farmer age, in explaining technical inefficiency. The analysis compares fixed and pivot irrigation systems, revealing that fixed irrigation enhances production with the expansion of cultivated land, while pivot irrigation faces obstacles due to timing mismatches with climatic conditions. Furthermore, the study demonstrates that rational use of mechanical labor, water, and seed quantities significantly improves productivity. Conversely, misuse of pesticides and fertilizers can have adverse effects on soil and crops, necessitating advisory interventions. The findings highlight the need for improved agricultural resource management by adopting educational and awareness strategies to enhance farmers' efficiency. Innovative agricultural practices focusing on optimal input utilization are recommended. The study advocates for organizing planting schedules, investing in agricultural mechanization, regulating the use of agricultural chemicals, and strengthening farmers' managerial capacities to boost productivity and minimize the gap between actual and optimal frontier production.

Keywords: Transcendental Production Function, Technical Efficiency, Wheat Farmers Adapted from the first researcher's doctoral thesis

INTRODUCTION

Wheat cultivation, as one of the pillars of food security, faces significant challenges in achieving productive efficiency amidst growing demand and fluctuating natural resources. This research aims to explore production mechanisms through the application of the transcendental production function model, utilizing stochastic frontier analysis (SFA) statistical techniques.(Ahmed, 2021: 559-578). The study focuses on evaluating the impact of key inputs such as cultivated land area, pesticide usage, human and mechanical labor hours, added water quantities, seeds, and fertilizers on wheat production. It also addresses inefficiency factors stemming from managerial variables like family size, educational level, supplementary irrigation experience, farmer age, and wheat farming expertise. The research emphasizes the importance of utilizing specialized software (e.g., Frontier 4.1) to estimate nonlinear models and analyze the disparities between actual and optimal production outcomes. This allows researchers and farmers to identify the factors hindering optimal performance. Additionally, the study sheds light on potential differences between fixed and pivot irrigation systems, providing deeper insights into how

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

technologies and management practices influence technical efficiency and productivity, the research contributes practical recommendations aimed at improving resource utilization and minimizing waste, thereby enhancing farm competitiveness in a dynamic agricultural environment. Through this introduction, we advocate for a reassessment of agricultural management policies and the adoption of innovative solutions based on precise data analysis and modern economic models, ultimately boosting production efficiency and enhancing long-term agricultural sustainability (Lee, C. & Zhang, Y., 2023:87-105) research Problem: The research problem lies in identifying and understanding the factors that prevent achieving optimal productive efficiency in wheat cultivation, highlighting the differences arising from the use of different irrigation systems. The core question here is: How can agricultural resources be utilized to their maximum potential, and how can technical and managerial operations be optimized to reduce the gap between actual and frontier production? research Aim The primary aim of this research is to analyze and evaluate productive efficiency in wheat cultivation using the transcendental production function model and stochastic frontier analysis (SFA). This approach seeks to uncover the technical and managerial factors influencing optimal production from the available resources. The study examines the impact of various production inputs-such as land area, pesticides, human and mechanical labor hours, water, seeds, and fertilizers—while considering the influence of managerial inefficiency variables (e.g., family size, education level, and experience) on production performance. Additionally, it aims to shed light on the differences between fixed and pivot irrigation systems and develop practical recommendations to enhance resource management, reduce waste, and bridge the gap between actual and optimal production levels, thereby boosting efficiency and productivity in the agricultural sector. research Hypothesis: Improving the utilization of agricultural resources—such as land area, pesticides, mechanical and human labor hours, water, seeds, and fertilizers-alongside strengthening managerial aspects (e.g., family size, education level, and agricultural experience) is expected to increase wheat production and narrow the gap between actual and optimal production. Notable differences in this relationship are anticipated between fixed and pivot irrigation systems (Martins, 2022:332-349).

Results from the Transcendental Logarithmic Production Function TL Based on Stochastic Frontier Analysis SFA:

The model was specified using stochastic frontier analysis (SFA), with the dependent variable being wheat production quantity and the independent variables including land area, pesticide quantity, human labor hours, mechanical labor hours, added water quantity, seed quantity, and fertilizer quantity. Inefficiency variables were represented by managerial factors, which encompassed family size, educational level, supplementary irrigation experience, farmer age, and farming experience. The Frontier 4.1 software and Maximum Likelihood (ML) method were employed to estimate the model since the Ordinary Least Squares (OLS) method cannot be applied to nonlinear regression models. However, OLS was utilized as an initial step to provide the best unbiased linear estimates of parameters, except for the intercept B0. Then, the Corrected Ordinary Least Squares (COLS) method was used as a second step to obtain unbiased linear parameters, followed by the ML method in the third step to achieve maximum likelihood estimates of the production function's parameters. The results of the Transcendental Logarithmic Production Function (TL) based on the ML method and the inefficiency model using stochastic frontier analysis (SFA) are presented in (Brown, S. & Smith, R.,2022:145-164) Table (1).

Table (1): Results of the Transcendental Logarithmic (TL) Production Function and the Inefficiency Model for Fixed Irrigation

Parameter	Cof.	st.	t-r.
Beta0	-4.511	2.669	-1.689**

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

Beta1	1.0514	0.3111	3.379***		
Beta2	-0.048	0.0315	-1.545*		
Beta3	-2.774	1.011	-2.741***		
Beta4	2.436	0.920	2.646***		
Beta5	0.758	0.273	2.773***		
Beta6	3.857	1.462	2.637***		
Beta7	-1.732	0.898	-1.927**		
	TE	EFFECTS MC	DEL(inefficiency)		
Delta0	-4.942	1.660	-2.977***		
Delta1	-0.092	0.036	-2.542***		
Delta2	-0.393	0.097	-4.014***		
Delta3	-0.070	0.022	-3.113***		
Delta4	0.101	0.025	4.005***		
Delta5	-0.050	0.013	-3.852***		
sigma-squared	1.480	0.362	4.088***		
Gamma	0.973	0.0097	99.863***		
log likelihood function	-120.138				

Source: Researcher's own work using Frontier 4.1

Translation of the Interpretation of Fixed Irrigation Results: 1.Area (X1):

The elasticity value for this variable reveals a positive relationship between the cultivated area and wheat yield. This indicates that a 1% increase in the area cultivated with wheat results in a 1.0514% increase in production. This aligns with the expectations and concepts of economic theory. Area is the most influential variable affecting yield, given its importance in increasing production, particularly in supplemental irrigation. Notably, fixed sprinkler irrigation requires large areas.

2. Pesticide Quantity (X2):

The sign of this variable was negative, with an elasticity value of -0.048%. However, its impact was minor, likely due to farmers' lack of knowledge about pesticide usage methods and the mismatch between pesticides and disease symptoms, which could lead to soil degradation and crop damage. Additionally, pesticides are often used in non-scientific and unsystematic ways, potentially causing pest resistance. A lack of agricultural guidance and advisory services has negatively affected this resource's utilization. Farmers aim to purchase larger quantities of pesticides based on field control needs. However, high market prices and farmers' limited understanding of diseases affecting their crops and their treatment mechanisms hinder optimal use.

3. Human Labor Hours (X3):

The elasticity value for human labor hours is -2.774, indicating a negative relationship between human labor and wheat production. This points to two key factors: First, limited job opportunities in rural areas drive farmers to migrate to cities where industrial, commercial, and service sector jobs are available.

^{*}Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

Second, wheat production heavily relies on mechanized labor, which reduces the contribution of human labor. A 1% increase in human labor hours would result in a 2.774% decrease in wheat production.

4. Mechanical Labor Hours (X4):

The elasticity value for mechanical labor hours is 2.436, demonstrating a significant positive impact on wheat production. This result aligns with economic theory, indicating that a 1% increase in mechanical labor would result in a 2.436% increase in production. The effect of mechanized labor is evident, as wheat production depends significantly on mechanical operations.

5. Added Water Quantity (X5):

The variable shows a positive relationship with wheat yield, as indicated by the positive elasticity value. This means that increasing the amount of irrigation water given to wheat crops by 1% leads to a 0.758% increase in production. This reflects both the impact of water quantity on wheat yield and the importance of supplemental irrigation.

6. Seed Quantity (X6):

The elasticity of this variable is positive and aligns with economic theory, confirming the positive effect of seed quantity on production. A 1% increase in seed use leads to a 3.857% increase in wheat production. This indicates that the amount of seeds used by farmers significantly contributes to increasing wheat yields.

7. Fertilizer Quantity (X7):

The elasticity value for fertilizers (-1.732) contrasts with economic logic, indicating a negative relationship between fertilizer usage and yield. A 1% increase in fertilizer use results in a 1.732% reduction in yield. This is attributed to excessive fertilizer use, which can increase soil salinity and reduce beneficial microorganisms, ultimately lowering wheat productivity. As for the significance of the variables, although statistical significance is not crucial for models estimated using the ML method (as the parameters are efficient and consistent within error bounds Ui and small sample sizes relative to population estimates (Thompson, J. & Patel, R.,2021:106-118), the variables of cultivated area, human labor hours, mechanical labor hours, added water quantities, seed quantities, and fertilizer quantities were significant at the 1% level, while pesticide quantity was significant at the 10% level.

Table (2): Results of the Transcendental Logarithmic (TL) Production Function and the Inefficiency Model for Pivot Irrigation

Parameter	Cof.	st.	t-r.
Beta0	-7.33	2.820	-2.601***
Beta1	-3.512	1.794	-1.957**
Beta2	-0.131	0.025	-5.175***
Beta3	0.049	0.786	0.062
Beta4	4.450	1.309	3.398***
Beta5	1.535	0.343	4.464***
Beta6	3.594	1.078	3.333***

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

Beta7	-1.414	0.954	-1.481*
	,	TE EFFECTS M	ODEL(inefficiency)
Delta0	-7.794	4.673	-1.667**
Delta1	-0.0087	0.038	-0.224
Delta2	-1.233	0.812	-1.519*
Delta3	-0.088	0.054	-1.641**
Delta4	0.106	0.057	1.863**
Delta5	0.073	0.046	1.572*
sigma-squared	1.752	1.067	1.642**
Gamma	0.992	0.00508	195.459***
log likelihood function	-22.610		

Source: Researcher's own work using Frontier 4.1

1.Area (X1):

The elasticity value for this variable indicates an inverse relationship between cultivated area and wheat yield. A 1% increase in cultivated wheat area results in a 3.512% decrease in production, which contradicts economic theory. This anomaly is attributed to variations in planting schedules in regions using pivot irrigation, coupled with high temperatures during December and January, which triggered active vegetative growth. As a result, the wheat plant entered the grain-heading stage early in March and April, and the crop was harvested in May. Additionally, low temperatures in April negatively affected pollination, fertilization, and the grain-filling period. Sudden and rapid temperature increases forced the plants to mature quickly, shortening the grain-filling period. Consequently, the grains became thin, with low specific weight, reducing the weight of 1,000 grains. All these factors significantly impacted total yield during the 2023–2024 agricultural season.

2. Pesticide Quantity (X2):

The elasticity value for pesticides is negative (0.131), which does not align with economic logic. However, its impact appears minor. This result can be attributed to farmers' lack of knowledge about pesticide usage methods, mismatched application to crop disease symptoms, and non-scientific and unsystematic usage. Additionally, a lack of agricultural guidance and advisory services exacerbated the misuse of this resource. Farmers often sought to purchase larger quantities of pesticides based on field pest control needs. However, high market prices and their limited awareness of crop diseases and treatment mechanisms hindered proper usage, further reflecting negatively on production outcomes.

3. Human Labor Hours (X3):

The elasticity value for human labor hours is 0.049, indicating a positive relationship between human labor and wheat production, albeit with a minimal impact. This may be attributed to the limited employment opportunities in rural areas, prompting farmers to migrate to cities where jobs in industrial,

^{*}Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level the Interpretation of Pivot Irrigation Results:

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

commercial, and service sectors are more accessible. Additionally, wheat production heavily relies on mechanized labor, which reduces the contribution of human labor.

4. Mechanical Labor Hours (X4):

The variable for mechanical labor hours shows a significant positive impact on wheat production, with an elasticity value of 4.450. This aligns with economic logic, demonstrating that a 1% increase in mechanical labor results in a 4.450% increase in production. The importance of mechanized labor is evident, as wheat cultivation largely depends on machinery for optimal productivity.

5. Added Water Quantity (X5):

This variable exhibits a positive relationship with wheat production, as indicated by the positive elasticity value of 1.535. A 1% increase in the amount of irrigation water provided to wheat crops results in a 1.535% increase in production. This reflects the importance of water quantity in improving wheat yield and highlights the crucial role of supplemental irrigation.

6. Seed Quantity (X6):

The elasticity value for seeds is positive (3.594), aligning with economic theory and confirming the variable's positive impact. This indicates that a 1% increase in seed usage leads to a 3.594% increase in wheat production. This highlights that the quantity of seeds used by farmers significantly contributes to substantial improvements in wheat yields.

7. Fertilizer Quantity (X7):

The elasticity value for fertilizers is negative (-1.414), contrary to economic logic, indicating a negative relationship between fertilizer usage and production. A 10% increase in fertilizer usage results in a 1.414% decrease in yield. This negative outcome is attributed to the excessive use of fertilizers, which can increase soil salinity and reduce beneficial microorganisms in the soil, ultimately lowering wheat productivity. As for the significance of the variables, while statistical significance is generally less critical in ML-estimated models due to their efficient and consistent parameter estimates under small-sample conditions (Kutsoyiannis, 1981, p. 41), the following variables demonstrated significance: Pesticide quantity, mechanical labor hours, added water quantities, and seed quantities were significant at the 1% level. Cultivated area was significant at the 5% level. Fertilizer quantity was significant at the 10% level. Human labor hours did not show statistical significance(Johnson, D. & Lee, M., 2023:125-137).

The inefficiency condition is estimated conditionally based on residuals, with the residual distribution implicitly determining the inefficiency distribution. The inefficiency arises from the negative deviation from the frontier efficiency curve. The inefficiency analysis reflects the levels of managerial operations, and three models of inefficiency are outlined:

1.The First Model: Presented by Colli & Battese in 1996, which relies on the temporal variation effect in inefficiency. Its form is: Uit = \exp[-\eta(t-T)] \dots(1)

η: Unknown parameters

t-T: Temporal variation period

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

2.The Second Model: Proposed by Ziu & Hnauy in 1994, focusing on the interaction among explanatory variables in the inefficiency model, with the form:

$$Uit = Sigma z_{it} + delta z_{it} + w_{it} dots (2)$$

3. The Third Model: Introduced by Colli & Battese in 1995 for Panel Data, with the following form:

$$Uit = \det z_{it} - w_{it} \det (3)$$

w_{it}: Unobserved random variable.

In our study, the second model was adopted to determine the impact of economic and social factors (managerial factors) (Garcia, P. & Kumar, A., 2022:103-115). The results are as follows:

4, Effect of Family Size (D1):

The effect of family size is negative and significant at the 1% level for fixed irrigation. This indicates that technical efficiency improves as family size increases. It is likely that larger families are more technically efficient, with inefficiency decreasing over time. Larger families are found to be more efficient compared to smaller families. For pivot irrigation, the result was negative but not significant.

5. Effect of Education Level (D2):

The effect of education level is negative and significant at the 1% level, indicating that farmers with higher education levels are more technically efficient. In other words, technical efficiency improves with higher educational attainment for fixed irrigation. For pivot irrigation, the effect was also negative and significant, but at the 5% level.

6. Effect of Experience in Supplemental Irrigation (D3):

The coefficient for supplemental irrigation experience is negative and significant at the 1% level for fixed irrigation, indicating that technical efficiency improves as experience in supplemental irrigation increases. For pivot irrigation, the coefficient is also negative but significant at the 5% level, suggesting that experience has a notable impact on enhancing technical efficiency.

4. Effect of Age (D4):

The age parameter in the inefficiency function is positive and significant at the 1% level, with a value of 0.101 for fixed irrigation. For pivot irrigation, it is also positive and significant, but at the 5% level. This means that as the farmer's age increases, it negatively affects technical efficiency. Younger farmers tend to be more efficient as they are better able to adopt modern knowledge and technology and adapt to new techniques, whereas older farmers may find it more challenging to embrace changes and innovations.

5. Wheat Farming Experience (D5):

For fixed irrigation, the coefficient for wheat farming experience is negative and significant at the 1% level, indicating that technical efficiency improves as experience in wheat farming increases. For pivot irrigation, the coefficient is positive and significant at the 10% level, suggesting that older farmers are less technically efficient than younger farmers. This might be due to older farmers having less adaptability and limited access to advanced technology and high-quality resources compared to younger farmers.

6. Statistical Parameters (σ^2 and Γ):

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

The value of Sigma Squared (σ^2) is 0.046 for fixed irrigation (significant at the 1% level) and 1.75 for pivot irrigation (significant at the 5% level). This reflects the validity and reliability of the assumed distribution of the composite error term. The value of Gamma (Γ) is 0.973 for fixed irrigation and 0.992 for pivot irrigation, both significant at the 1% level. This indicates that the majority of the deviations from the frontier output (variance of values) are due to production inefficiency rather than random factors (Evans, G. & Raymond, L. ,2020: 201-219). From Table (3) for fixed irrigation, the highest technical efficiency value reached 59% at farm number 148. This indicates that the farm is nearing full efficiency as it achieved the highest output among the sample farms with limited input usage. In other words, this farm produces this level of output using only 59% (or less) of the inputs. Conversely, the lowest efficiency level was 10% at farm number 772, suggesting that for this farm to reach efficiency and produce the current output level (or more), it would need to utilize only 10% (or less) of the current inputs.

For Table (4) related to pivot irrigation, the highest efficiency value was 96% at farm number 175. This shows that the farm is approaching full efficiency as it achieved the highest output among the sample farms with limited input usage, producing this level of output using only 96% (or less) of the inputs. Meanwhile, the lowest efficiency level was 19% at farm number 172, indicating that this farm needs to use only 91% (or less) of its current inputs to achieve efficiency and maintain or increase its current output level. The average technical efficiency for fixed and pivot irrigation across the sample is 73% and 76%, respectively. These results indicate that farmers could increase their production by 27% and 24% without needing additional economic resources in the production process. This implies that the sample loses a portion of economic resources and incurs additional costs equivalent to 27% and 24% of resource costs. Furthermore, it means that farms could produce the same output level using approximately 27% and 24% fewer resources. The average efficiency highlights a deviation of 27% and 24% from actual production to optimal production levels for fixed and pivot irrigation, respectively. Farmers could achieve this optimal output by utilizing available economic resources more efficiently. This demonstrates that the sample farms have not achieved full economic efficiency (100%), and all farms operate below the production possibilities curve, with varying degrees of deviation. Consequently, these farms have the opportunity to reduce the amount of economic resources used to achieve the same output level or to use the current level of resources to attain higher production levels(O'Connor, S. & Green, P., 2023:112-130).

Table (3): Technical Efficiency (TE) of the Study Sample According to Stochastic Frontier Analysis (SFA) for Fixed Irrigation

TE	Firm										
0.815	251	0.584	201	0.848	151	0.838	101	0.825	51	0.842	1
0.827	252	0.521	202	0.787	152	0.669	102	0.830	52	0.826	2
0.815	253	0.616	203	0.710	153	0.442	103	0.876	53	0.743	3
0.677	254	0.720	204	0.923	154	0.911	104	0.885	54	0.738	4
0.695	255	0.665	205	0.922	155	0.825	105	0.878	55	0.744	5
0.807	256	0.681	206	0.838	156	0.847	106	0.863	56	0.842	6
0.599	257	0.705	207	0.746	157	0.547	107	0.539	57	0.846	7
0.934	258	0.644	208	0.637	158	0.834	108	0.949	58	0.853	8
0.921	259	0.776	209	0.882	159	0.513	109	0.944	59	0.729	9

International Journal of Environmental Sciences ISSN: 2229-7359

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

0.216	260	0.542	210	0.750	160	0.803	110	0.926	60	0.767	10
0.669	261	0.643	211	0.662	161	0.833	111	0.796	61	0.901	11
0.569	262	0.677	212	0.585	162	0.845	112	0.943	62	0.904	12
0.140	263	0.659	213	0.729	163	0.570	113	0.914	63	0.850	13
0.901	264	0.610	214	0.676	164	0.431	114	0.900	64	0.773	14
0.763	265	0.662	215	0.727	165	0.510	115	0.896	65	0.861	15
0.553	266	0.656	216	0.771	166	0.369	116	0.886	66	0.504	16
0.889	267	0.644	217	0.876	167	0.859	117	0.899	67	0.866	17
0.757	268	0.838	218	0.864	168	0.808	118	0.923	68	0.866	18
0.524	269	0.656	219	0.794	169	0.818	119	0.889	69	0.873	19
0.716	270	0.891	220	0.886	170	0.847	120	0.886	70	0.385	20
0.384	271	0.846	221	0.845	171	0.643	121	0.887	71	0.450	21
0.782	272	0.880	222	0.665	172	0.791	122	0.869	72	0.940	22
0.910	273	0.654	223	0.629	173	0.728	123	0.818	73	0.844	23
0.811	274	0.781	224	0.652	174	0.777	124	0.838	74	0.942	24
0.841	275	0.752	225	0.620	175	0.736	125	0.832	75	0.114	25
0.247	276	0.836	226	0.817	176	0.821	126	0.640	76	0.941	26
0.101	277	0.796	227	0.689	177	0.820	127	0.737	77	0.631	27
0.208	278	0.644	228	0.666	178	0.671	128	0.603	78	0.866	28
0.932	279	0.875	229	0.668	179	0.693	129	0.563	79	0.679	29
0.228	280	0.804	230	0.719	180	0.842	130	0.676	80	0.397	30
0.198	281	0.810	231	0.520	181	0.788	131	0.708	81	0.207	31
0.844	282	0.825	232	0.694	182	0.635	132	0.840	82	0.646	32
0.911	283	0.822	233	0.720	183	0.855	133	0.831	83	0.470	33
0.880	284	0.826	234	0.733	184	0.558	134	0.788	84	0.944	34
0.869	285	0.830	235	0.641	185	0.717	135	0.799	85	0.686	35
0.570	286	0.771	236	0.561	186	0.610	136	0.865	86	0.904	36
0.791	287	0.812	237	0.757	187	0.835	137	0.841	87	0.856	37
0.920	288	0.820	238	0.730	188	0.813	138	0.835	88	0.871	38
		0.901	239	0.575	189	0.891	139	0.833	89	0.900	39
		0.821	240	0.574	190	0.604	140	0.824	90	0.862	40
0.737	MEN	0.803	241	0.589	191	0.901	141	0.835	91	0.888	41
		0.841	242	0.638	192	0.725	142	0.920	92	0.877	42
		0.819	243	0.627	193	0.713	143	0.837	93	0.916	43
		0.850	244	0.655	194	0.839	144	0.826	94	0.848	44
		0.738	245	0.603	195	0.895	145	0.786	95	0.816	45
		0.757	246	0.660	196	0.820	146	0.855	96	0.852	46
		0.861	247	0.615	197	0.768	147	0.879	97	0.895	47
		0.758	248	0.589	198	0.951	<mark>148</mark>	0.669	98	0.859	48
		0.658	249	0.600	199	0.852	149	0.804	99	0.889	49
		0.827	250	0.639	200	0.685	150	0.817	100	0.857	50

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

Source: Derived from the researcher's work based on technical efficiency results obtained using the SFA method

Table (4): Technical Efficiency (TE) of the Study Sample According to Stochastic Frontier Analysis (SFA) for Pivot Irrigation

TE	Firm	TE	Firm	TE	Firm	TE	Firm	TE	Firm	TE	Firm
0.925	161	0.909	129	0.837	97	0.848	65	0.881	33	0.840	1
0.590	162	0.957	130	0.655	98	0.810	66	0.892	34	0.909	2
0.571	163	0.886	131	0.566	99	0.881	67	0.883	35	0.684	3
0.645	164	0.748	132	0.460	100	0.849	68	0.872	36	0.763	4
0.293	165	0.847	133	0.882	101	0.892	69	0.906	37	0.722	5
0.213	166	0.942	134	0.875	102	0.890	70	0.845	38	0.800	6
0.425	167	0.768	135	0.878	103	0.911	71	0.956	39	0.869	7
0.555	168	0.785	136	0.797	104	0.858	72	0.856	40	0.851	8
0.758	169	0.709	137	0.912	105	0.938	73	0.882	41	0.695	9
0.688	170	0.820	138	0.910	106	0.896	74	0.908	42	0.803	10
0.765	171	0.803	139	0.913	107	835	75	0.949	43	0.957	11
0.193	172	0.764	140	0.887	108	0.891	76	0.927	44	0.958	12
0.227	173	0.829	141	0.954	109	0.962	77	0.830	45	0.908	13
0.368	174	0.905	142	0.881	110	0.859	78	0.902	46	0.762	14
0.964	<mark>175</mark>	0.881	143	0.911	111	0.934	79	0.895	47	0.913	15
0.262	176	0.765	144	0.847	112	0.781	80	0.871	48	0.524	16
0.368	177	0.909	145	0.941	113	0.928	81	0.691	49	0.875	17
0.592	178	0.794	146	0.844	114	0.879	82	0.333	50	0.879	18
0.830	179	0.606	147	0.811	115	0.696	83	0.931	51	0.920	19
0.356	180	0.907	148	0.922	116	0.887	84	0.905	52	0.888	20
0.352	181	0.663	149	0.958	117	0.888	85	0.903	53	0.914	21
0.778	182	0.627	150	0.835	118	0.718	86	0.437	54	0.925	22
0.865	183	0.479	151	0.830	119	0.908	87	0.902	55	0.601	23
0.335	184	0.665	152	0.806	120	0.927	88	0.431	56	0.713	24
0.569	185	0.843	153	0.735	121	0.632	89	0.863	57	0.628	25
0.955	186	0.433	154	0.907	122	0.804	90	0.894	58	0.627	26
		0.509	155	0.773	123	0.835	91	0.909	59	0.702	27
		0.269	156	0.650	124	0.901	92	0.635	60	0.846	28
0.760	MEN	0.418	157	0.663	125	0.872	93	0.295	61	0.881	29
		0.509	158	0.649	126	0.772	94	0.456	62	0.844	30
		0.495	159	0.793	127	0.618	95	0.338	63	0.872	31
		0.314	160	0.720	128	0.800	96	0.902	64	0.846	32

Source: Derived from the researcher's work based on technical efficiency results obtained using the SFA method

When technical efficiency levels were divided into different ranges for fixed and pivot irrigation, respectively, the following results were observed: 6.25% (fixed) and 12.90% (pivot) of farmers had

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

technical efficiency levels between 10–20. This can be attributed to efficient resource utilization, particularly family labor, seeds, and fertilizer, compared to other farms. 62 farms (fixed) and 11 farms (pivot) achieved efficiency levels between 51–60, representing 9.03% and 5.91% of the sample farmers, respectively. 18.06% (fixed) and 10.22% (pivot) of the total sample achieved technical efficiency levels between 61–70. 17.71% (fixed) and 12.36% (pivot) of the sample exhibited technical efficiency levels ranging from 71–80. The highest technical efficiency level—above 81—was achieved by 141 farms (48.96%) for fixed irrigation and 109 farms (58.60%) for pivot irrigation, reflecting optimal use of resources(Wilson, T. & Garcia, M.,2021:44-56).

CONCLUSIONS

In light of the stochastic frontier analysis and the transcendental production function estimates, several significant quantitative and qualitative differences between fixed and pivot irrigation systems in wheat cultivation are evident:

- 1.Land Area Influence For fixed irrigation, a 1% increase in land area is associated with a 1.05% increase in production. Conversely, for pivot irrigation, the same increase results in a 3.51% decrease in production. This reflects the impact of varied planting schedules and climatic conditions.
- 2.Labor Impact For fixed irrigation, mechanical labor hours show a positive impact (2.44% increase in production for a 1% increase), whereas human labor hours lead to a 2.77% decrease in production. In pivot irrigation, the impact of mechanical labor is stronger, with a 4.45% increase in production for a 1% rise, emphasizing the importance of technology in this system.
- 3.Resource Effects Both water and seed variables show positive effects in both systems. However, pesticide and fertilizer impacts reveal discrepancies that may reflect differences in usage methods and resource management in each system.
- 4.Technical Efficiency For fixed irrigation, the highest level of technical efficiency was recorded at 59% (farm 148), and the lowest at 10% (farm 772), with an average efficiency of around 73%, indicating a productivity gap of approximately 27%. For pivot irrigation, the maximum efficiency reached 96%, while the lowest was 19%, with an average of about 76%, signifying a productivity gap of roughly 24%. Gamma coefficients of 0.973 (fixed) and 0.992 (pivot) suggest that most deviations from optimal production are due to inefficiency rather than random factors.
- 5.Managerial Factors Administrative variables like family size, educational level, experience in supplemental irrigation, and farmer age play a pivotal role in improving technical efficiency. Farmers with higher education levels and greater experience tend to achieve better technical efficiency, thereby narrowing the production gap to the optimal level.

RECOMMENDATIONS

- 1.Rescheduling Planting for Pivot Irrigation It is recommended to adjust planting and harvesting schedules to avoid adverse climatic conditions associated with increased cultivated areas. Field studies should be conducted to identify the best practices.
- 2.Enhancing Mechanization Given the significant positive impact of mechanical labor hours, investments in updating machinery and providing necessary training support are encouraged to facilitate the transition from manual labor.

ISSN: 2229-7359 Vol. 11 No. 7s, 2025

https://www.theaspd.com/ijes.phpa

3.Improving the Use of Chemical Inputs It is advisable to regulate pesticide and fertilizer usage through guidance programs to ensure appropriate dosages and prevent the harm caused by excessive or improper use.

- 4. Knowledge Transfer Recommendations call for the establishment of advisory centers and programs to share knowledge between high-performing and less-efficient farms, aiming to reduce the production gap to optimal levels.
- 5. Developing Managerial Capacities Workshops and training programs should be organized to enhance farmers' managerial skills, which would help improve technical performance and reduce productivity gaps.

REFERENCES

- 1. Ahmed, M., et al. (2021). "Advances in Stochastic Frontier Analysis for Agricultural Efficiency Assessment." *Journal of Agricultural Economics*, 73(4), 559–578.
- 2. Brown, S. & Smith, R. (2022). "Translog Production Functions in Farm Efficiency Studies: A Critical Review." *Journal of Productivity Analysis*, 55(2), 145–164.
- 3. Lee, C. & Zhang, Y. (2023). "Comparative Analysis of Fixed and Pivot Irrigation Systems: Efficiency and Sustainability." *Irrigation Science*, 41(1), 87–105.
- 4. Garcia, P. & Kumar, A. (2022). "Farm-Level Productivity and Efficiency using Stochastic Frontier Analysis: Evidence from Wheat Cultivation." Agricultural Systems, 196, 103–115..
- 5. Thompson, J. & Patel, R. (2021). "Irrigation Practices and Crop Yield: A Stochastic Frontier Approach." *Agricultural Water Management*, 241, 106–118.
- 6. Johnson, D. & Lee, M. (2023). "Evaluating the Role of Technological Change in Farm Efficiency: A Translog Production Function Approach." *Technological Forecasting and Social Change*, 173, 125–137.
- 7. Martins, E. et al. (2022). "Efficiency and Sustainability Analysis in Irrigation-based Agriculture: A Review of SFA Applications." *Renewable Agriculture and Food Systems*, 37(3), 332–349...
- 8. Evans, G. & Raymond, L. (2020). "Integrating Economic Models with Irrigation Performance: Challenges and Prospects." *Journal of Agricultural Business and Economics*, 8(2), 201–219.
- 9. Wilson, T. & Garcia, M. (2021). "Technical Efficiency in Wheat Production: A Cross-Country Analysis." Food Policy, 102, 44–56.
- 10.O'Connor, S. & Green, P. (2023). "Innovations in Irrigation Systems: Impact on Efficiency and Crop Yield." Agricultural Water Management, 256, 112–130.