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Abstract: This paper introduces a diabetic retinopathy severity grading approach thatuses a 2D-structured dilation-
based hierarchical convolutional neural network (CNN). In this approach, the pre-processed fundus image is 
utilized to segment the regions such as the optic disc, blood vessels, and lesion regions. The optic disc, blood vessel, 
and lesion regions combine to form the region of interest. The proposed 2D-structured dilation-based Hierarchical 
CNN (2D-SDHCNN) has a parallel section of Lstages that use different dilated masks in a hierarchical structure. 
The dilation is also applied to the convolutional filters of each subnetwork and the region that corresponds to the 
dilated mask of the global feature is also utilized in the hierarchical network. The hierarchical network can able to 
extract deep features near the vessels and lesion candidates. Datasets such as Kaggle APTOS and Messidor-2 are 
utilized for evaluating the suggested 2D-SDHCNN approach. The suggested approach performance highly depends 
on the dilation factor used in the 2D-SDHCNN. The 2D-SDHCNN approach yields a precision, Mathews 
correlation coefficient (MCC), and accuracy of 97.61%, 97.03%, and 97.73% respectively when evaluated using 
the Kaggle APTOS dataset. Also, the suggested scheme when evaluated utilizing Messidor-2 provides precision, 
MCC, and accuracy of 93.30%,93.42%, and 95.39% respectively. 
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I.  INTRODUCTION 
Due to the inability to secrete sufficient blood insulin by the pancreas the glucose level in blood rises 
leading to a condition named diabetes mellitus [1]. World Health Organization (WHO) reports that the 
number of diabetes incidents cases will be around 700 million by the year 2045 [2]. This increase in 
diabetes incidence cases will be much higher since the number of diabetes incidents in the year2014 is 
422 million. The diabetes diseases can cause diabetic retinopathy (DR) where the retinal capillaries get 
blocked and start bleeding. As a result of bleeding new blood vessels start to grow that leads to vision 
impairment. For individuals under the age of 50, diabetes is the common cause of blindness [3]. Early 
diagnosis and identification of DR severity are essential to avoid the complications caused by DR. The 
ophthalmologists examine the retinal images based on the appearance and structure of lesion regions. 
This lesion region may be hard exudates, soft exudates, hemorrhages, and microaneurysms [4]. The 
yellowish-white deposit caused due to protein and lipid leakage in the retina forms the hard exudates. 
The retinal nerve fiber layer infracts and forms fluffy white cotton wool spots known as soft exudates. 
The lesion haemorrhages have irregular margin size which is the bleeding vessels. The lesion 
microaneurysms is caused due to the dilation of blood vessels that create red coloredsmall round spots. 

Based on this formation of lesions and new blood vessels, the DR severity grades can be non-
proliferative grades (mild, moderate, and severe),and proliferative grades. The non-proliferative (NPDR) 
stage is characterized by the formation of exudates,hemorrhages, and microaneurysms, while the 
proliferative (PDR) stage is characterized by the formation of new abnormal blood vessels.The 
abnormality in fundus image and optical coherence tomography (OCT) images [5] are commonly 
detected using deep learning approaches [6] that perform the descriptor extraction process and 
classification process. The descriptors that are obtained from various layers of the Xception structure are 
aggregated to construct multi-level descriptors [7]. These descriptors are classified using multi-layer 
perceptron to detect the severity level. This Xception-based DR classification attains an accuracy of 
83.09% using the Kaggle APTOS dataset which is higher than the traditional Xception classifier. 
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Different lesion candidate descriptors based on statistics, intensity, and shape are used [8] to identify 
the lesion candidates. The lesion candidates are classified using a hybrid classifier formed with the 
Gaussian mixture model and m-Mediods models. The severity levels are classified as stages 1, 2, 3, and 
healthy with the use of modified architecture [9] that uses ReLU and soft-max activations. 

Antary et al. [10] extracted both high and mid-level descriptors by embedding the descriptors in a high-
level representation which also improves the power of differentiating the lesion severity levels. This 
approach applies the attention process to the descriptors that are obtained at different scales. The 
capsule layer is utilized by Kalyani et al. [11] which classifies the descriptors extracted by the primary 
capsule network. The usage of two capsule networks increases the complexity of this approach. Machine 
learning models such as AdaBoost and support vector machine (SVM) were used to classify the CNN 
features extracted from the fundus picture [12]. Maximal principal curvature [13] was utilized to detect 
the blood vessel branches that also use the Hessian matrix. The squeeze and excitation process was 
incorporated with the CNN to differentiate the abnormal and normal fundus images. Features related 
to contextual, semantic, and textures are extracted using the encoder part of the deep learning structure 
[14]. The classification was performed by the decoder part after passing through the attention and 
fusion process. The fusion process combines contextual, semantic, and texture descriptors. The authors 
Mussarat et al. [15] used geometric and statistical descriptors after enhancing using a Gabor filter. This 
approach can segment exudates region leaving the non-exudates to another class. 

Models such as ResNeXt, and DeneNet101 are combined [16] to detect the DR images. This approach 
uses a split-transform combine approach along with a tacking layer to handle the descriptor. The use of 
DenseNet provides higher performance than the ReNeXt due to the use of concatenation operation in 
the dense block. The authors Wafaa et al. [17] used YOLOV3 and CNN512 to classify the severity level. 
The actual result was obtained by fusing the results of the two models. A coarse-to-fine classification 
approach was proposed [18] by modifying the CNN structure. In this approach, the background 
features are suppressed while the lesion-related features are enhanced by the attention module. The fine 
network classifies the classes of DR, while the coarse network classifies the fundus image as DRand No-
DR classes. The local and global descriptors in fundus images are collected using a multi-path CNN 
[19], where the features are classified using the random forest and SVM models. A synergic deep 
learning approach [20] was used to collect and classify the descriptors from the lesion regions which are 
segmented using a histogram-based approach. The CNN model was utilized to derive the active deep 
learning approach [21] where the patches that have more information are detected from which the 
classification was done using the active deep learning (active-DL) approach. The complexity of the active 
DL approach is higher than the CNN model. 

Circular Hough transform with fuzzy rule is used as a pre-processing [22]. From the pre-processed 
picture retinal localization is performed from which the descriptors are collected. This approach can 
classify the abnormality such as maculopathy and diabetic retinopathy. A multi-resolution-based 
attention [23] was proposed by Sandeep et al. that has depth-wise filters. The multi-resolution images are 
generated at different dilation rates. The authors report that the use of multi-resolution-based attention 
can collect subtle descriptors. Finally, an SVM classifier is utilized to classify the multi-resolution 
descriptors. The vascular structures are extracted [24] using an architecture that is derived from the U-
Net. Instead of using 4 down and up-sampling process, 2 down and up-sampling are used in the 
encoder and decoder sections. A regularized random walker-based approach was used to improve the 
structural connectivity of the blood vessels that are broken. Though the U-Net-based scheme provides 
reasonable performance, the complexity is higher. 

The methods that are discussed in the literature do not use a dilation-based approach that hasan 
increasing area near the region of interest for extracting the descriptors. Therefore, the suggested 
scheme introduces a 2D structured-based dilation whose dilation factor differsbetween the subnetwork 
and within the subnetwork that collects deep descriptors near the region of interest. The contributory 
work of the suggested scheme is as follows: 
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(i) The work extracts two different features namely the hierarchical descriptor and the global 
descriptor where the hierarchical descriptor is utilized for actual classification. The proposed 
approach uses the blood vessels, Optic disc, and lesion as the region of interest. 

(ii) The approach uses the maximal principal curvature for detecting the blood vessels, and the 
Circular Hough transform for detecting the Optic disc. The lesion regions are detected using 
thresholding and morphological operations. 

(iii) The hierarchical descriptor extraction process uses a 2D structured dilation, where dilation is 
performed based on two categories namely the inter-subnetwork dilation and intra-subnetwork 
dilation. 

(iv) The inter-subnetwork and intra-subnetwork dilation helps to extract deep descriptors from the 
lesion region and the region that surrounds it. An embedding layer is used that combines the 
features from different channels including the global features and preceding layer features. 

(v) Finally, for evaluating the suggested 2D-SDHCNN approach the datasets namely Kaggle APTOS 
and Messidor-2 are utilized. 

The paper has subsequent sections. Section 2 enumerates the working of the suggested2D-SDHCNN-
based DR severity grading approach, while Section 3 provides a brief analysis of the suggested scheme in 
terms of the classification evaluation measures used in evaluating the deep learning approaches. Lastly, 
the paper was concluded with the key findings obtained during the analysis of the suggested 2D-
SDHCNN-based grading approach. 

2. PROPOSED METHOD 
The 2D-SDHCNN-based DR severity classification approach includes the major process namely 
preprocessing, region of interest estimation, and 2D-SDHCNN structure for extracting the descriptor 
and classifying the severity levels as illustrated in Fig .1. 

 
Fig. 1: Diagrammatic representation of suggested 2D-SDHCNN-based DR grading approach 

(a) Preprocessing 
The fundus image𝑃1(𝑥, 𝑦)is initially preprocessed by median filtering and contrast limited adaptive 
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histogram equalization (CLAHE) image enhancement algorithm [25]. The median filtering removes the 
noisy pixels, while the CLAHE improves the appearance of the lesion and blood vessels suitable for 
segmentation. Let the median filtered outputestimated for the picture input 𝑃1 be represented as 𝑃2. 
The CLAHE-based algorithm is applied to the H,S,V channels of the image after converting the RGB 
image 𝑃2to HSV form. The CLAHE-applied HSV channels are again converted back to RGB to obtain 
the pre-processed picture 𝑃3. 

(b) Region of interest (RoI) estimation 
The proposed approach uses regions such as optic disc, blood vessels, and lesion regions as the regions 
of interest since these three regions play a crucial role in categorizing the DR grade levels. 

(i) Blood vessel detection 
The approach uses a maximal principal curvature-based blood vessel detection approach [26] to detect 
the blood vessels. Let 𝑃3,𝐺(𝑥, 𝑦) represent the green channel of the image 𝑃3(𝑥, 𝑦). The green channel 
is utilized to detect the blood vessels since the retinal vessels are more prominent in this channel than 
the blue and red channels. The Gaussian filter isthen applied to 𝑃3,𝐺(𝑥, 𝑦) to reduce the fine noisy 
details that perform smoothing operations. Thus, the filtered image is expressed as, 

𝑃̂3,𝐺(𝑥, 𝑦) =
1

2𝜋𝑒2 𝑒𝑥𝑝 (
−𝑥2+𝑦2

2e2 ) ∗ 𝑃3,𝐺(𝑥, 𝑦)    (1) 

Here, ∗ resembles the convolution operator and 𝑒 is the factor to control the smoothing which 
resembles the Gaussian kernels standard deviation. The blood vessels have higher intensity variation 
than other regions which is represented by the Hessian matrix as, 

𝐻(𝑥, 𝑦) = [

𝜕2𝑃̂3,𝐺(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑃̂3,𝐺(𝑥,𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑃̂3,𝐺(𝑥,𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑃̂3,𝐺(𝑥,𝑦)

𝜕𝑦2

]     (2) 

The highest eigenvalue computed on the Hessian matrix gives the maximal principal curvature 
expressed as, 

𝑃̂𝐻(𝑥, 𝑦) = 𝑒𝑚𝑎𝑥(𝐻(𝑥, 𝑦))      (3) 

Where 𝑒𝑚𝑎𝑥(.) resembles the highest eigenvalue computed on the matrix 𝐻(𝑥, 𝑦). The contrast of the 
maximal principal curvature is then enhanced using the relation, 

𝑃̂𝐸(𝑥, 𝑦) =
𝑃̂𝐻(𝑥,𝑦)−𝑚𝑖𝑛(𝑃̂𝐻(𝑥,𝑦))

𝑚𝑎𝑥(𝑃̂𝐻(𝑥,𝑦))−𝑚𝑖𝑛(𝑃̂𝐻(𝑥,𝑦))
× (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛) + 𝑎𝑚𝑖𝑛 (4) 

Here 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 resembles the lower and upper thresholds.The intensity-based thresholding (ISO 
data thresholding) is then used to detect the blood vessels as, 

𝑅𝑏(𝑥, 𝑦) = {
1     𝑃̂𝐸(𝑥, 𝑦) > 𝛿1

0     𝑃̂𝐸(𝑥, 𝑦) ≤ 𝛿1

     (5) 

Here 𝛿1 resembles the optimal threshold to segment the blood vessel. Let 𝑅𝑏 resembles the segmented 
blood vessels. 

(ii) Optic disc and lesion detection 
Circular Hough transform-based optic disc detection [27] approach is utilized to detect the optic disc. 
The edges are initially detected after converting 𝑃3(𝑥, 𝑦) to gray-scale, and from each edge point, the 
potential circle centers are estimated. The points that havethe highest rating are considered as the optic 
disc region which is then segmented. The segmented optic disc region is represented as 𝑟𝑛𝑑.The lesion 
region is estimated by the process such as thresholding, and morphological operations. The 
thresholding segments all possible lesion regions using the relation, 
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𝑟𝑙 = {
1     𝑃3(𝑥, 𝑦) < 𝛿2

0     𝑃3(𝑥, 𝑦) ≥ 𝛿2
      (6) 

Where 𝛿2 resembles the threshold. The regions whose area is less than 50 pixels are eliminated which 
contains the noisy region. From the resulting segmented regions dilation is performed and the regions 
whose area is less than 80 pixels are again eliminated to obtain the lesion-segmented image𝑅𝑙. The 
regions 𝑅𝑏 and 𝑅𝑙 constitute the dilating region of interest while the optic disc segmented region 𝑟𝑛𝑑 
constitute the non-dilating region. 

(c) 2D-SDHCNN classifier 
The suggested 2D-SDHCNN approach extracts two different types of descriptors namely the 
hierarchical descriptor and the global descriptors. The global descriptors are not directly used in the 
classification process. However, these features are used to performfeature embedding in the hierarchical 
feature extraction process. Instead of using the fundus image, the approach also uses a dilated version of 
the region of interest. The region of interest is constructed using the segmented blood vessel region 𝑅𝑏, 
lesion region 𝑅𝑙 and the optic disc region 𝑟𝑛𝑑. The optic disc region is not involved in dilation, while 
the segmented blood vessel region  𝑟𝑏 and the lesion region 𝑟𝑙 undergo the dilation process. There are 
three mask images used in each stage represented as 𝐷𝑖, where 𝑖 = 1,2 𝑎𝑛𝑑 3.  Let 𝛼1 be the dilation 
factor used in each section of layers (intra-sub-network), while  𝛼2 be the dilation factor used in each 
stage (inter-sub-network).  The initial RoI can be estimated as 

𝐷 = 𝑟𝑛𝑑 ∪ 𝑅𝑏 ∪ 𝑅𝑙       (7) 

Here ∪ resembles the set union operator. The above expression can also be expressed as 𝐷 = 𝑟𝑛𝑑 ∪ 𝑟𝑑, 
since the dilating region of interest can be estimated 𝑟𝑑 = 𝑅𝑏 ∪ 𝑅𝑙. Let the structuring element to 
perform dilation can be represented as 𝛺. The equation for dilation between the sections (intra-
subnetwork)𝑖 − 1 and 𝑖 in the dilating region can be expressed as 

𝑟𝑑
(𝑖)

= 𝑟𝑑
(𝑖−1)

⊕ 𝛼1𝛺 = {𝑞|(𝛼1𝛺)𝑞 ∩ 𝑟𝑑
(𝑖−1)

≠ 0}   (8) 

Here 𝛼1 resembles the dilation factor used in different filter sections. Also, 𝛼1𝛺 resembles the 
structuring element 𝛺 scaled by 𝛼1 and (𝛼1𝛺)𝑞 resembles the translation of the scaled structuring 
element 𝛼1𝛺 centered at pixel 𝑞. Thus, the dilated RoI in the section 𝑖 can be estimated as, 

𝐷𝑖 = 𝑆 (𝑟𝑑
(𝑖)

, 𝑠) ∪ 𝑆(𝑟𝑛𝑑, 𝑠/𝑖)      (9) 

Here 𝑆(𝑟𝑛𝑑, 𝑠/𝑖) resembles the scaling operation performed on the non-dilated RoI 𝑟𝑛𝑑 with scaling 

factor 𝑠/𝑖. Similarly,𝑆 (𝑟𝑑
(𝑖)

, 𝑠) resembles the scaling operation performed on the dilated RoI 𝑟𝑑
(𝑖) with 

scaling factor 𝑠.The scaling factor used is 𝑠 = 0.5 and the structuring element used is ‘disk’ type. Since 
there arethree embedded layers, 𝑖 ranges between 1 to 3 as provided in Fig. 2. 
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Fig. 2: Architecture of the 2D-SDHCNN in classifying the DR grade levels 

The equation for dilation between stages𝑗 − 1 and 𝑗 in the dilating region (inter-subnetwork dilation) 
can be expressed as 

𝑟̂𝑑
(𝑗)

= 𝑟̂𝑑
(𝑗−1)

⊕ 𝛼2𝛺 = {𝑝|(𝛼2𝛺)𝑝 ∩ 𝑟̂𝑑
(𝑗−1)

≠ 0}             (10) 

Here 𝛺 and 𝛼2 resembles the structuring element and the dilation factor respectively. Also,𝛼2𝛺 
resembles the structuring element 𝛺 scaled by 𝛼2 and(𝛼2𝛺)𝑝 resembles the translation of the scaled 
structuring element 𝛼2𝛺 centered at pixel 𝑝. Thus, the dilated RoI in the stage 𝑗can be estimated as 

𝐷̂𝑗 = 𝑟̂𝑑
(𝑗−1)

∪ 𝑟𝑛𝑑                 (11) 

Here 𝑗 = 1,2 … . 𝐿. For stage 1, 𝑟̂𝑑
(𝑗−1)

= 𝑟̂𝑑
(0)

= 𝑟𝑑.The input to each stage can be expressed as 𝑃3&𝐷̂𝑗. 
Here,& resembles the logical 𝑎𝑛𝑑 operator. The 2D-SDHCNN architecture has four sections of 
convolutional filters with 3 max-pooling functions in the global feature extraction network. Each stage 
of the hierarchical network also has 4 sections of convolutional filters, 3 max-poolinglayers, and 3-
feature embedding layers. The feature embedding layer in jth stage will combine the descriptors from the 
global feature map 𝑓 having 𝑐 channels and the features from first jthstage having 𝑐𝑗 channels. The 
embedding layer will use 𝑐/2 channels from 𝑓 that have higher energy component and 𝑐𝑖/2𝑗 channel 
each from first jth channels as depicted in Fig. 3. 
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Fig. 3: Function of embedding layer (a) embedding layer in stage-1 (b) embedding layer in stage-𝑗 

From𝑐 number of channelsof the global feature maps 𝑓, 𝑐/2 number of channels are selected based on 
higher energy. For performing this operation, the feature maps 𝑓 from 𝑐  channels are initially 
multiplied using the mask 𝐷𝑖. The average energy is estimated on the resulting feature map 𝐷𝑖𝑓using 
the relation 

𝐸(𝑓) =
1

𝜏𝐷𝑖

∑ |𝐷𝑖𝑓(𝑥, 𝑦)|2
(𝑥,𝑦)∈{𝐷𝑖=1}                (12) 

𝜏𝐷𝑖
resembles the number of pixels in the mask 𝐷𝑖 having logic ‘1’. Thus the𝑐/2channels having higher 

energy can be estimated as 

argmax
(𝑓,

𝑐

2
)

{𝐸(𝑓)} = argmax
(𝑓,

𝑐

2
)

{
1

𝜏𝐷𝑖

∑ |𝐷𝑖𝑓(𝑥, 𝑦)|2
(𝑥,𝑦)∈{𝐷𝑖=1} }            (13) 

The same process is repeated to select 𝑐𝑗/2𝑗 channels from the feature maps 𝑓𝑗 having 𝑐𝑗 channel. Thus 
the𝑐𝑗/2𝑗channels having higher energy can be estimated as 

argmax
(𝑓𝑗,

𝑐𝑗

2𝑗)

{𝐸(𝑓𝑗)} = argmax
(𝑓𝑗,

𝑐𝑗

2𝑗)

{
1

𝜏𝐷𝑖

∑ |𝑓𝑗(𝑥, 𝑦)|
2

(𝑥,𝑦)∈{𝐷𝑖=1} }            (14) 

The output of the embedding layer has the feature maps from different channels as illustrated in Fig. 3. 
Let {𝑧1, 𝑧2 … … 𝑧𝐿} be the features obtained by the 𝐿 stage in the hierarchical network. These features 
are combined using the fusion process and the combined feature can be estimated as 𝑍 =
[𝑧1, 𝑧2 … … 𝑧𝐿]. The feature 𝑍 is flattened and used as the input to the fully connected network. The 
description of layers used in the 2D-SDHCNN approach is provided in Table I. 
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Table I: Description of layers used in the 2D-SDHCNN approach 

 

The max-pooling in the suggested 2D-SDHCNN uses a kernel of size 2 × 2. For updating of weights 
and bias in the convolutional filter and the fully connected (FC) layer, the cross entropy-based loss 
function is used. The output layer of the FC network has 5 outputs that can able to estimate the 
predicted probability for the DR grades namely normal, PDR, NPDR-Se, NPDR-Mo, and NPDR-Mi. 

3. EXPERIMENTAL RESULTS 
Fundus images from the Messidor-2 [28] and Kaggle APTOS [29] datasets are utilized to evaluate the 
performance of the 2D-SDHCNN-based DR severity classification approach. Five image categories 
namely Normal images, NPDR-severe (NPDR-Se), NPDR-moderate (NPDR-Mo), NPDR mild (NPDR-
Mi), and PDR from the two datasets are utilized to evaluate the grading performance of 2D-SDHCNN. 
The evaluation scales viz. accuracy (Acc), precision (Pre), Mathew’s correlation coefficient (MCC), 
specificity (Spe), recall (Rec), and F1-score (F1)are employed to estimate the grading performance of the 
2D-SDHCNN model which can be estimated using, 

𝐴𝑐𝑐 (%) =
𝜇𝑡𝑛+𝜇𝑡𝑝

𝜇𝑓𝑝+𝜇𝑡𝑝+𝜇𝑡𝑛++𝜇𝑓𝑛
× 100                          (15) 

𝑃𝑟𝑒 (%) =
𝜇𝑡𝑝

𝜇𝑓𝑝+𝜇𝑡𝑝
× 100                (16) 

𝑀𝐶𝐶 (%) =
𝜇𝑡𝑝×𝜇𝑡𝑛−𝜇𝑓𝑛×𝜇𝑓𝑝

√(𝜇𝑡𝑛+𝜇𝑓𝑝)×(𝜇𝑡𝑝+𝜇𝑓𝑝)×(𝜇𝑡𝑛+𝜇𝑓𝑛)×(𝜇𝑡𝑝+𝜇𝑓𝑛)

× 100(17) 

𝑆𝑝𝑒 (%) =
𝜇𝑡𝑛

𝜇𝑓𝑝+𝜇𝑡𝑛
× 100                (18) 

𝑅𝑒𝑐 (%) =
𝜇𝑡𝑝

𝜇𝑡𝑝+𝜇𝑓𝑛
× 100                (19) 

𝐹1(%) =
𝜇𝑡𝑝

(𝜇𝑓𝑝+𝜇𝑓𝑛)×
1

2
+𝜇𝑡𝑝

× 100               (20) 

Here 𝜇𝑡𝑝, 𝜇𝑓𝑛, 𝜇𝑓𝑝 and 𝜇𝑡𝑝 resembles the true positive, false negative, false positive, and true positives 
attained during the 2D-SDHCNN modelclassification. 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 7s, 2025 
https://www.theaspd.com/ijes.php 

251 
 

 
Fig. 4: Distribution of images used for analysis after and before augmentation 

Table II: Data distribution in different severity classes for training and testing the 2D-SDHCNN 
approach 

Phase Dataset Normal PDR NPDR-Mi NPDR-Mo NPDR-Se 
Training Messidor-2 712 147 1134 1457 315 

 Kaggle APTOS 1264 1239 1554 2100 811 
Testing Messidor-2 305 63 486 625 135 

 Kaggle APTOS 541 531 666 900 347 

The number of images taken for analysis after and before augmentation is provided in Fig.4.To 
minimize the overfitting problem, fundus images are augmented by alterations such as darkening by 50, 
brightening by 50, and rotations by 90o, 180o, and 270o

.Image augmentation was not performed for the 
class Normal, since this class hasa sufficient number of images to train the model. 

 
Fig. 5: Sample images utilized for analysis of 2D-SDHCNN approach (a) NPDR-Se (b) NPDR-Mo (c) 

NPDR-Mi (d) PDR (e) Normal 

In the augmented fundus pictures, 30% of the pictures are randomly chosen and used for testing the 
classification performance. The other 70% of pictures are utilized in learning the 2D-SDHCNN model.  
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The distribution of images in each grade is depicted in Table II. A few images from these five DR 
severity categories are illustrated in Fig. 5. 

 
Fig. 6: Sample experimental outputs obtained during the 2D-SDHCNN-based severity detection process 
(a) Input fundus (b) Pre-processed fundus (c) Detected optic disc (d) Detected blood vessels (e) Detected 

lesion region (f) Region of interest 

Fig. 6 provides the sample outputs attained during the severity detection process. It shows the pre-
processed image, optic disc detection result, blood vessel detection result, and lesion detection result. 
For the detection of blood vessels, the maximal principal curvature algorithm uses the Gaussian filter 
standard deviation and a kernel size of unity and 3 × 3 respectively. The contrast enhancement process 
in blood vessel detection uses the factors 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 as 0 and 255 respectively. The circular Hough 
detection algorithm uses a canny edge detector to detect the edges. The minimum and maximum radius 
of the optic disc to detect is set between 20 to 60. The RoI image provided in Fig. 6(f) includes the 
three regions namely the optic disc region, the lesion region, and the blood vessel regions. 

 
Fig. 7: Representation of dilated mask regions used in hierarchical descriptor extraction (a) Input 

fundus picture (b)-(f) Stage-1 to Stage-5 dilated regions 
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Fig. 7 shows the dilated images used by the hierarchical network for extracting the hierarchical 
descriptors. For this evaluation, the number of levels used is𝐿 =5. The dilation is performed only on 
the blood vessel and the lesion region, where the optic disc region is left non-dilated. The hierarchical 
descriptor extracts more deep features from stage 5, while less deep features are extracted from 
stage1.The 2D-SDHCNN model was trained using the Adam optimizer with an epoch of 80, 𝐿 = 5, a 
learning rate of 0.001, and a batch size of 32. 

Table III: Evaluation results assessed for each DR grade using the Kaggle APTOS dataset 
Severity Acc (%) Pre (%) MCC (%) Spe(%) Rec(%) F1(%) 
Normal 98.23 97.69 97.44 99.69 98.23 97.96 

PDR 96.31 98.53 96.80 99.89 96.31 97.40 
NPDR-Mi 97.86 98.00 97.26 99.61 97.86 97.93 
NPDR-Mo 98.04 97.82 96.92 99.20 98.04 97.93 
NPDR-Se 98.24 96.03 96.72 99.69 98.24 97.13 

The class-specific performance attained by the 2D-SDHCNN approach when analyzed using the Kaggle 
APTOS dataset is provided in Table III. In the case of the Kaggle APTOS dataset, the accuracy for the 
DR grades Normal, PDR, NPDR-Mi, NPDR-Mo, and NPDR-Se was estimated as 98.23%, 96.31%, 
97.86%, 98.04%, and 98.24% respectively. The suggested 2D-SDHCNN approach provides a 
maximum accuracy for the DR grade NPDR-Se, while lower accuracy for the DR grade PDR. 

Table IV: Evaluation results assessed for each DR grade using the Messidor-2 dataset 
Severity Acc (%) Pre (%) MCC (%) Spe(%) Rec(%) F1(%) 
Normal 98.36 97.09 97.19 99.31 98.36 97.72 

PDR 88.89 80.00 83.66 99.10 88.89 84.21 
NPDR-Mi 96.91 97.52 96.02 98.94 96.91 97.21 
NPDR-Mo 96.48 98.37 95.82 98.99 96.48 97.42 
NPDR-Se 96.30 93.53 94.43 99.39 96.30 94.89 

Similarly, the evaluation results assessed using the Messidor-2 dataset for each DR gradeare provided in 
Table IV. The 2D-SDHCNN approach yields an accuracy of 98.36%, 88.39%, 96.91%, 96.48%, and 
96.30% for the class Normal, PDR, NPDR-Mi, NPDR-Mo, and NPDR-Se respectively. The 2D-
SDHCNN-based scheme provides higher accuracy for the DR grade Normal classes and lower accuracy 
for the PDR grade. Also, the suggested 2D-SDHCNN scheme results in an MCC of 97.19%, 83.66%, 
96.02%, 95.82%, and 94.43% respectively for the DR grades Normal, PDR, NPDR-Mi, NPDR-Mo, and 
NPDR-Se respectively. The accuracy estimated in the Messidor-2 dataset is 7.42%, 0.94%, 1.56%, and 
1.94% lower than the Kaggle APTOS dataset for the DR grades PDR, NPDR-Mi, NPDR-Mo, and 
NPDR-Se respectively. However, the accuracy attained in the Messidor-2 dataset is 0.13% higher than 
the APTOS dataset for the Normal class. 

Table V: Comparison of performance between 2D-SDHCNN and other recent DR severity grading 
approaches when assessed using the Kaggle APTOS dataset 

Methods Acc (%) Pre (%) MCC (%) Spe(%) Rec(%) F1(%) 
MA-SL [30] 94.09 93.94 93.15 95.85 94.06 93.88 
TA-Net [14] 93.48 93.49 92.66 95.67 93.63 93.67 

DL-attention [31] 95.42 95.17 94.81 97.38 95.54 95.23 
IR-CNN [32] 94.51 94.31 93.99 96.69 94.60 94.82 

Vision transformer [33] 96.06 95.89 95.69 98.00 96.22 95.96 
DeepRetiNet [34] 96.95 96.90 95.98 98.79 96.90 96.68 

Proposed 97.73 97.61 97.03 99.61 97.73 97.67 

Recent DR grading approaches namely vision transformer [33], DL-attention [31], DeepRetiNet [34], 
IR-CNN [32], TA-Net [14], and MA-SL [30] are utilized for comparison. In the case of the Kaggle 
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APTOS dataset, the 2D-SDHCNN approach results in an average accuracy, precision, MCC, specificity, 
recall, and F1-score of 97.73%, 97.61%, 97.03%, 99.61%, 97.73%, and 97.67% respectively as depicted 
in Table V. The accuracy, precision, MCC, specificity, recall, and F1-score found by the suggested 2D-
SDHCNN approach is 0.78%, 0.71%, 1.04%, 0.82%, 0.83%, and 0.98% respectively higher than the 
DeepRetiNet model. 

 
Fig. 8: Graphical comparison using Kaggle APTOS data between the 2D-SDHCNN and other recent 

DR grading approaches 

The accuracy estimated by the 2D-SDHCNN approach using the APTOS dataset is0.78%, 1.67%, 
3.22%, and 2.31% higher than the DeepRetiNet, Vision transformer, IR-CNN, and DL attention 
approaches as exemplified in Fig. 8. 

Table VI: Comparison of performance between 2D-SDHCNN and other recent DR severity grading 
approaches when assessed using the Messidor-2 dataset 

Methods Acc (%) Pre (%) MCC (%) Spe(%) Rec(%) F1(%) 
MA-SL[30] 90.49 88.72 88.84 95.02 90.74 89.79 
TA-Net [14] 90.52 88.38 88.46 94.96 90.31 89.45 

DL-attention [31] 91.99 90.04 89.88 96.35 92.45 91.30 
IR-CNN [32] 91.31 89.41 89.39 95.88 91.65 90.10 

Vision transformer 
[33] 92.72 90.87 90.98 97.19 92.75 91.86 

DeepRetiNet [34] 93.88 91.43 91.83 98.24 93.96 92.39 
Proposed 95.39 93.30 93.42 99.15 95.39 94.29 

The comparison was also made between the suggested 2D-SDHCNN approach and a few recent DR 
grading approaches using the Messidor-2 dataset and the results are presented in Table VI. In the case 
of the Messidor-2 dataset, the suggested approach yields an average accuracy, precision, MCC, 
specificity, recall, and F1-score of 95.39%, 93.30%, 93.42%, 99.15%, 95.39%, and 94.29% respectively 
which is 1.51%, 1.87%, 1.60%, 0.91%, 1.43%, and 1.90% more than the DeepRetiNet approach. 
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Fig. 9: Graphical comparison using Messidor-2 data between the 2D-SDHCNN and other recent DR 

grading approaches 

The graphical comparison provided in Fig. 9 shows the increase in performance by the 2D-SDHCNN 
approach over the recent DR grading approaches in classifying the DR grades when evaluated using the 
Messidor-2 data. The accuracy estimated by the 2D-SDHCNN approach is 1.51%, 2.67%, and 4.08% 
more than the DeepRetiNet, Vision transformer, and DL-attention approach respectively when 
evaluated using the Messidor-2 dataset. 

 
Fig. 10: Confusion matrix estimated by 2D-SDHCNN during the testing phase (a) Kaggle APTOS (b) 

Messidor-2 

The number of fundus images classified under each category of DR grades is plotted by the confusion 
matrix shown in Fig. 10. The confusion plot illustrates that the 2D-SDHCNN provides a higher true 
positive result that improves the performance in DR grading. 
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Fig. 11: Impact of dilation factors 𝛼1, 𝛼2 in DR grading accuracy (a) Kaggle APTOS dataset (b) 

Messidor-2 dataset 

The performance of the 2D-SDHCNN approach with respect to the dilation factors 𝛼1, 𝛼2 is illustrated 
in Fig. 11.In the case of the Kaggle APTOS dataset, as the dilation factor 𝛼1 is varied from 1, the 
accuracy increases and attains a maximum for the dilation factor 𝛼1 = 7. For further increase in 
dilation factor 𝛼1, the accuracy reduces. Thus, while using the Kaggle APTOS dataset, the maximum 
performance is attained for 𝛼1 = 7 and 𝛼2 = 6.  In the case of the Messidor-2 dataset, the dilation 
factor 𝛼1 is varied from 1, the accuracy increases and attains a maximum for the dilation factor 𝛼1 = 8. 
For further increase in dilation factor 𝛼1, the accuracy reduces. Thus, while using the Messidor-2 
dataset, the maximum performance is attained for 𝛼1 = 8 and 𝛼2 = 6. Generally, the proposed 2D-
SDHCNN approach can be used with a dilation factor 𝛼1 = 7 𝑜𝑟 8 and 𝛼2 = 6. 

4. CONCLUSION 
This work introduced a DR grading approach 2D-SDHCNN that uses dilated images in extracting the 
hierarchical descriptors. The approach initially detects three regions namely the blood vessels, optic 
disc, and lesion regions as RoI. For detecting the blood vessels maximal principal curvature-based 
approach is used, while for detecting the optic disc, a circular Hough transform is used. Thresholding 
and morphological operations are used to detect the possible lesion regions. From these three regions, 
blood vessels and lesion regions are used as dilating regions while the optic disc is used as the non-
dilating region. Two networks namely the global feature extraction network and the hierarchical 
network are used to extract the descriptors. The Hierarchical network uses different dilated images for 
feature extraction, where each section of the subnetwork uses a different number of channels. Also, 
dilation is performed for each section of the subnetwork to obtain more deep features. Datasets namely 
Kaggle APTOS and Messidor-2 are utilized for evaluating the suggested approach. The suggested 2D-
SDHCNN yields an accuracy of 97.73% and 95.39% when evaluated using the Kaggle APTOS and 
Messidor-2 datasets. In the case of the Kaggle APTOS dataset, the suggested scheme attains anaverage 
accuracy, precision, MCC, specificity, recall, and F1 score of 97.73%, 97.61%, 97.03%, 99.61%, 
97.73%, and 97.67% respectively. The evaluation results show that the suggested 2D-SDHCNN 
approach can better detect the severity grades in DR clinical studies. 
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