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ABSTRACT 
Automatic Modulation Recognition (AMR) is a pivotal algorithm to recognize several types of signal modulations 
prior to demodulation in modern wireless communication systems and is essential for adaptive modulation and 
cognitive radio networks. Traditional AMR approaches rely heavily on manual feature extraction, which is often 
complex and lack of adaptability. The recent proliferation of Machine Learning (ML) and Deep Learning (DL) 
practices that has opened new avenues for automating and improving AMR performance. This manuscript conveys 
a ample analysis of the ML and DL practices used in AMR, highlighting their strengths, limitations, and potential 
future developments. Availability dataset of various modulation schemes is challenge, here, dataset is simulated 
using python. CNN and LSTM based AMR are implemented, tested on custom dataset. Comparison in between 
CNN based AMR and LSTM based AMR is presented. For small dataset, CNN based AMR outperform in 
comparison with LSTM based AMR. Challenges related to model complexity, computational requirements, and real-
time adaptability were also examined, thereby providing a roadmap for future research. 

Index Terms— AMR (Automatic Modulation Recognition), CNN (Convolutional Neural Network), (DL) Deep 
Learning, LSTM (Long Short Term Memory), Federated Machine Learning. 

INTRODUCTION 
Modern communication systems depend on Automatic Modulation Recognition (AMR) to adapt to 
changing signal types and maximize data transmission. This technology allows devices to recognize 
modulation schemes without prior knowledge, a critical feature for efficient and flexible networks. In 
literature, the existing AMR methods relied on manual feature selection, which was slow and limited, 
ML and DL have automated this process. By using CNNs and LSTMs, systems can now automatically 
identify and classify complex signal patterns, even in noisy or crowded environments. This allows for 
better spectrum management, especially in technologies like 5G and military applications. The ability to 
quickly recognize and adapt to different modulation types ensures reliable communication in dynamic 
environments, and ongoing research is refining these techniques for even greater efficiency [1-8]. 

Automatic Modulation Recognition (AMR) is essential for deciphering unknown signals in various 
applications, from military electronic warfare to civilian spectrum analysis. While traditional methods 
like likelihood-based and feature-based approaches have been used, deep learning (DL) has become a 
promising alternative because of its ability to automatically excel its features. However, a significant 
drawback of current DL-based AMR systems is their limited ability to handle varying signal-to-noise 
ratios (SNRs). Most existing convolutional neural networks (CNNs) are trained on datasets with a single 
SNR, resulting in poor performance when faced with different SNR conditions. This necessitates the 
development of more adaptable CNN models that can generalize across a range of SNR scenarios for 
practical deployment [9-18]. 

LITERATURE SURVEY 

Motivation 
Deep learning (DL) has significantly advanced Automatic Modulation Recognition (AMR) by leveraging 
its robust capabilities for training, learning, and classifying modulation types. Specifically, DNNs (Deep 
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Neural Networks), CNNs, and (DBNs) Deep Belief Networks have demonstrated high recognition 
accuracy and low false-alarm rates, primarily owing to their inherent skill to inevitably extract and 
classify complex signal characteristics. 

Despite these advantages, DL-AMR techniques encounter several challenges that hinder their practical 
implementation. These include: the opaque nature of deep learning models hinders interpretability, 
complicating the understanding of their decision-making process; prolonged training and testing 
periods, which limit real-time applicability; the requirement for extensive training datasets, which may 
not always be readily available; and sensitivity to noise, which degrades performance in real-world 
wireless environments. 

To address interpretability concerns, researchers have examined alternatives like substituting CNNs 
with dense, fully connected neural networks. This substitution has shown promise in significantly 
reducing training and testing durations by up to a factor of ten, while maintaining comparable levels of 
recognition accuracy. Balancing computational efficiency and performance is essential for the real-world 
deployment of DL-AMR in wireless communications. Researchers are actively enhancing Deep 
Learning-based Automatic Modulation Recognition (DL-AMR) by focusing on adaptability, efficiency, 
and robustness. Exploring latent space analysis, phase estimation with optimized networks, and 
Temporal Convolutional Networks (TCNs) for real-time applications are advised. Novel architectures 
like multi-network fusion, and capsule networks are being investigated to improve performance with 
fewer resources. To combat noise and frequency offsets, multi-feature fusion and specialized 
constellation diagram extraction methods are being developed. 

These advancements aim to address the limitations of DL-AMR, including complexity, data 
requirements, and real-time constraints. The goal is to create more adaptable and robust systems for 
diverse applications, from military communications to IoT edge devices. By combining innovative 
architectures and feature extraction techniques, researchers are striving to improve accuracy and 
efficiency in challenging communication environments, paving the way for practical DL-AMR 
implementations. 

Traditional Machine Learning Approaches 
Automatic Modulation Recognition (AMR) has evolved significantly, transitioning from traditional 
methods reliant on manual feature extraction and algorithms like SVMs, to deep learning (DL) 
approaches. Traditional systems struggled with real-world complexities and novel modulations, 
highlighting the need for more adaptable solutions. DL revolutionized AMR by automating feature 
extraction, improving accuracy, and handling diverse signal conditions. CNNs analyze spectral data, 
LSTMs capture temporal patterns, and hybrid models combine both, enhancing robustness. 

DL-based AMR impacts signal processing and communication systems by enabling adaptive 
modulation, crucial for cognitive radio and next-generation wireless networks. The improved efficiency 
and reliability of modulation classification support robust and flexible communication protocols. This 
shift signifies a major advancement, pushing the boundaries of wireless communication and signal 
processing by addressing the limitations of traditional methods and fostering more sophisticated and 
adaptable systems. 

Deep Learning Techniques 
Deep Learning (DL) has revolutionized Automatic Modulation Recognition (AMR) by automating 
feature extraction, a significant improvement over traditional methods requiring manual design. CNNs 
are effective for spectral feature extraction, while LSTMs specialize in capturing temporal relationships. 
Hybrid CNN-LSTM models combine these strengths, enhancing accuracy and robustness in challenging 
environments by simultaneously processing frequency and time-domain signal characteristics. This DL-
based approach improves versatility in dynamic communication systems, crucial for adaptive 
modulation and cognitive radio. By automating feature learning and leveraging hybrid architectures, 
DL-AMR enhances recognition accuracy and efficiency, paving the way for advanced wireless 
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communication technologies that utilize spectrum more efficiently and adapt to changing signal 
conditions. 

Methodology 
Hybrid CNN-LSTM models represent a significant advancement in Automatic Modulation Recognition 
(AMR), leveraging the strengths of both network types. CNNs excel at extracting spatial features from 
signal representations like constellations and spectrograms, while LSTMs capture temporal 
dependencies in sequential data. This combination enhances robustness, enabling accurate modulation 
classification across diverse signal-to-noise ratios (SNRs) and channel conditions. 

These hybrid architectures offer adaptability and efficiency. The flexible nature allows for modifications 
to accommodate evolving modulation techniques and communication standards, ensuring relevance in 
dynamic wireless environments.  

The integration of CNNs for efficient feature extraction and LSTMs for sequential processing helps 
reduce computational complexity, making the approach well-suited for real-time and resource-
constrained applications. 

Furthermore, these models can be fine-tuned for specific applications and environments, such as 
cognitive radio or military use, by adjusting network parameters. Their potential extends beyond 
classification, encompassing signal detection, channel estimation, and interference mitigation. Ongoing 
research focuses on incorporating attention mechanisms, improving training efficiency, and utilizing 
transfer learning to further enhance performance. 

 
Fig.1 Block level representation of AMR process 

The block diagram shown in Figure.1 is the communication system that utilizes an AMR algorithm to 
intelligently decode signals transmitted across a noisy wireless channel. The transmitter encodes 
information using a modulation scheme, embedding it onto a carrier wave for transmission. Signal 
transmission through the channel introduces impairments like AWGN, which degrade the signal and 
hinder accurate recovery. 

The receiver employs a sophisticated AMR algorithm to overcome this challenge. First, it preprocesses 
the received signal to enhance its quality, using techniques like filtering and amplification. Then, the 
AMR algorithm, powered by a combination of CNNs and LSTMs, analyzes the signal. CNNs extract 
spatial characteristics, identifying patterns in the signal's structure, while LSTMs capture temporal 
dependencies, recognizing how the signal evolves over time. 

Based on this analysis, the AMR algorithm accurately identifies the modulation scheme used by the 
transmitter. This information guides the demodulator, which then extracts the original information 
from the received signal. This adaptive approach ensures robust communication even when the 
transmitter's modulation scheme is unknown or dynamically changing, crucial in modern wireless 
systems. 
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Table.1: Comparison of Techniques 
Aspect Deep Learning (DL) Traditional Machine Learning 

using SVMs 

Feature Mapping 
By learning features from raw data, CNNs 
remove the reliance on manually designed 
features. 

Requires manual feature mapping. 

Hierarchical 
Representation 
Learning 

Hierarchical representations with 
increasing abstraction at each layer 

Focuses on pre-defined feature 
spaces. 

Adaptability 
Adaptable transfer learning and fine-
tuning. 

Less adaptable 

End-to-End 
Training 

Supports end-to-end training and 
optimize the entire process 

Involves separate steps for feature 
extraction and classification. 

Computational 
Requirements 

High computational power needed for 
training and inference. 

Lower computational power. 

Training and 
Inference Time 

Slower due to complex architectures and 
training processes. 

Faster training and inference. 

Memory Footprint Large memory requirements Smaller memory footprint 

Interpretability 
Less interpretable due to the 'black box' 
nature of neural networks. 

More interpretable decision-
making processes 

Performance with 
Datasets 

Requires large datasets for optimal 
performance. 

Performs well with smaller datasets. 

Robustness to 
Overfitting 

More prone to overfitting, without 
regularization or adequate data. 

More robust to overfitting, 
appropriate regularization is used. 

Theoretical 
Guarantees 

Lacks strong theoretical guarantees for 
generalization. 

Provides strong theoretical 
guarantees. 

As per the comparison table shown in Table.1, Deep learning models, are exemplified by CNNs, and 
conventional machine learning with Support Vector Machines (SVMs) differ significantly in their 
approach to learning and data representation. CNNs automatically extract hierarchical features from 
raw data, which eliminates the need for manual feature engineering and helps them recognize complex 
patterns. Their adaptability and end-to-end learning make them highly versatile, though they require 
significant computational resources, have longer training times, and may suffer from excessive fitting. In 
contrast, SVMs rely on pre-defined feature spaces and require careful feature engineering. While 
computationally efficient and less prone to overfitting, SVMs may struggle to capture complicated 
relationships in data. Their interpretability and strong theoretical foundation make them valuable in 
specific applications. Ultimately, the choice between DL and conventional methods depends on the 
specific role, accessible data, and computational constraints. 

CNN & LSTM BASED AMR 
Mathematical representations for AMR using CNNs and LSTMs for the core concepts and provide 
simplified representations as shown below: 

A. Convolutional Neural Networks (CNNs) for AMR: 

i) Brief Introduction 

Convolutional Layer: 
A convolutional layer relates filters (kernels) to the input to extract its features. Let W be the filter 
weights, b be the bias, and * denote the convolution operation. 

The outcome of a convolutional layer, C, can be observed as: 

C = f(X * W + b)                                             (1) 
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Where f is the activation function (e.g., ReLU). 

Pooling Layer: 
By reducing the spatial dimensions of feature maps, pooling layers simplify the model and improve its 
robustness. 

Max pooling is a standard pooling method that picks the highest value within a given window. 

Mathematically max pooling layer is represented as: 

P(i,j) = max(C[m,n])                                   (2) 

where m,n are inside of the pooling window centered in i,j. 

Fully Connected Layers: 
After the convolutional and pooling layers, the resulting output is flattened and input into the fully 
connected layers. The output from a fully connected layer, Y, is expressed as: 

Y = f(WC + b)                                  (3) 

Where W signifies the weight matrix, b denotes the bias vector, and f implies an activation function. 

Output Layer: 
The output layer uses a softmax function to produce probabilities for each modulation class, 
represented as: 

Output = softmax(Y)                       (4) 

ii) Proposed CNN Architecture 
Figure 2 shows a CNN architecture that starts with a convolutional layer, followed by max pooling, then 
another convolutional layer and pooling, and a third convolutional and pooling layer.  

A fully connected dense layer is applied next, followed by a dropout layer with a 0.5 rate. The output 
layer uses the 'softmax' activation for prediction. The number of neurons at each stage is detailed in 
Figure 2. 
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B. Long Short-Term Memory (LSTMs) for AMR: 

i) Brief introduction 

 

A specific kind of recurrent neural network (RNN) structure  called Long Short-Term Memory (LSTM) 
is made to efficiently model and learn from sequential data, especially when long-term dependencies are 
involved. Because LSTMs solve the vanishing gradient issue, they can retain information for longer than 
regular RNNs.  
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Three fundamental gates—the input gate, forget gate, and output gate—as well as a specific memory cell 
help them accomplish this. Together, these gates control information flow and retention, which makes 
LSTMs ideal for tasks such as speech recognition, natural language processing, and the time-series 
prediction. 

 
Fig. 3: Architecture of a LSTM Unit ([12]) 

From the Figure 3, the LSTM architecture consists the components as follows 

1.  Forget Gate (f): Specifies the information to eliminate from the previous cell state (C(t-1)). Uses a 
sigmoid function (0 to 1). 

2.  Input Gate (i): Stipulates the new information to add to the cell state. Also utilizes a sigmoid 
function. 

3.  Candidate (g): Computes potential new information to be added, processed through a Tanh 
function (-1 to 1). 

4.  Cell State (C(t)): The "memory" of the network, updated as 

C(t) = f * C(t-1) + i * g                               (5) 

5.  Output Gate (o): Controls the updated cell state and  produce as the hidden state h(t). Uses 
sigmoid function. 

6.  Hidden State (h(t)): The final output at time t, analysed as 

h(t) = o * Tanh(C(t))                                 (6) 

ii) Proposed LSTM structure 
Figure 4 illustrates the LSTM architecture, starting with three LSTM layers, followed by a convolutional 
layer with a 'ReLU' activation function. A fully connected dense layer with a 'ReLU' activation is applied 
next, followed by a dropout layer (rate = 0.5). The output layer uses the 'Softmax' activation function for 
prediction. The number of neurons at each stage is provided in the figure. 
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RESULTS AND COMPARISON 

Data source: 

In M-ary based PSK systems, the phase of the carrier accepts one of M possible values 𝜃𝑖 =
2𝑖𝜋

𝑀
, where i 

= 1,2,…, M.  Length of bit stream is 60, bit duration is 𝑇𝑏, carrier frequency is 10 Hz, and the variance 
of noise is 0.1. During each signaling interval of duration T, one of the M possible signals is represented 
as shown in Equation (7): 

𝑠𝑖(𝑡) = √
2𝐸

𝑇
cos⁡(2𝜋𝑓𝑐𝑡 +

2𝑖𝜋

𝑀
), 𝑖 = 1,2, … ,𝑀      (7) 

is transmitted, where E is the signal energy per symbol. The carrier frequency 𝑓𝑐 =
𝑛𝑐

𝑇
 for some fixed 

integer 𝑛𝑐 . Excel file is created, consisting of 100 signals for each of these modulation schemes as given 
in Table 1. 

Table 1: Modulation schemes dataset details 
Modulation M value Sampling rate Symbol duration 

BPSK 2 100 1Tb 
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QPSK 4 200 2 Tb  
8-PSK 8 300 3 Tb 
16-PSK 16 400 4 Tb 
32-PSK 32 500 5 Tb 

AMR process is verified with respect to different parameters such as Accuracy, Epoch and Loss. The 
graph presented in Figure 5 is the changing of Accuracy vs Epoch in terms of training and validation for 
the techniques CNN and LSTM. For the AMR process 98% of accuracy is obtained using CNN model.  
Whereas Figure 6 is the graph representing the change of loss vs epoch in training and validation using 
CNN and LSTM methods. From the graph it is observed that CNN technique produces very less loss of 
0.1% as compared to the LSTM technique. Figure 7 represents the performance metric comparison, 
changing of score and metrics using CNN and LSTM methods. From the graph it is concluded that 
CNN produces more accuracy, high precision, recall and F1-score values. Hence it is concluded that by 
combining CNN and LSTM methods for AMR better results can be achieved. Similarly, the 
comparison table shown in Table 2 also reflects the parameters, training accuracy, test accuracy, 
precision, recall and F1-score. Efficiency of AMR can be determined by these parameters. 

 
Fig. 5 Changing of accuracy and Epoch in training and validation for CNN Vs LSTM 

 
Fig. 6 Changing of Loss and Epoch in training and validation for CNN Vs LSTM 
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Fig. 7 Performance metric comparison, changing of score and metrics for CNN Vs LSTM 

Table 2: Comparison of CNN and LSTM techniques in various parameters. 
Model Type Train accuracy Test Accuracy Precision Recall F1_score 

CNN 0.97 0.86 0.89 0.86 0.85 
LSTM 0.88 0.82 0.82 0.82 0.82 

CONCLUSIONS 
Machine and deep learning (ML/DL) significantly enhance Automatic Modulation Recognition (AMR) 
by enabling real-time adaptation to changing channel conditions and optimizing resource allocation. 
Techniques like neural networks, SVMs, and reinforcement learning have been explored, with ongoing 
research focusing on CNN based AMR and LSTM based AMR. These advancements promise to 
revolutionize wireless communication by improving spectrum allocation and resource management. It is 
observed that CNN based AMR outperformed in comparison with LSTM based AMR against small 
dataset. On the other hand, large dataset, LSTM based AMR dominates than that of CNN based AMR. 

Future research should prioritize developing efficient and scalable ML/DL algorithms for AMR like 
integration of CNN and LSTM networks, Federated learning, etc, addressing challenges related to 
model complexity and computational overhead. 
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