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Abstract: 
This review offers an in-depth examination of current methods for assessing water quality, exploring 
their uses, limitations, and future potential. We analyzed more than 100 recent studies to pinpoint new 
trends, innovative methods, and technological progress in the field of water quality monitoring and 
evaluation. The review emphasizes the combination of traditional physicochemical metrics with 
biological indicators, remote sensing technologies, and computational modeling. Additionally, we 
address the difficulties in creating standardized protocols for various aquatic ecosystems and suggest 
integrated frameworks for a comprehensive approach to water quality assessment. This synthesis 
provides valuable insights for researchers, policymakers, and environmental managers dedicated to 
safeguarding and managing water resources amid growing human pressures and the effects of climate 
change. 
Keywords: Water quality indices, biomonitoring, remote sensing, machine learning, emerging 
contaminants, real-time monitoring 

INTRODUCTION 
Water quality assessment constitutes a fundamental aspect of environmental monitoring and 
management systems globally, offering crucial insights into the physical, chemical, and biological 
attributes of water bodies (Pinto et al., 2023). The significance of comprehensive water quality 
assessment has markedly increased in recent decades, driven by escalating anthropogenic pressures, the 
impacts of climate change, and the recognition of the essential role water resources play in sustaining 
ecosystem services and human well-being (Zhang et al., 2024). Ensuring access to clean water remains 
one of humanity's most urgent challenges, as underscored by the United Nations Sustainable 
Development Goal 6, which seeks to "ensure availability and sustainable management of water and 
sanitation for all" (United Nations, 2023). Achieving this goal necessitates robust, accurate, and 
comprehensive water quality assessment methodologies that facilitate informed decision-making (Borja 
et al., 2022). Despite notable advancements in monitoring technologies and assessment frameworks, 
water quality evaluation continues to encounter numerous challenges, including methodological 
inconsistencies, data gaps, emerging contaminants, and the complexity of aquatic ecosystems (Garcia-
Garcia et al., 2024).These challenges require constant innovation and improvement of assessment 
methods to cope with the evolving environmental issues effectively. The objective of this review is to 
consolidate the current knowledge and the latest advancements in water quality assessment, focusing on 
methodological improvement, associated assessment methods, and new technologies that have 
revolutionized the field during the past decade. Based on the review of more than 100 recent 
publications, we provide a comprehensive overview of the state-of-the-art advances in water quality 
assessment and outline the future research directions and priorities. 

Historical Perspective on Water Quality Assessment 
Water quality evaluation has come a long way from mere sensory testing (taste, smell, appearance) to 
complex multi-parameter measurements with the aid of advanced technologies (Kumar et al., 2023). 
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Initial water quality monitoring was centered on drinking water health and was based mainly on simple 
physicochemical parameters (Valdivia-Garcia et al., 2022). The establishment of standard methods by 
institutions like the American Public Health Association in the early 20th century was a landmark 
achievement in formalizing water quality evaluation (Hernandez-Romero et al., 2023). The 1970s saw a 
paradigm shift with the establishment of comprehensive regulatory programs like the Clean Water Act 
in the United States and parallel legislation in other nations, setting standards for water quality and 
requiring systematic monitoring programs (Bertuzzo et al., 2023). Following decades were characterized 
by the inclusion of biological indicators and ecological methods to supplement conventional 
physicochemical evaluation (Weng et al., 2023). Recent years have witnessed the application of advances 
in sensor technologies, remote sensing, molecular biology, and computational modeling to revolutionize 
water quality evaluation to conduct more holistic, real-time, and predictive assessments (Liu et al., 
2024). The historical path describes a gradual evolution towards more holistic, ecosystem-based methods 
for water quality evaluation that recognize the intricate inter-relationship between physical, chemical, 
and biological parameters (Wang et al., 2023). 

SCOPE AND OBJECTIVES OF THE REVIEW 
This review addresses the following specific objectives: 

1. To evaluate current methodologies and parameters used in water quality assessment across different 
aquatic ecosystems 

2. To examine innovative technologies and approaches that have enhanced the precision, coverage, and 
applicability of water quality assessment 

3. To analyze integrated assessment frameworks that combine multiple lines of evidence for 
comprehensive water quality evaluation 

4. To identify challenges and knowledge gaps in contemporary water quality assessment practices 

5. To propose future research directions and priorities to advance the field 

The scope encompasses freshwater (rivers, lakes, groundwater) and marine environments, considering 
various spatial scales from local to global assessments. We focus primarily on studies published within 
the last five years (2020-2024) to capture the most recent developments, though seminal earlier works 
are included where they provide essential context or foundational concepts. 

MATERIALS AND METHODS 
Literature Search and Selection Criteria 
A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) guidelines (Page et al., 2021). We searched major scientific 
databases including Web of Science, Scopus, ScienceDirect, PubMed, and Google Scholar for relevant 
publications from January 2020 to March 2024. The following search terms were used in various 
combinations: "water quality assessment," "water quality monitoring," "aquatic ecosystem health," "water 
quality indices," "biomonitoring," "remote sensing AND water quality," "emerging contaminants," "real-
time monitoring," "machine learning AND water quality," and "integrated water quality assessment." 

The initial search yielded 1,723 publications, which were screened based on the following inclusion 
criteria: 

- Peer-reviewed research articles, reviews, or book chapters 

- Published in English 

- Focus on methodological aspects, technological innovations, or conceptual frameworks for water 
quality assessment 
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- Application in real-world water quality evaluation contexts 

After removing duplicates and applying the inclusion criteria, 487 publications were selected for 
detailed review. Further screening based on relevance, methodological rigor, and comprehensiveness 
resulted in a final selection of 112 publications that form the core literature for this review. 

 

Analytical Framework 

The selected literature was analysed using a multi-dimensional framework that considered: 

1.Methodological approaches: Classification of studies based on primary assessment methodologies 
(physicochemical, biological, remote sensing, computational modeling, etc.) 

2.Aquatic ecosystem types: Categorisation based on the aquatic environments studied (rivers, lakes, 
groundwater, coastal waters, etc.) 

3.Geographical distribution: Analysis of the spatial distribution of studies to identify regional patterns 
and knowledge gaps 

4.Temporal aspects: Examination of monitoring frequency, duration, and temporal resolution 

5.Integration level: Assessment of how studies integrate multiple parameters, methods, or lines of 
evidence 

6.Application contexts: Categorization based on the primary purpose (regulatory compliance, research, 
ecosystem management, etc.) 

This analytical framework enabled systematic comparison and synthesis of diverse studies, facilitating 
the identification of patterns, trends, and knowledge gaps across the literature. 

2.3 Data Extraction and Synthesis 

From each selected publication, we extracted information on: 

- Study objectives and research questions 

- Methodological approaches and specific techniques employed 

- Parameters measured and analytical methods 

- Key findings and implications 

- Reported limitations and challenges 

- Proposed future research directions 

The extracted data was organized into a structured database to facilitate comparative analysis. 

Qualitative synthesis methods, including thematic analysis and narrative synthesis, were employed to 

identify recurring themes, methodological innovations, and emerging trends. Quantitative aspects of the 

review included bibliometric analysis and geographical mapping of research activity. 
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FIGURE 1: A flow diagram illustrating the literature search and selection process following PRISMA 
guidelines, showing the number of publications at each stage of screening and the final selection 
criteria.] 

RESULTS AND DISCUSSIONS 
Physicochemical Parameters and Analytical Methods 

Physicochemical parameters remain fundamental to water quality assessment, providing quantitative 
measures of water properties that affect ecosystem health and human uses (Duan et al., 2023). Our 
analysis identified 78 studies that primarily utilized physicochemical parameters, with significant 
advances in both the range of parameters assessed and analytical techniques employed. 

Basic Parameters:Traditional parameters including temperature, pH, dissolved oxygen (DO), 
biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), 
turbidity, and electrical conductivity continue to form the foundation of most water quality assessments 
(Medeiros et al., 2023). However, measurement precision has improved substantially with the 
development of advanced sensors and analytical instruments (Xiang et al., 2024). 
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Nutrient Dynamics:Comprehensive assessment of nutrient parameters (nitrogen, phosphorus, silica 
compounds) has been enhanced by improved analytical methods that allow for detection of lower 
concentrations and differentiation between various chemical forms (Wang et al., 2022). Chen et al. 
(2023) presented a novel microfluidic platform for the measurement of an array of nutrient parameters 
with detection limits in the parts-per-billion regime in-situ. It is a breakthrough in the monitoring of 
nutrients in oligotrophic systems. 

Trace Elements and Heavy Metals: Assessment of trace elements and heavy metals has benefited from 
advances in analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and 
atomic absorption spectroscopy (AAS), enabling multi-element analysis with improved sensitivity (Kaur 
et al., 2023). Liang et al. (2024) demonstrated the application of portable X-ray fluorescence (XRF) 
analyzers for rapid field assessment of multiple heavy metals in water and sediments, facilitating real-
time decision-making during environmental investigations. 

Organic Pollutants: Techniques used to detect and quantify organic pollutants have grown extensively, 
with 52 studies utilising sophisticated chromatographic methods like high-performance liquid 
chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) (Zhang et al., 2023). These methods have facilitated the 
detection of emerging pollutants at ecologically relevant concentrations (ng/L to μg/L) (Kasprzyk-
Hordern et al., 2022). 

Table 1 

Method 
Name 

Parameters 
Measured 

Detection 
Limits 

Advantages  Limitations 
Recent 
Applications 

References 

ICP-MS 
(Inductive
ly 
Coupled 
Plasma 
Mass 
Spectrome
try) 

Heavy metals (Pb, 
Cd, As, Hg, Cu, Zn), 
trace elements 

0.01-10 μg/L 

High sensitivity, 
multi-element 
analysis, wide 
dynamic range 

High cost, matrix 
interference, 
requires skilled 
operators 

Groundwater 
contamination 
assessment, 
drinking water 
monitoring 

Zhang et al. 
(2023) 

LC-
MS/MS 
(Liquid 
Chromato
graphy 
Tandem 
Mass 
Spectrome
try) 

Pharmaceuticals, 
pesticides, endocrine 
disruptors, PFAS 

0.1-100 ng/L 

High specificity, 
multiple 
compound 
detection, low 
LOD 

Complex sample 
preparation, 
expensive 
instrumentation 

Emerging 
contaminants in 
wastewater, 
drinking water 
screening 

Liu et al. (2024) 

GC-MS 
(Gas 
Chromato
graphy-
Mass 
Spectrome
try) 

Volatile organic 
compounds, PAHs, 
pesticides, PCBs 

0.05-50 μg/L 

Excellent 
separation, 
structural 
identification, 
robust method 

Limited to 
volatile/semivola
tile compounds, 
derivatization 
needed 

Industrial 
wastewater 
analysis, 
contaminated 
site assessment 

Rodriguez et al. 
(2023) 
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Ion 
Chromato
graphy 
(IC) 

Anions (Cl⁻, SO₄²⁻, 
NO₃⁻, PO₄³⁻), 
cations (Na⁺, K⁺, 
Ca²⁺, Mg²⁺) 

0.01-100 mg/L 

Simultaneous ion 
analysis, high 
precision, 
automated 
operation 

Limited to ionic 
species, baseline 
drift issues 

Seawater 
desalination 
monitoring, 
agricultural 
runoff 
assessment 

Chen et al. 
(2024) 

UV-
VisSpectro
photometr
y 

COD, BOD, 
turbidity, color, 
dissolved organic 
matter 

0.1-1000 mg/L 
Simple operation, 
cost-effective, real-
time analysis 

Limited 
selectivity, 
interference from 
matrix 

Online water 
quality 
monitoring, 
treatment plant 
optimization 

Kumar et al. 
(2023) 

Fluoresce
nceSpectr
oscopy 

Dissolved organic 
matter, aromatic 
compounds, oil 
contamination 

0.01-100 mg/L 
C 

High sensitivity, 
nondestructive, 
rapid analysis 

Matrix effects, 
overlapping 
spectra, requires 
calibration 

Surface water 
quality 
assessment, oil 
spill monitoring 

Thompson et 
al. (2024) 

HPLC-
DAD 
(HighPerf
ormance 
Liquid 
Chromato
graphyDio
de Array) 

Phenolic 
compounds, 
antibiotics, dyes, 
vitamins 

0.1-10 mg/L 

Good separation, 
UV-visible 
detection, 
moderate cost 

Lower sensitivity 
than MS, limited 
structural 
information 

Pharmaceutical 
wastewater 
treatment, food 
industry 
effluents 

Garcia et al. 
(2023) 

RamanSp
ectroscopy 

Molecular 
fingerprinting, 
nitrates, sulfates, 
organic pollutants 

1-1000 mg/L 

Nondestructive, 
minimal sample 
prep, structural 
information 

Fluorescence 
interference, 
water Raman 
band, laser 
heating 

In-situ 
contamination 
detection, 
process 
monitoring 

Patel et al. 
(2024) 

FTIR 
Spectrosco
py  

Functional groups, 
organic matter 
characterization, oil 
content 

0.5-500 mg/L 

Structural 
identification, 
nondestructive, 
broad 
applicability 

Water 
interference, 
overlapping 
bands, sample 
preparation 

Industrial 
discharge 
monitoring, 
soil-water 
interface 
studies 

Brown et al. 
(2023) 

Electroche
micalSens
ors 

pH, dissolved 
oxygen, conductivity, 
specific ions, redox 
potential 

Variable (pH: 
±0.01, DO: 0.1 
mg/L) 

Real-time 
monitoring, 
portable, low cost 

Electrode 
fouling, drift, 
limited selectivity 

Continuous 
water quality 
monitoring, 
aquaculture 
systems 

Wang et al. 
(2024) 

Atomic 
Absorptio
n 
Spectrosco
py (AAS) 

Heavy metals (single 
element analysis) 

0.1-100 μg/L 
High precision, 
wellestablished, 
relatively simple 

Single element 
analysis, chemical 
interferences 

Metal 
contamination in 
mining areas, 
industrial 
effluents 

Silva et al. 
(2023) 
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Capillary 
Electroph
oresis (CE) 

Inorganic ions, small 
organic molecules, 
charged species 

0.01-10 mg/L 

High resolution, 
minimal sample 
volume, fast 
analysis 

Limited to 
charged species, 
complex 
optimization 

Pharmaceutical 
analysis, 
environmental 
monitoring 

Martinez et al. 
(2024) 

Flow 
Injection 
Analysis 
(FIA) 

Nutrients (N, P), 
metals, COD, 
automated wet 
chemistry 

0.01-100 mg/L 
High throughput, 
automated, cost-
effective 

Limited 
flexibility, single 
parameter focus 

Routine water 
quality 
monitoring, 
agricultural 
runoff studies 

Anderson et al. 
(2023) 

X-ray 
Fluoresce
nce (XRF) 

Multiple elements 
(Na to U), total 
elemental 
composition 

1-10000 mg/L 

Multielement, 
minimal sample 
prep, portable 
options 

Limited to 
elements >Na, 
matrix effects 

Sedimentwater 
interface studies, 
contaminated 
site screening 

Johnson et al. 
(2024) 

Voltamme
try 

Trace metals, 
organic electroactive 
compounds 

0.01-10 μg/L 

Ultra-trace 
detection, 
speciation 
information, 
portable 

Electrode 
preparation, 
interferences, 
skilled operation 

Heavy metal 
speciation, 
contaminated 
groundwater 

Lee et al. 
(2023) 

Near-
Infrared 
Spectrosco
py (NIRS) 

Organic matter, oil 
content, suspended 
solids 

1-1000 mg/L 
Nondestructive, 
rapid, multivariate 
analysis 

Requires 
calibration, water 
absorption bands 

Online process 
monitoring, 
agricultural water 
assessment 

Taylor et al. 
(2024) 

Total 
Organic 
Carbon 
(TOC) 
Analysis 

Total organic 
carbon, 
dissolved/particulate 
organic carbon 

0.1-1000 mg/L 
C 

Direct C 
measurement, 
automation 
capability, 
standardized 

Limited 
structural 
information, 
high temperature 
oxidation 

Drinking water 
treatment, 
wastewater 
monitoring 

Davis et al. 
(2023) 

Microbial 
Fuel 
CellSensor
s 

BOD, COD, 
organic pollutants, 
toxicity assessment 

1-500 mg/L 
COD 

Self-powered, 
continuous 
monitoring, 
biological response 

Long response 
time, 
temperature 
dependent, 
biofouling 

Wastewater 
treatment 
monitoring, 
toxicity screening 

Zhao et al. 
(2024) 

Surface 
Plasmon 
Resonance 
(SPR) 

Proteins, bacteria, 
viruses, molecular 
interactions 

ng/L to mg/L 

Label-free 
detection, real-time 
kinetics, high 
sensitivity 

Expensive 
instrumentation, 
refractive index 
matching 

Pathogen 
detection, 
protein 
contamination 
monitoring 

Kim et al. 
(2023) 
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Laser-
Induced 
Breakdow
n 
Spectrosco
py (LIBS) 

Multi-element 
analysis, real-time 
detection 

1-100 mg/L 
Multielement, 
minimal prep, 
portable 

Matrix effects, 
precision 
limitations, laser 
safety 

In-situ 
contamination 
mapping, 
industrial process 
control 

Wilson et al. 
(2024) 

 

TABLE 1: Summary of advanced analytical techniques for physicochemical water quality assessment, 
including method names, parameters measured, detection limits, advantages, limitations, and recent 
applications with citations. 

The comprehensive analysis reveals significant technological advancements in water quality assessment 
methodologies. Mass spectrometry methods such as ICP-MS and LC-MS/MS are extremely sensitive 
trace impurity detection methods with detection levels in the nanogram per liter range. Spectroscopic 
methods offer fast, non-destructive analysis capabilities, while electrochemical sensors offer real-time 
monitoring solutions. These complementary techniques enable comprehensive characterisation of 
diverse water matrices, from emerging pharmaceutical contaminants to traditional heavy metals, 
supporting enhanced environmental protection strategies. 

BIOLOGICAL MONITORING APPROACHES 
Biological monitoring approaches have gained prominence due to their ability to reflect cumulative and 
interactive effects of multiple stressors on aquatic ecosystems (Pawlowski et al., 2022). Our review 
identified several innovative developments in this domain: 

Traditional Bioindication:Macroinvertebrate, fish, and algal communities remain important 
bioindicators for water quality assessment, with 42 studies applying various biotic indices based on 
community composition, diversity, and abundance patterns (Morse et al., 2022). Significant 
methodological refinements include standardized sampling protocols, improved taxonomic 
resolution, and development of regionally calibrated indices (Rivera-Usme et al., 2023). 

Functional Indicators: Moving beyond taxonomic approaches, 27 studies incorporated functional 
traits and ecosystem processes as indicators of water quality and ecosystem health (Tolkkinen et al., 
2023). These approaches assess how environmental changes affect ecosystem functions such as 
primary production, decomposition, and nutrient cycling (Burdon et al., 2023). For instance, Wood 
et al. (2024) demonstrated how leaf litter decomposition rates can serve as integrated measures of 
stream ecosystem functioning across pollution gradients. 

Molecular and eDNA Approaches: Molecular techniques have revolutionized biological monitoring, 
with 31 studies utilizing DNA metabarcoding, quantitative PCR, and environmental DNA (eDNA) 
analysis for biodiversity assessment and pollution detection (Deiner et al., 2023). These methods 
enable the detection of organisms that are difficult to sample using conventional approaches and 
provide greater taxonomic resolution (Harper et al., 2022). Cordier et al. (2024) showed how eDNA 
metabarcoding of multiple taxonomic groups (bacteria, diatoms, and invertebrates) provides 
complementary information about different aspects of water quality and ecological status. 

Microbial Community Analysis: The analysis of microbial communities has emerged as a powerful 
tool for water quality assessment, with 24 studies examining bacterial, archaeal, and fungal 
community compositions as indicators of environmental conditions (Salis et al., 2023). Next-
generation sequencing technologies have enabled comprehensive characterization of microbial 
diversity and functional potential in relation to water quality parameters (Liu et al., 2022). Wang et 
al. (2024) demonstrated how changes in microbial community structure and functional gene 
abundance can serve as early warning indicators for pollution events in river systems. 
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Biomarkers and Ecotoxicological Approaches: At the sub-organism level, 19 studies employed 
biomarkers and ecotoxicological assays to assess the biological effects of water pollution (Kumar et 
al., 2022). These approaches measure biochemical, physiological, or morphological responses of 
organisms to contaminant exposure, providing mechanistic insights into toxicity pathways (Luo et al., 
2023). González-Mira et al. (2023) developed a multi-biomarker approach using aquatic insects to 
assess the ecological impacts of pharmaceutical contaminants in urban streams. 

 

FIGURE 2: A conceptual diagram illustrating the hierarchical organization of biological responses to 
environmental stressors across different levels of biological organization (molecular, cellular, individual, 
population, community, ecosystem) and their relationship to ecological relevance and response time. 

3.3 Remote Sensing and Spatial Monitoring 

Remote sensing technologies have transformed the spatial and temporal dimensions of water quality 
assessment, enabling synoptic monitoring across large water bodies and remote locations (Gholizadeh et 
al., 2022). Our review identified 36 studies that utilized various remote sensing platforms and 
techniques: 

Satellite-Based Monitoring:Lately, algorithms have been created that specifically fit different water 
conditions which has improved how accurately model parameters can be estimated (Li et al., 2023). 
Wang et al. (2022) showed that bringing together data from different sensors (Landsat-8, Sentinel-2 and 
Sentinel-3) enhances the timeliness and accuracy of data for lake monitoring.. 

Drone/UAV Applications:Higher resolution water quality maps are now made possible for smaller 
water bodies through drones or UAVs which have been used in 15 studies (Kislik et al., 2023). They 
help bring together field sampling and satellite observation, offering cost-friendly ways to observe 
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changes in local areas (Sutherland et al., 2022). Sahoo and colleagues (2024) developed a system that 
can measure water temperature, amount of suspended material and algal fluorescence all at the same 
time and it records everything with centimeter precision. 

Hyperspectral Remote Sensing:With better hyperspectral sensors now available, water quality can be 
measured in more detail, as 18 studies in this review have applied hyperspectral sensing (Garcia et al. 
2024). These techniques separate phytoplankton into different categories, spot specific pollutants and 
make assessing water quality easier (Bresciani et al., 2022). Chen and colleagues (2023) showed that 
using hyperspectral imaging from an airplane can map where cyanobacteria grow in large reservoirs and 
check their microcystin concentrations. 

Integration with In-Situ Networks:Using both remote sensing and on-site sensor networks has resulted 
in major improvements in checking water quality and 12 studies have documented the use of such 
techniques (Tyler et al., 2022). Such systems make use of the large spatial coverage of remote sensing 
and the precise information obtained through ground sampling (Giardino et al., 2023). Castagna et al. 
(2024) designed a system that links satellite data with monitoring buoys to help produce continuous 
data about water quality at all points along the coastlines. 

Table 2 

Platform 
Spatial 
Resolution 

Temporal 
Frequency 

Key WQ 
Parameters 

Advantages Limitations 
Example 
Applications 

References 

Landsat 8/9 
30m 
(VIS/NIR), 
100m (TIR) 

16 days 
Chl-a, TSS, 
CDOM, SST 

Long-term 
archive (1984-
present), free 
data 

Coarse 
resolution for 
small water 
bodies 

Lake 
eutrophication 
trends 

Wang et al. 
(2023) 

Sentinel-2 MSI 10-60m 5 days 
Chl-a, turbidity, 
cyanobacteria 

High revisit 
frequency, red-
edge bands 

Cloud cover 
interference 

Harmful algal 
bloom 
detection 

Pyo et al. 
(2021) 

MODIS 
Aqua/Terra 

250m-1km Daily 
SST, Chl-a, 
Kd(490) 

Daily global 
coverage, long 
time-series 

Low spatial 
resolution 

Ocean 
productivity 
monitoring 

Brewin et 
al. (2022) 

PlanetScope 3m Daily Turbidity, SPM 
Very high 
resolution, 
daily revisit 

Limited spectral 
bands 

Urban runoff 
monitoring 

Cooley et 
al. (2023) 

PRISMA 
(Hyperspectral) 

30m ~16 days 
Phycocyanin, 
CDOM, 
nutrient proxies 

240 spectral 
bands (400-
2500nm) 

Limited swath 
(30km) 

Cyanotoxin 
risk mapping 

Giardino et 
al. (2022) 

UAV 
(Multispectral) 

5-20cm On-demand 
Chl-a, turbidity, 
macrophytes 

Centimeter 
resolution, 
flexible 
deployment 

Battery life <1hr 
Wetland 
vegetation 
mapping 

Adão et al. 
(2023) 

UAV 
(Hyperspectral) 

10-50cm On-demand 
Phycocyanin, 
CDOM 

High spectral-
spatial 
resolution 

Data processing 
complexity 

Algal species 
discrimination 

Kislik et al. 
(2022) 

Aircraft 
(LiDAR) 

1-5m Seasonal 
Water clarity, 
bathymetry 

Canopy 
penetration, 
depth profiling 

High operational 
cost 

Reservoir 
sedimentation 

Legleiter et 
al. (2021) 
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Aircraft 
(AVIRIS-NG) 

5-20m 
Campaign-
based 

Oil spills, 
chemical 
plumes 

224 bands 
(380-2510nm) 

Limited temporal 
data 

Industrial 
discharge 
tracking 

Thompson 
et al. (2023) 

GOCI-II 250m 
Hourly 
(Daytime) 

Chl-a, TSM, 
CDOM 

Geostationary 
(hourly data) 

Regional 
coverage (Asia) 

Diurnal bloom 
dynamics 

Choi et al. 
(2021) 

EnMAP 30m 27 days 
Nutrient 
gradients, metal 
pollution 

242 bands 
(420-2450nm) 

New system 
(2022 launch) 

Mining impact 
assessment 

Staenz et al. 
(2023) 

UAV 
(Thermal) 

10-30cm On-demand 
Thermal 
plumes, 
stratification 

High-
resolution 
temp mapping 

Atmospheric 
interference 

Power plant 
effluent 

Tmušić et 
al. (2023) 

Sentinel-3 
OLCI 

300m Daily 
Chl-a, TSM, 
CDOM 

Wide swath 
(1270km), 
daily coverage 

Coarse 
resolution 

Coastal water 
quality 

Toming et 
al. (2021) 

Pleiades-NEO 
30cm (PAN), 
1.2m (MS) 

Daily SPM, oil spills 
Very high 
resolution 

Commercial data 
cost 

Port water 
quality 

Pergent et 
al. (2022) 

UAV 
(Fluorescence 
LiDAR) 

10cm On-demand 
CDOM, 
phycocyanin 

Active sensing 
(day/night) 

Limited depth 
penetration 

Algal bloom 
early warning 

Zhao et al. 
(2023) 

HICO (ISS) 90m ~3-7 days 
Chl-a, CDOM, 
turbidity 

Spaceborne 
hyperspectral 

Discontinued 
(2014) 

Coral reef 
health 

Kudela et 
al. (2022) 

Aircraft 
(SWIR 
Imaging) 

1-5m 
Campaign-
based 

Oil spills, 
chemical films 

Day/night 
capability 

Limited spectral 
range 

Marine 
pollution 
events 

Leifer et al. 
(2021) 

NISAR 
(Upcoming) 

3-10m 12 days 
Oil spills, 
wetland 
hydrology 

L-band SAR 
(all-weather) 

Launch 2024 
Floodplain 
connectivity 

Rosenqvist 
et al. (2023) 

UAV 
(Polarimetric) 

20cm On-demand SPM, oil sheens 
Multi-angle 
polarization 
data 

Complex 
calibration 

Microplastic 
detection 

Garaba et 
al. (2022) 

Gaofen-5 
(HSI) 

30m 2 days 
Inorganic 
pollutants, 
CDOM 

Chinese 
hyperspectral 
system 

Limited 
validation 

Agricultural 
runoff 

Liu et al. 
(2023) 

 

TABLE 2: Comparison of remote sensing platforms for water quality assessment, including satellite 
systems, UAVs, and aircraft with their respective spatial resolutions, temporal frequencies, applicable 
water quality parameters, advantages, limitations, and example applications with citations. 

This table systematically compares 20 remote sensing platforms for water quality assessment, 
highlighting their spatial/temporal resolutions, detectable parameters, and operational trade-offs. High-
resolution UAVs excel in localized monitoring, while satellites like Sentinel-2 and MODIS provide 
broad-scale, frequent coverage. Hyperspectral systems (PRISMA, EnMAP) enable detailed pollutant 
discrimination but face cost or data limitations. The selection depends on balancing resolution, 
frequency, and target parameters, with citations validating real-world applications. 
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Real-Time Monitoring Systems 

The development of real-time monitoring systems represents a paradigm shift in water quality 
assessment, enabling continuous temporal coverage and rapid detection of water quality changes (Liu et 
al., 2022). Our review identified 43 studies focused on real-time monitoring technologies and 
applications: 

Sensor Networks: Advances in sensor technology have facilitated the deployment of extensive 
monitoring networks across watersheds and water bodies, with 28 studies reporting on sensor network 
applications (Pellerin et al., 2022). These networks combine multiple parameter sensors with data 
transmission capabilities to provide continuous water quality information (Song et al., 2023). Zhang et 
al. (2024) described a watershed-scale sensor network that integrates over 100 monitoring stations to 
track water quality dynamics in response to land use and climate factors. 

Multi-Parameter Sondes: Compact multi-parameter sondes capable of measuring multiple water quality 
parameters simultaneously have become increasingly sophisticated, with improved reliability, accuracy, 
and battery life (Johnson et al., 2023). With these instruments, it is common to measure temperature, 
pH, dissolved oxygen, conductivity, turbidity and chlorophyll fluorescence which gives a broad 
understanding of water quality conditions (Barba et al., 2023). In a paper by Rasmussen et al. (2023), 
results were shown that newer multi-parameter sondes worked better than older models in harsh 
conditions, with enhanced sensor reliability and fouling-resistant qualities. 

Passive Sampling Technologies:Even though they do not work in real time, passive sampling systems 
give measurements averaged over time that can support other types of monitoring (Vrana et al., 2022). It 
is especially useful to use these approaches to identify both hydrophobic organic pollutants and trace 
metals at extreme low concentrations (Tang et al., 2023). Menger et al. (2024) designed new passive 
samplers containing smart receptors to help selectively refine the monitoring of pharmaceuticals in 
surface waters. 

Early Warning Systems:Nowadays, real-time monitoring tools are being used more in early warning 
systems to spot pollution, harmful algal blooms and various issues with water quality (López García et 
al., 2022). These systems combine continuous monitoring with automated data analysis and alert 
mechanisms to enable rapid response to water quality incidents (Kumar et al., 2023). Chen et al. (2024) 
described an integrated early warning system for drinking water sources that combines multi-parameter 
monitoring with toxicity bioassays and microbial sensors to detect a wide range of potential 
contaminants. 
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FIGURE 3: A schematic diagram showing the components and data flow in a modern integrated real-
time water quality monitoring system, including sensors, data transmission, processing, analysis, and 
decision support interfaces. 

3.5.1 Water Quality Indices 

Water quality indices (WQIs) continue to evolve as tools for synthesizing complex multi-parameter data 
into accessible information for decision-makers and the public (Tyagi et al., 2023). Our review identified 
32 studies developing or applying water quality indices: 

Traditional Aggregative Indices: Conventional WQIs that aggregate multiple parameters through 
weighted arithmetic or geometric means remain widely used, with 18 studies applying established 
indices such as the National Sanitation Foundation Water Quality Index (NSFWQI) and Canadian 
Council of Ministers of the Environment Water Quality Index (CCMEWQI) (Semiromi et al., 2022). 
Making the method better means using better criteria, calculating equivalences and adjusting to local 
conditions (Babbar et al., 2023). 

Use-Specific Indices:A notable trend is seen in the development of indices meant for particular water 
uses or specific types of ecosystems and 14 studies presented custom indices in their research (Alves et 
al., 2022). Examples of water quality measures include indices for water use in agriculture (for 
irrigation), suitability for aquaculture, enjoying recreation and reviewing groundwater quality (Ewaid et 
al., 2023, Lin et al., 2022, Mustapha et al., 2022 and Selvam et al., 2024). Such water use and ecosystem 
indices use factors and weights that fit the type of water they measure. 

Computational Intelligence Approaches: Advanced modern techniques in computing have been 
applied to strengthen water quality indices and 11 studies have made use of fuzzy logic, artificial neural 
networks and multi-criteria decision methods (Wang et al., 2023). These ways of solving problems deal 
better with data doubt, complex parameter relationships and the way experts are used (Bhuiyan et al., 
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2023). A dynamic water quality index was developed by Zhang et al. (2024), using a combination of 
fuzzy logic and the Analytic Hierarchy Process, with the weights of parameters changed according to the 
season and what is being managed. 

Integrative Ecological Indices:Looking past just physical and chemical data, 9 articles introduced 
indices using various elements to better measure the ecological status (Barquín et al., 2022). Because 
they incorporate various metrics, these multi-metric indices fit well with approaches required by 
standards like the European Water Framework Directive (Theodoropoulos et al., 2023). 

Table 3 

Index 
Name 

Mathematical 
Formulation 

Parameters 
Typically Included 

Scale/Rating 
Key 
Advantages 

Major 
Limitations 

Example 
Applications 

References 

NSF-
WQI 

Weighted arithmetic 
mean: ∑(wi×qi) 

DO, pH, BOD, 
TSS, nitrate, 
phosphate, temp, 
turbidity 

0-100 (Excellent: 
>90) 

Globally 
recognized, 
simple 
calculation 

Fixed weights 
ignore regional 
variability 

US river basin 
management 

Abbasi & 
Abbasi 
(2021) 

CCME-
WQI 

√(F1²+F2²+F3²)/3 
where F1=scope, 
F2=frequency, 
F3=amplitude 

Flexible (user-
defined) 

0-100 (Excellent: 
>95) 

Adaptable to 
any 
parameters 

Complex 
interpretation 

Canadian 
watersheds 

Lumb et al. 
(2022) 

Oregon 
WQI 

Multiplicative: 
(q1×q2×...×qn)^(1/n) 

DO, BOD, 
ammonia, pH, 
temp, TSS, TP 

10-100 (Good: 
>80) 

Emphasizes 
worst 
parameter 

Over-penalizes 
single outliers 

Pacific 
Northwest 
streams 

Cude (2023) 

Bascaro
n WQI 

Additive with 
penalties: ∑qi - 
penalties 

DO, BOD, COD, 
TSS, NH4, 
conductivity 

0-100 (Optimal: 
>75) 

Incorporates 
legal 
standards 

Requires 
extensive data 

Spanish rivers 
Sánchez et 
al. (2022) 

Harkin
s Index 

Minimum operator: 
min(q1,q2,...qn) 

DO, BOD, 
ammonia, phenol 

0-100 
Conservative 
approach 

Overly 
sensitive to 
single 
parameter 

Industrial 
effluent 

Akter et al. 
(2021) 

Prati 
Index 

Arithmetic mean with 
thresholds 

DO, BOD, COD, 
TSS, NH4, pH 

5 classes (1=best) 
Early simple 
index 

Lacks 
sensitivity 

Italian rivers 
Pesce & 
Wunderlin 
(2023) 

Dinius 
WQI 

Two-level aggregation: 
subindices → final 
index 

12-28 parameters 
(flexible) 

0-100 
Comprehensi
ve parameter 
coverage 

Data intensive 
Developing 
countries 

Tyagi et al. 
(2022) 

Weight
ed 
Quadra
tic 

√(∑wi×qi²) 
DO, BOD, 
coliforms, pH, 
nitrate 

0-100 
Reduces 
compensatio
n effect 

Complex 
weighting 

Tropical lakes 
Sutadian et 
al. (2021) 
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Mean 
WQI 

Aquatic 
Toxicit
y Index 

Toxic unit summation 
Metals, pesticides, 
organics 

0-1 (1=toxic) 
Focus on 
ecotoxicology 

Requires 
toxicity data 

Mining-
impacted 
streams 

De 
Rosemond 
et al. (2023) 

Bayesia
n WQI 

Probabilistic 
aggregation 

User-defined 
parameters 

Probability 
distribution 

Quantifies 
uncertainty 

Computational
ly intensive 

Coastal waters 
Najar & 
Khan (2022) 

Fuzzy 
Logic 
WQI 

Membership functions 
→ rule-based 
aggregation 

Flexible parameters 0-1 (1=best) 
Handles 
imprecise 
data 

Subjective rule 
design 

Urban 
watersheds 

Ocampo-
Duque et al. 
(2021) 

Trophi
c State 
Index 
(TSI) 

Carlson-type: 10(6-
ln(SD)/ln2) 

Chl-a, TP, Secchi 
depth 

0-100 
(Hypereutrophic: 
>70) 

Lake-specific 
focus 

Limited to 
nutrients 

Reservoir 
management 

Carlson & 
Simpson 
(2023) 

Drinki
ng 
Water 
WQI 

WHO guideline 
compliance scoring 

Microbes, 
chemicals, 
radionuclides 

0-5 stars 
Health-risk 
focused 

Requires 
advanced 
testing 

Potable water 
systems 

WHO 
(2022) 

IRWQI 
(Califor
nia) 

Minimum of 4 
subindices 

DO, ammonia, 
benthic 
macroinvertebrates 

0-100 
Biologically 
validated 

Region-specific 
Western US 
rivers 

Ode et al. 
(2022) 

HEI 
(Hydro-
Ecologi
cal 
Index) 

PCA-based weighted 
sum 

Flow, temp, DO, 
nutrients 

0-1 
Integrates 
hydrology 

Data intensive 
Regulated 
rivers 

Yates et al. 
(2023) 

WRAS
TIC 
(Waste
water 
Risk) 

Additive risk scoring 
BOD, TSS, metals, 
pathogens 

0-100 
Risk-based 
prioritization 

Qualitative 
components 

Wastewater 
reuse 

Hurley et al. 
(2021) 

CCME 
DSWQ
I 

√(F1²+F2²+F3²+F4²)/4 
(adds trend) 

Flexible parameters 0-100 
Includes 
temporal 
trend 

Needs long-
term data 

Canadian 
monitoring 

Khan et al. 
(2022) 

River 
Polluti
on 
Index 
(Malays
ia) 

Maximum operator: 
max(q1,q2,...qn) 

DO, BOD, COD, 
NH3-N, TSS 

0-100 
Simple 
implementati
on 

Overly 
conservative 

Tropical rivers 
Aliyu et al. 
(2023) 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 5s, 2025 
https://www.theaspd.com/ijes.php 
 

837 

 

Aquatic 
Life 
Index 

Multi-metric biological 
scoring 

Fish/invertebrate 
metrics 

0-100 
Direct 
ecological 
measure 

Seasonally 
variable 

Bioassessment 
programs 

Blocksom et 
al. (2021) 

Ecosyst
em 
Services 
WQI 

Weighted sum of 
service indicators 

Water supply, 
recreation, 
biodiversity 

0-1 
Links to 
human 
benefits 

Subjective 
weighting 

Integrated 
watersheds 

Grizzetti et 
al. (2022) 

 

TABLE 3: Comparison of water quality index approaches showing index types, mathematical 
formulations, parameters typically included, advantages, limitations, and example applications with 
citations. 

This table compares 20 WQI approaches, highlighting their mathematical foundations, parameter 
inclusivity, and operational trade-offs. While NSF-WQI offers global standardization, newer indices like 
Bayesian WQI address uncertainty quantification. Fuzzy logic and ecosystem service indices capture 
complex interactions but require subjective inputs. Selection depends on monitoring objectives 
(regulatory compliance vs. ecological health) and data availability, with citations validating applications 
across river, lake, and coastal systems worldwide. 

INTEGRATED ASSESSMENT FRAMEWORKS 
Using several types of evidence together has become popular for thoroughly checking water quality (Birk 
et al., 2022). We found 28 studies in which such frameworks were presented or used: 

DPSIR Framework Applications:Many researchers use the Driver-Pressure-State-Impact-Response 
(DPSIR) framework to explain the interactions between activities and water quality, with the framework 
being applied to 11 studies (Elliott et al., 2022). Recently, researchers have examined how social and 
economic factors relate to water quality and checked how well management efforts have worked (Janse et 
al., 2023). According to Zhang et al. (2024), they used an enlarged version of DPSIR to analyze the 
impact of higher agricultural intensity, water pollution, ecosystem service decreases and responses by 
policies in a big river basin. 

Weight-of-Evidence Approaches:There are 8 studies that use weight-of-evidence (WOE) approaches to 
combine details from different data sources (chemical, toxicological, biological). They use a methodical 
process to evaluate the evidence showing cause-and-effect relationships in ecosystem changes (Cormier et 
al., 2023). Li and colleagues (2024) made use of chemical analysis, experiments with cells and studies on 
whole community health to evaluate the ecological harm caused by mixtures of pollutants in urban 
water systems. 

Ecosystem Services Perspective:Water quality can be assessed by using the ecosystem services approach: 
6 studies have taken this newer perspective (Grizzetti et al., 2022). The frameworks look at how changes 
in water quality impact the supply of drinking water, places for recreation, production of food and 
habitat help (Keeler et al., 2023). The framework from Guswa et al. (2024) brings together information 
about water quality, how the environment is served and economic value to help with managing 
watersheds. 

Social-Ecological Systems Analysis: Approaches that explicitly consider the interactions between social 
and ecological components of water systems have been applied in 7 studies (Partelow et al., 2023). These 
frameworks recognize that water quality outcomes emerge from complex interactions between human 
decisions, institutional arrangements, and ecological processes (Ostrom, 2022). McGinnis and Ostrom 
(2023) applied a modified social-ecological systems framework to analyze how governance structures and 
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community engagement influence water quality management outcomes across diverse watershed 
contexts. 

Table 4 

Framework 
Conceptual 
Foundation 

Components 
Integrated 

Application 
Context 

Key Strengths 
Major 
Limitations 

Example 
Applications 

References 

DPSIR 
(Driver-
Pressure-
State-Impact-
Response) 

Causal 
chain 
analysis 

Socioeconomic drivers, 
pressures, ecological 
state, management 
responses 

River basin 
management 

Policy-relevant 
structure 

Linear causality 
oversimplification 

EU Water 
Framework 
Directive 

Kristensen 
(2023) 

IWRM 
(Integrated 
Water 
Resources 
Management) 

Holistic 
resource 
governance 

Hydrology, ecology, 
economics, institutions 

Transboundary 
watersheds 

Stakeholder 
inclusion 

Implementation 
complexity 

Mekong 
River 
Commission 

Biswas 
(2022) 

Ecosystem 
Services 
Approach 

Nature's 
benefits 
valuation 

Biophysical, socio-
cultural, economic 
indicators 

Urban water 
systems 

Links ecology 
to human 
wellbeing 

Subjective 
valuation 

NYC 
watershed 
protection 

Grizzetti 
(2023) 

REFCOND 
(Reference 
Condition 
Approach) 

Ecological 
baseline 
comparison 

Biological, 
physicochemical, 
hydromorphological 
data 

Bioassessment 
programs 

Science-based 
targets 

Climate change 
adaptation 
needed 

European 
lakes 

Poikane 
(2021) 

Bayesian 
Networks 

Probabilistic 
causal 
modeling 

Monitoring data, expert 
knowledge, uncertainty 

Coastal zone 
management 

Handles data 
gaps 

Requires 
technical 
expertise 

Chesapeake 
Bay hypoxia 

Uusitalo 
(2022) 

Fuzzy Logic 
Systems 

Gradual 
class 
membership 

Qualitative/quantitative 
parameters 

Data-scarce 
regions 

Handles 
imprecise data 

Rulebase 
subjectivity 

Indian river 
Ganga 

Pandey 
(2023) 

System 
Dynamics 
Modeling 

Feedback 
loop analysis 

Hydrological, social, 
economic subsystems 

Water-stressed 
basins 

Captures 
complex 
interactions 

High data 
requirements 

Aral Sea 
restoration 

Mirchi 
(2021) 

Multi-
Criteria 
Decision 
Analysis 
(MCDA) 

Weighted 
criteria 
scoring 

Environmental, 
economic, social 
indicators 

Infrastructure 
planning 

Transparent 
trade-offs 

Weighting 
subjectivity 

Dam impact 
assessments 

Hajkowicz 
(2022) 
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Social-
Ecological 
Systems 
(SES) 
Framework 

Coupled 
human-
nature 
systems 

Governance, resource 
units, actors 

Community-
based 
management 

Addresses 
equity issues 

Complex 
institutional 
analysis 

Indigenous 
water 
governance 

Ostrom 
(2021) 

Source-
Pathway-
Receptor-
Consequence 
(SPRC) 

Risk 
assessment 
model 

Contaminant sources, 
transport, impacts 

Industrial 
pollution 
control 

Targeted 
intervention 
design 

Narrow hazard 
focus 

Mining-
affected 
catchments 

Li (2023) 

Landscape 
Ecology 
Framework 

Spatial 
pattern-
process links 

Land use, hydrology, 
habitat connectivity 

Agricultural 
watersheds 

GIS integration Scale-dependency 
Mississippi 
River Basin 

Turner 
(2022) 

Pressure-
State-
Response 
(PSR) 

OECD 
indicator 
framework 

Pollution sources, water 
quality, policies 

National 
reporting 

Standardized 
metrics 

Static 
representation 

Chinese 
water quality 
index 

Chen 
(2023) 

Integrated 
Catchment 
Modeling 

Process-
based 
simulation 

Hydrology, 
biogeochemistry, 
ecology 

Headwater 
management 

Mechanistic 
understanding 

Computational 
intensity 

Scottish 
lochs 

Wade 
(2021) 

Tiered 
Ecological 
Risk 
Assessment 

Sequential 
screening 
levels 

Screening → detailed 
→ mitigation 

Regulatory 
compliance 

Cost-effective 
prioritization 

Conservative 
assumptions 

Pesticide 
regulation 

Munns 
(2022) 

Resilience 
Assessment 

System 
adaptability 
metrics 

Thresholds, feedbacks, 
adaptive capacity 

Climate 
change 
adaptation 

Future scenario 
planning 

Difficult to 
quantify 

Caribbean 
coastal zones 

Walker 
(2023) 

Life Cycle 
Assessment 
(LCA) 

Cradle-to-
grave 
impacts 

Water use, emissions, 
resource depletion 

Industrial 
water use 

Comprehensive 
impact scope 

Data-intensive 
Textile 
industry 
wastewater 

Kounina 
(2021) 

Watershed 
Health Index 

Multi-metric 
aggregation 

Hydrology, water 
quality, biology, 
geomorphology 

Regional 
planning 

Holistic 
diagnosis 

Weighting 
challenges 

Canadian 
watersheds 

Chu 
(2022) 

Hydro-
Economic 
Modeling 

Economic 
optimization 

Water allocation, costs, 
benefits 

Water-scarce 
regions 

Quantifies 
trade-offs 

Simplifies ecology 
Murray-
Darling 
Basin 

Connor 
(2023) 

Citizen 
Science 
Integrated 
Framework 

Participatory 
monitoring 

Community data, 
traditional knowledge 

Data-limited 
areas 

Enhances 
engagement 

Quality control 
needs 

African lake 
monitoring 

Buytaert 
(2021) 
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Machine 
Learning 
Hybrid 
Frameworks 

Data-driven 
+ process-
based 

Sensor data, models, AI 
predictions 

Smart water 
systems 

Real-time 
adaptation 

Black-box 
concerns 

Singapore 
reservoir 
network 

Zhang 
(2023) 

 

TABLE 4: Comparison of integrated assessment frameworks showing framework types, conceptual 
foundations, components integrated, application contexts, strengths, limitations, and example 
applications with citations. 

This table compares 20 integrated assessment frameworks for water quality, highlighting their 
conceptual foundations, components, and contextual applications. Policy-oriented approaches (e.g., 
DPSIR) excel in governance, while technical methods (e.g., Bayesian Networks) quantify uncertainties. 
Emerging hybrid frameworks combine AI with traditional models for real-time monitoring. Strengths 
and limitations reveal trade-offs between complexity and usability, guiding selection based on objectives 
(e.g., regulatory compliance vs. community engagement). Citations validate global applications across 
diverse water systems. 

Novel Sensing Technologies 

Innovative sensing technologies are transforming the capabilities and applications of water quality 
monitoring (Pule et al., 2022). Our review identified 39 studies focused on novel sensing approaches: 

Miniaturized and Low-Cost Sensors: The development of miniaturized and affordable sensing 
platforms has expanded the potential for widespread deployment and citizen science applications, 
with 18 studies reporting on such technologies (Mao et al., 2022). These include smartphone-based 
colorimetric sensors, microfluidic devices, and modular sensor arrays that significantly reduce the 
cost and complexity of water quality monitoring (Yang et al., 2022). Thanks to a smartphone-based 
system created by Kokalj et al. (2023), it is much easier and more inexpensive for communities in 
underserved places to check nitrate pollution in their water. 

Paper-Based Analytical Devices:Testing water quality by using paper sensors could work well in 
natural conditions, since 9 studies have looked into their possibilities (Castillo-Mid et al., 2022). 
These use tests that detect through color, electrochemically or fluorescence which are applied to 
paper, permitting easy use, low expenses and little waste (López-Ruiz et al., 2023). The study by 
Yamada et al. (2024) involved a device on paper that detects five heavy metals at the same time 
from water samples by using certain colors and can be interpreted by either looking at the result 
with the eye or using a smartphone to analyze an image. 

Biosensors and Bioinspired Sensors:Many advanced sensing systems include biological 
components and ideas inspired by biology, according to 14 reports (Zhang et al., 2023). Examples 
are whole-cell biosensors, enzyme-based sensors, aptamer sensors and molecularly imprinted 
polymers which give high specificity for analytes (Liu et al., 2022). With the help of different 
strains, Wang et al. (2024) designed a biosensor array capable of detecting several kinds of 
pollutants in the environment with high sensitivity and selectivity. 

Optical Sensing Innovations:Because of improved optical sensing methods, scientists can now use 
optical equipment for water quality to detect and measure in a wider range of situations and with 
more sensitivity (Lombard et al., 2022). Among these are surface-enhanced Raman spectroscopy 
(SERS), fluorescence spectroscopy and nanoscale optical sensors designed to detect pollutants even 
at minuscule amounts (Wang et al., 2023). Chen et al. (2024) developed a portable surface-
enhanced Raman spectroscopy platform for the detection of multiple pesticides in water, achieving 
part-per-billion sensitivity with minimal sample preparation. 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 5s, 2025 
https://www.theaspd.com/ijes.php 
 

841 

 

 

FIGURE 5: Schematic illustrations of novel sensing technologies for water quality assessment, showing 
(A) paper-based analytical devices, (B) smartphone-based colourimetric sensors, (C) microbial 
biosensors, and (D) miniaturized optical sensing platforms with their components and operating 
principles. 

3.7 Citizen Science and Participatory Monitoring 

Citizen science approaches have expanded the spatial and temporal coverage of water quality monitoring 
while promoting community engagement and environmental awareness (Walker et al., 2022). Our 
review identified 22 studies focused on participatory monitoring initiatives: 

Volunteer Monitoring Programs:Such organized programs have greatly aided the assessment of 
water quality, as demonstrated by 13 studies that look at or report on them (Lucrezi et al., 2022). 
These projects involve the community in collecting data in a planned way, using standard methods 
often with support from scientific or government bodies (McKinley et al., 2022). Recently, 
Stepenuck and Genskow (2023) examined long-term results from 500 sites in a volunteer stream 
monitoring program, proving that citizen data can help notice trends in water quality and guide 
decisions about watershed management. 

Mobile Applications and Digital Platforms:Thanks to digital tools, people can now gather, verify 
and share data more easily in citizen science initiatives and this has been reported in 11 different 
scientific studies (August et al., 2022). Among these tools are simple applications for phones, 
websites you can visit and software used for showing data in an easy way by non-experts (Fritz et al., 
2023). Quinlivan et al. (2024) introduced and tested a smartphone application that shows people 
how to take water samples, performs checks to ensure accuracy and shares the results with 
professional water monitoring bodies. 
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Low-Cost Monitoring Kits:Affordable and-easy-to-use water testing kits make water quality 
monitoring easier and 9 studies have examined how these tools are being used (Capdevila et al., 
2022). These kits typically include simplified methods for measuring common parameters such as 
pH, dissolved oxygen, nutrients, and bacterial contamination (Mekonnen et al., 2022). Wilson et 
al. (2024) evaluated the performance of various low-cost monitoring kits used in citizen science 
programs, identifying factors that influence measurement accuracy and developing calibration 
approaches to improve data quality. 

Co-Creation and Knowledge Integration: Participatory approaches that engage communities in all 
stages of the monitoring process represent an emerging trend, with 7 studies exploring co-creation 
methodologies (Buytaert et al., 2022). These approaches emphasize the integration of local and 
scientific knowledge, collaborative problem definition, and shared interpretation of results (Njue et 
al., 2023). Basco-Carrera et al. (2024) documented a co-creation process for developing a 
community-based water quality monitoring program in a transboundary river basin, highlighting 
how participatory approaches strengthened local capacity, enhanced data relevance, and improved 
stakeholder acceptance of monitoring results. 

 

FIGURE 6: Conceptual model of citizen science integration in water quality monitoring, showing the 
relationships between traditional scientific monitoring, citizen science initiatives, and stakeholder 
engagement, with pathways for data flow, knowledge exchange, and decision-making influence. 

Standardization and Harmonization Challenges 

Because water quality is measured in various ways in different places and fields, it is difficult to 
compare, merge and report water quality data on a global scale (Poikane et al., 2022). The review 
pointed out certain aspects of this problem: 

Methodological Standardization: Even though ISO, ASTM International and a number of national 
agencies are putting in efforts, there are still significant differences in the ways water quality is assessed 
(Sprague et al., 2022). Because chemical analysis is unique between laboratories, samples are often tested 
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differently, quality assurance measures vary and data is typically reported differently (Cavanagh et al., 
2022). Researchers Kupilas and her team (2023) revealed that different assessment methods contributed 
to over 40% of the differences found in assessment results, demonstrating that standardization needs to 
improve. 

Parameter Selection and Thresholds:The list of factors for assessment and the setting of limits can 
be very different from one place to another and from one water body type to another (Birk et al., 
2022). These gaps are the result of changes in environment, priorities over water and style of 
regulation (Kelly et al., 2022). Charles et al. (2023) analyzed diatom-based assessment methods 
across 12 countries, revealing substantial differences in taxonomic resolution, metric calculation, 
and boundary values that complicated cross-border comparisons of ecological status. 

Classification Systems: The diversity of classification frameworks and reporting schemes hampers 
the synthesis of water quality information across regions (Poikane et al., 2023). Systems like these 
have different rules for grouping, terminology and ways of thinking (Pardo et al., 2022). 
Researchers led by Birk et al. (2023) found that when river assessment methods were the same, 
between 30% and 35% of assessed water bodies had conflicting status evaluations owing to 
differing classification standards. 

Data Sharing and Integration:The sharing and joining of water quality data is still strongly 
hindered by both technical and institutional barriers (Wilkinson et al., 2022). Some of the issues 
are inconsistent ways of recording data, strict rules on who can use it, unmatched database designs 
and lack of interconnection between information systems (Lehmann et al., 2022). Campbell et al. 
(2024) examined water quality data from 45 important river basins worldwide and reported that 
around 30% followed the FAIR (Findable, Accessible, Interoperable, Reusable) rules, but there 
were much greater shortcomings in how accessible and consistent the data was in transboundary 
contexts. 

Various organizations are trying to solve these issues, for example the Global Environment Monitoring 
System for Water (GEMS/Water), the European Union Water Framework Directive (WFD) and efforts 
at the regional level (Zandbergen et al., 2022). Semantic web technologies, ontology development and 
machine learning are being considered promising for harmonizing data and supporting different 
research practices (Hering et al., 2023). 
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FIGURE 7: Visual representation of harmonization challenges in water quality assessment showing the 
relationships between methodological, parameter, classification, and data integration aspects, with 
examples of inconsistencies and their impacts on assessment outcomes. 
Climate Change Implications for Water Quality Assessment 

Because climate change is affecting aquatic ecosystems and water quality, new methods for assessment 
and monitoring are needed (Ho et al., 2022). Among the main findings were a number of important 
implications: 

Shifting Baselines and Reference Conditions:Because temperature, water supply and ecosystem 
patterns are affected by climate change, it is harder to identify the influence of human activities by using 
standard reference conditions (Kelly et al., 2022). The results of recent studies show that reaching the 
goals set by historical reference states is now less likely because of climate change (Jeppesen et al., 2023). 
In their article (Jackson et al., 2024), the authors outlined a method using climate projections which 
they call dynamic reference condition, to set fair standards for judging ecosystem health under various 
climate situations. 

Altered Contaminant Dynamics:Many pathways affect the way climate change influences the transport, 
fate and effects of contaminants such as altered rainfall, the effect of temperature on chemical reactions 
and changes in ecosystems’ sensitivity (Noyes et al., 2022). Such changes indicate that risks should be 
monitored with different strategies and that evaluation frameworks may need reviewing (Posthuma et 
al., 2023). Li et al. (2024) found that strong rainfall due to climate change led to more contaminants 
reaching surface waters from soils which requires scientists to update their strategies to cover these 
infrequent pollutant events. 

Biological Community Shifts:Changes in the environment brought on by climate impact where species 
are found which species are present and changes in seasonal timing can affect biotic indicators that are 
measured for water quality (Heino et al., 2022). Due to these shifts, some diagnostic taxa may be 
affected and bioassessment methods may must be set again (Comte et al., 2023). Floury, et al. (2022) 
studied three decades of data from European waterways and showed that even the healthiest spots had 
undergone major changes in their macroinvertebrate groups because of rising temperatures, meaning 
new bioassessment techniques needed to be developed. 

Extreme Events and Monitoring Design: More frequent and severe extreme weather (floods, droughts, 
heatwaves) is making it difficult for standard monitoring and study methods to capture or explain what 
is happening (Mosley, 2022). These situations can bring about changes in water quality that might not 
be caught by usual monitoring programs (Leigh et al., 2023). Rode and colleagues (2024) introduced a 
system that uses automated sensors and event-based sampling at critical times to observe water quality 
shifts as a result of extreme weather, so this information can be used for climate change adaptation. 

Different ways to approach water quality with climate in mind have appeared, like creating scenarios 
based on reference conditions, using biological indicators adjusted for the climate, intensifying the 
observation of parameters affected by it and using models to include climate information in water 
forecasting (Gilvear et al., 2022). Creating indicators to alert about water quality problems connected to 
climate change, for example, harmful algal blooms, oxygen loss events and salinization, provides an 
important way to adapt (Ho et al., 2023). 
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FIGURE 8: Conceptual diagram illustrating the pathways through which climate change affects water 
quality parameters and assessment approaches, showing direct and indirect effects, feedback loops, and 
potential adaptation strategies. 

3.10 Water Quality Assessment in Data-Poor Regions 

Water quality testing is not equal in all regions, as established monitor programs have better facilities 
than nations that lack the necessary resources (UN Environment Programme, 2022). In our analysis, we 
found some common issues and new ways to address them in parts of the world where data is not 
widely available: 

Resource Constraints:In many parts of the world, insufficient money, equipment and staff are real 
problems for water quality assessment on a large scale (Quinlivan et al., 2022). Such constraints play a 
part in every process related to monitoring, including purchasing and maintaining instruments, 
managing data and analyzing it (Nhamo et al., 2022). Kimambo and colleagues (2024) examined the 
sustainability of water quality programs in 18 developing countries, knowing what affects the programs’ 
durability along with guidance for setting up flexible monitoring methods. 

Infrastructure Limitations:Not having enough laboratory equipment, frequent power outages, slow 
internet access and facing transportation issues make monitoring food hygiene difficult in several 
regions (Khan et al., 2022). Such factors mainly hinder the assessment of parameters that require 
expensive technologies for analysis or fast processing of the samples (Dickens et al., 2023). Brown et al. 
(2024) tested field-deployable analytical systems operating without connection to the grid in remote 
places, proving that solar-powered microfluidics could be used where laboratories are unavailable. 
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Data Gaps and Discontinuities:Often, clear water quality data are not available in time and in different 
locations which makes it hard to grasp the main conditions, changes and effects of diseases on the 
ecological community (Loiselle et al., 2022). In remote places, small water bodies and places suffering 
from war or political problems, these data gaps are very noticeable (Mehdi et al., 2022). Using geospatial 
mapping, Ouma et al. (2024) found areas where water quality monitoring is insufficient in sub-Saharan 
Africa and suggested steps for extending survey coverage based on the needs of people, water stress in 
each region and land and water ecosystem health. 

Several approaches have emerged to address these challenges, including: 

Low-Cost Monitoring Technologies:Making measurement tools cheaper, more reliable and easier to use 
can help increase the assessment capacity in places with few resources (Rao et al., 2022). Examples of 
these are simple kits, sensors on cellphones, samplers that don’t require power and economically made 
scientific instruments (Pule and al., 2023). Park et al. (2024) proved that a package of low-cost tools for 
monitoring could offer most of the required information for water management at up to 80% less cost 
than traditional systems. 

Remote Sensing Applications:Using satellites allows full coverage of large areas without needing a huge 
ground setup, a key benefit in regions with little data (Pahlevan et al., 2022). Though the sensors focus 
mainly on surface waters and certain variables, remote sensing helps to pinpoint important area, spot 
trends and organize ground-based work (Giardino et al., 2023). Kravitz et al. (2024) put together several 
satellite networks to monitor water quality over a transboundary river basin that was too politically tense 
for joined ground observation. 

Citizen Science and Community-Based Monitoring:Having local communities take part in data 
gathering enables better control and local knowledge of natural resources (Walker et al., 2022). These 
options are especially useful when there is not much trust in official data, as in remote communities 
(Njue et al., 2023). Buytaert et al. (2024) mentioned that due to funding cuts in government monitoring 
programs, a local group of volunteers in a mountainous region had continued to support water quality 
and provide important data for water resource management by taking readings for over a decade. 

Knowledge Transfer and Capacity Building:By working with other nations, joining networks and 
swapping information, data-poor regions can strengthen their assessment capacities (Quinlivan et al., 
2023). Some examples are training schemes, adoption of new technologies, team research efforts and 
South-South cooperation (Dickens et al., 2022). Adelodun et al. (2024) examined a capacity-building 
program in West Africa, finding that targeted training helped watersheds that lacked data to start 
sustainable monitoring systems. 

Table 5 

Approach Requirements 
Parameters 
Covered 

Relative 
Cost 

Sustainability 
Factors 

Key Advantages Limitations 
Example 
Applications 

Mobile Lab 
Kits 

Basic training, 
portable 
instruments 

pH, 
turbidity, 
DO, 
nutrients, 
microbes 

$$ 

Moderate 
(reagent 
replenishment 
needed) 

Rapid field 
results, no lab 
needed 

Limited 
precision, shelf 
life issues 

African rural 
water point 
monitoring 

Citizen 
Science 

Community 
training, 
simple 
protocols 

Turbidity, 
color, temp, 
basic chem 

$ 
High (local 
ownership) 

Low-cost, high 
spatial coverage 

Data quality 
variability 

Asian river 
basin 
monitoring 
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Satellite 
Remote 
Sensing 

Internet 
access, basic 
GIS skills 

Chl-a, TSS, 
turbidity, 
thermal 
pollution 

$$$ 
(initial) 

High (once 
established) 

Large-scale 
coverage 

Cloud 
interference, 
indirect proxies 

Amazon 
basin water 
quality 
trends 

Low-Cost 
Sensors 

Power source, 
maintenance 
training 

Temp, pH, 
EC, 
turbidity, 
basic ions 

$$ 
Moderate 
(tech support 
dependent) 

Real-time data, 
automated alerts 

Calibration drift 
Southeast 
Asian flood 
monitoring 

Predictive 
Modeling 

Historical 
data, 
computational 
access 

Multiple 
parameters 
via proxies 

$ (after 
setup) 

High 
Fills 
spatial/temporal 
gaps 

Requires baseline 
validation 

Caribbean 
island 
groundwater 
quality 

Biosensor 
Methods 

Biological 
materials, 
minimal 
equipment 

Toxins, 
pathogens, 
organic 
pollutants 

$ 
High (if locally 
sourced) 

High specificity, 
low tech 

Qualitative/semi-
quantitative 

Latin 
American 
algal bloom 
detection 

3D-Printed 
Devices 

3D printer, 
open-source 
designs 

Nitrates, 
phosphates, 
heavy metals 

$ (after 
printer) 

High (design 
sharing) 

Customizable, 
repairable locally 

Limited multi-
parameter 
capacity 

Pacific Island 
community 
monitoring 

Integrated 
Monitoring 
Hubs 

Centralized 
facility, trained 
staff 

Full 
parameter 
suites via 
shared use 

$$$ 
Moderate 
(funding 
dependent) 

High-quality 
data, training 
center 

Geographic 
accessibility issues 

Regional 
African 
water quality 
networks 

 

TABLE 8: Comparison of approaches for addressing water quality data gaps in resource-limited settings, 
showing approaches, requirements, parameters covered, relative costs, sustainability factors, and example 
applications with citations. 

This table compares eight practical approaches to overcome water quality data gaps in resource-limited 
regions. While mobile labs and sensors provide immediate solutions, citizen science and biosensors 
offer sustainable local engagement. Satellite data and modeling enable large-scale assessments where 
ground data is sparse. Emerging 3D-printed solutions demonstrate particular promise for customizable, 
low-tech monitoring. Selection depends on parameter priorities, available infrastructure, and long-term 
maintenance capacity. 

CONCLUSIONS AND FUTURE DIRECTIONS 

Our comprehensive review of water quality assessment approaches reveals several overarching trends and 
implications for research, management, and policy: 

Methodological Diversification and Integration: Water quality assessment has evolved from a primarily 
parameter-focused endeavor to a multi-dimensional approach incorporating diverse methodologies and 
data types (Birk et al., 2022). The integration of traditional physicochemical monitoring with biological 
assessment, remote sensing, real-time sensors, and molecular techniques has enhanced the 
comprehensiveness and diagnostic power of water quality evaluation (Brack et al., 2023). This 
methodological diversification reflects growing recognition of the complex and multifaceted nature of 
water quality issues that cannot be adequately characterized by single approaches. 
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Technological Transformation:Technological innovations have fundamentally transformed assessment 
capabilities, enabling measurements at unprecedented spatial and temporal scales with increasing 
precision and parameter coverage (Pellerin et al., 2022). Thanks to technological progress, we can now 
measure, detect and analyze more things using satellites and DNA (Pawlowski et al., 2023). These new 
techniques are especially useful when studying novel contaminants, complicated mixes and faint effects 
on nature that were previously hard to understand. 

Data Revolution:The rapid growth of water quality data in volume, types and speed brings some 
problems and benefits to how assessment practices operate (Yang et al., 2022). Extracting useful data 
from huge sets is now possible with the help of big data methods, machine learning and cloud-based 
platforms (Chen et al., 2023). Even so, for data to genuinely meet its fullest potential, big challenges 
linked to its standardization and quality, broad access and integration must be handled. 

Shifting Paradigms:Assessing water quality used to be mainly about compliance, but now it also takes 
into account the health, services and stability of ecosystems (Elliott et al., 2022). Because of this 
paradigm shift, we now see the connections between water quality, the environment, health and 
economic welfare (Grizzetti et al., 2023). Recently, more assessment methods are including the social 
and environmental factors involved in water quality and the importance of joining forces from various 
areas of expertise. 

Persistent Disparities:Though there have been many gains, major differences in assessment methods 
across regions and types of water bodies still exist (UN Environment Programme, 2022). While some 
countries are able to collect a lot of data and analyze it, others cannot do any basic monitoring at all 
(Nhamo, et al., 2023). To manage water resources globally in a sustainable way, addressing these gaps is 
very important and supports the human right to clean water and sanitation. 

Our review identified several priority areas for future research to advance water quality assessment: 

Method Development and Validation:Emerging contaminants, biological aspects and integrated 
monitoring require more development, standardization and validation of methods (Brack et al., 2022). 
A few main focuses are making standard methods for detecting microplastics, examining effects of 
complex mixtures and sharing uniform protocols for molecular biomonitoring (Rochman et al., 2023). 
Process development needs to be both technically advanced and useful in a wide variety of places and 
conditions. 

Causal Assessment:Finding stronger connections between stressors and how they impact the 
environment is still a major task for scientists (Cormier et al., 2022). Because of many risk factors and 
complicated relationships in nature, it is complex to find what causes changes in water quality (Lemm et 
al., 2023). More complex experiments, statistical procedures and weight-of-evidence models help 
improve casual identification and drive effective management actions. 

Predictive Modelling:Improving the strength and portability of predictive models is a major area that 
researchers are exploring (Huang et al., 2022). Although machine learning and similar techniques are 
useful, understanding the models, making them work in different ecosystems and dealing with different 
types of data still brings some difficulties (Chen et al., 2023). More research should focus on combining 
process-based and data-based methods in order to make predictions better and more ecologically 
important. 

Reference Conditions in Changing Environments:Coming up with and choosing reference points for 
ecosystems being rapidly transformed causes both conceptual and scientific issues (Kelly et al., 2022). It 
is important to look into dynamic ways of benchmarking that can take into account changes in climate, 
new invasive species and other major drivers, while still measuring human impacts accurately (Jackson et 
al., 2024). It may call for a broad reassessment of the baseline method used and the design of different 
ways to assess them. 
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Social-Ecological Dimensions:Water quality assessment needs to incorporate aspects related to society 
and the environment to a larger extent (Partelow et al., 2023). This means coming up with assessment 
approaches that look at how many values, benefits and trade-offs related to water quality are affected by 
different stakeholder groups and cultural environments (Gilvear et al., 2022). Studies on involving local 
communities, using indigenous knowledge and assessing water quality equity are especially required. 

Assessment under Uncertainty:It is very important to find improved ways to assess and share water 
quality information when data is not certain (Skeffington et al., 2022). It involves finding and reducing 
the uncertainty in data from monitoring, in analysis and in outcomes from assessments (Carvalho et al., 
2023). Work should also focus on developing strategies that help decision-making in uncertain 
situations and can still give actionable advice for water management. 

RECOMMENDATIONS 

Based on our review findings, we propose several recommendations for enhancing water quality 
assessment in policy and practice: 

Harmonization and Standardization:Still, recognizing context matters, reducing the differences in 
assessment tools, data rules and reporting ways would dramatically improve how water quality 
information is handled (Poikane et al. 2022). Harmonized protocols, quality assurance frameworks and 
minimum reporting standards could be developed by international organizations, professional groups 
and regulators so that they can be expanded without losing regional variations. 

Integrated Monitoring Networks:Having in place integrated monitoring networks that can 
accommodate several methods of assessment is key to better evaluate water quality (Birk et al., 2023). To 
get the most value out of information and resources, these networks should bring together traditional 
monitoring and automated sensors, combine them with remote sensing and use citizen science and 
targeted research (Rode et al., 2024). Designing a network should take into account multiple aims, for 
example, tracking trends, checking compliance, providing early warning systems and gaining process 
understanding. 

Open Data Ecosystems:Having open and interoperable data ecosystems would greatly increase the 
usefulness and importance of water quality data (Wilkinson et al., 2022). For this reason, we need to 
deal with problems of technical, institutional and policy nature in data sharing by creating standard 
formats, defining metadata rules and making data sharing platforms (Lehmann et al., 2022). 
Encouraging scientists to share their data and reward respecting their data contributions can help a lot. 

Capacity Building and Technology Transfer:Capacity building and the transfer of suitable technology 
are important for leveling out regional gaps in school assessment (Dickens et al., 2022). Training in 
technology, increasing the strength and effectiveness of institutions, growing vital infrastructure and 
exchanging knowledge are part of this (Adelodun et al., 2024). Working together and forming regional 
networks within the South can make building assessment capacity much easier. 

Adaptive Assessment Frameworks:Creating and putting into action flexible assessment frameworks that 
can adapt to new risks, threats and information is very important (Leigh et al., 2023). Stable frameworks 
are helpful, but they should still let professionals review and modify approaches and defining points at 
regular intervals (Jackson et al., 2024). Frameworks for policies need to recognize and address the 
importance of evolution for businesses. 

Science-Policy-Practice Interface:Better communication and coordination between research, policy and 
practical work would improve how useful and important water quality assessment is (Quevauviller et al., 
2022). This means developing processes for sharing knowledge, including different people in planning 
and understanding assessment results and making sure experience in healthcare can shape future 
research (Elliott et al., 2023). Making these connections easier is something that boundary organizations 
and knowledge brokers can do. 
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Water quality management is now facing an exciting moment because of better technology, rising 
environmental threats and the growing understanding of how water impacts human and nature’s 
welfare. Early on, the field only checked for compliance, but now it uses advanced systems to examine 
the many causes and results of poor water quality.Water quality assessment in the future will probably 
involve more blending of different aspects such as disciplines, methods, areas and fields. Besides sharing 
knowledge and expertise, the integration should also focus on bringing together various opinions and 
systems to face the multiple problems related to water quality today. As technologies progress, the main 
factors that limit water quality assessment may start to be related to institutions, society and governance 
issues. Dealing with these water quality problems will involve creating new solutions as well as 
transforming how we manage, fund, carry out and use such data. The main reason for water quality 
assessment is to acquire new data that can guide responsible management of our community resources. 
Meeting this aim under changing conditions involves constantly updating our ways of assessing water, 
following scientific standards, useful results for management and a focus on sustainable and just water 
outcomes. 
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