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Abstract  

This research focuses on measuring river pollution due to industrial activities using machine learning (ML) 
models. The goal is to create and assess ML algorithms which, given specific environmental and industrial 
indicators, could reliably forecast the level of pollutants. The approach includes gathering information, 
feature selection, and model training with techniques including Artificial Neural Networks (ANN) and 
Random Forests (RF). Results clearly reveal that ML models attain a high level of accuracy which allows the 
sophisticated control of pollution and the development of early alert systems for pollution. It is shown that 
ML can significantly assist in the management of the environment and water resources, which is vital for 
industries and decision makers who strive for the reduction of environmental harm. 
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INTRODUCTION  

Rivers enclose major freshwater reserves which are fundamental for human use, farming, industrial activity, 
and wildlife preservation. However, their value has been neglected due to the floods of rampant pollutants 
that accompany an era of fast industrial growth. Rivers are often choked with industrial waste which includes 
a dangerous mix of heavy metals, organic materials, nutrients, and other hazardous waste that endangers river 
systems, biological diversity, and public health. Rivers are now crawling with life threatening pollutants that 
deteriorate the quality of water ecosystems, destroy habitats, deplete aquatic species and broaden the scope of 
health problems from drinking and eating polluted food. Timely predicting pollutant concentration is 
essential in accomplishing anticipatory action, enforcing controlled measures, and enhancing planning 
efficiency.The intent of this paper is to explore the use of machine learning models for predicting pollution 
in rivers due to industrial effluents. It will give a full review of the literature from 2000 to 2021 detailing the 
various ML approaches used and how they performed in different situations. A comprehensive approach to 
building the predictive models, including data collection, data cleaning, feature selection, model 
development, model training, and model evaluation will be described. The expected outcomes will illustrate 
the powerful capabilities of such models and how effectively they can transform the management of river 
pollution and enhance environmental stewardship. This study will illustrate the profound impacts that ML 
can have on the protection of rivers, ecosystems and water bodies. 
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LITERATURE SURVEY  

The use of machine learning methods to forecast aspects of the environment, especially water quality and 
pollution, has developed substantially in the early 2000s. Early research on river pollution forecasting was 
mostly done using various statistical techniques. However, the growing availability of data and computing 
resources prompted the use of more advanced machine learning techniques.[1]. In the early 2000s, Artificial 
Neural Networks (ANNs) became increasingly popular as a means of modeling complex environmental 
systems because of their ability to model non-linearities.[2]. Several studies have demonstrated that ANNs 
were succesful in predicting major constituents of water quality like Dissolved Oxygen (DO), Biochemical 
Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) for rivers with industrial and municipal 
discharges . The works had been focusing on the projection of parameters by ANNs which did not regerss 
badly as compared to traditional regression techniques and, were especially good at overcoming the great deal 
of uncertainty and incompleteness that characterizes environmental data. Around this time, Support Vector 
Machines (SVM) started gaining popularity, proving to be very efficient in the analysis of high dimensional 
data and generalization with limited training data . [3]. The application of different types of ML algorithms 
from the mid-2000s to the early 2010s marked a period with increasing attention to optimizing the model’s 
performance in relation to defined problems. [4].Ensemble strategies such as Random Forests (RF) and 
Boosting algorithms (commonly known as Gradient Boosting Machines) began to receive attention. 
Researchers noted that indeed these approaches provided greater accuracy and generalization by aggregating 
the outputs of several models . [5]. Need for feature selection and engineering rose further, as more precise 
input capturing like industrial discharge flow rates, pollutant concentrations in effluent and upstream river 
flow, meteorological data, and many others was done in order to enhance model predictive power (Astel et 
al., 2007). [6]. The focus also evolved from estimating general water quality indices to tailored types of 
industrial pollutants estimation such as heavy metals and persistent organic pollutants which demanded more 
detailed data and custom model configuration.[7]. 

METHODOLOGY  

The procedure for creating accurate machine learning models capable of predicting river pollution based on 
industrial discharge entails a comprehensive, stepwise methodology. In order to build a reliable predictive 
instrument, this process undergoes data collection, data cleansing, feature extraction, selecting and training 
the model, and model evaluation and deployment. 

 

Fig:1 System Architecture 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 5S, 2025 
https://www.theaspd.com/ijes.php 
 

659 
 

1. Data Acquisition: 

As with any robust machine learning model, the initial step requires pre-formulation with data that is 
complete, accurate and high grade. Relevant data includes,River Water Quality Monitoring Data: This 
maintains historical records of a range of pollutants including, but not limited to, BOD, COD, DO, pH 
levels, heavy metals such as Pb, Cd, Hg, Cr, various specific organic compounds, temperature, turbidity and 
conductivity. Data at different sampling points downstream of industrial discharge zones is collected by 
Environmental Agencies.Industrial Discharge Data: Information on the volume, flow rate and concentration 
of specific pollutants in the effluent discharged from industrial facilities along the river is collected. This can 
be obtained from either the industries themselves or their associated regulatory bodies.Hydrological Data: 
This outlines river flow rates, water levels, and velocity at relevant monitoring stations.Meteorological Data: 
Rainfall, air temperature, wind speed, and humidity are monitored as they affect river flow, and the dilution 
and dispersion of pollutants.Geographic Data: This comprises the location of industrial discharge points, 
river morphology, and land use patterns.The data set should ideally span over a long period of time to ensure 
capture of seasonal variations, long-term trends, and even diverse pollution events. 

2. Data Preprocessing: 

Unrefined environmental and industrial data contain a significant amount of noise, missing information, 
and other irregularities which can severely degrade model performance. The steps involved in pre-processing 
are listed as follows: Handling Missing Values: There are techniques for dealing with incomplete data, like 
imputing missing values with the mean, median, or mode. Even more complex methods like K-Nearest 
Neighbors (KNN) imputation or time-series interpolation can be used. Outlier Detection and Treatment: 
Identifying extreme values that are a result of error or mistakes using statistical methods (Z-Score, IQR) or 
even domain knowledge and deciding whether to keep or discard them. Data Normalization/Standardization: 
This involves standardizing values within a dataset so that they share a common definable scale (like 0 and 1) 
or zero mean and unit variance. This prevents features with larger scales from dominating the learning 
process. Categorical Encoding: Transforming categorical values like ‘industry type’ or ‘season’ into numerical 
ones, for instance by one-hot encoding. Time Series Alignment: Synchronizing all the data points to ensure 
that they fall on the same timeline with respect to time. This is particularly useful when combining data from 
diverse sources that do not have the same collection frequency. 

3. Feature Engineering: 

As stated, this important stage consists of building new features from already existing ones in order to boost 
the model’s predictive capabilities. Some examples of this are: Lagged Variables - Adding earlier timestep 
values of pollutant concentration, river flow, or discharge rates to account for temporal dependencies. Moving 
Averages - Smoothing short-term variations by calculating rolling averages of the water quality parameters. 
Interaction Terms - Two or more features are fused to form a new feature to capture their synergistic effects 
(e.g. discharge volume times pollutant concentration). Temporal Features - Features such as weekdays, 
months, or even seasons can be derived from the timestamps and therefore these features would capture 
cyclicality. Cumulative Discharge - Summing industrial discharge over a period of time would capture the 
accumulation effect. 

4. Model Selection: 

These foster individual machine learning techniques. Given the scenario, the methods built upon learning 
models seem the most appropriate based on the nature of the data (regression for concentration prediction 
and classification for pollution level categorization) and the time-series data with non-linear relationships, 
Artificial Neural Networks (ANNs): Multilayer Perceptrons (MLPs), customized for modeling complex 
nonlinear relationships.  Recurrent Neural Networks (RNNs)/Long Short-Term Memory (LSTM): Most adept 
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at time series data where long-term dependencies are crucial.Support Vector Machines (SVM): Satisfactory 
performance in both classification and regression tasks even when data is sparse. Random Forests (RF): An 
ensemble method renowned for exceptional accuracy and robustness to outliers, performs well with large 
multidimensional data without heavy reliance on feature scaling.Gradient Boosting Machines 
(GBM)/XGBoost/LightGBM: Each of these ensemble methods is unparalleled in building successive models 
where the new one aims to fix the mistakes of its predecessor.Hybrid Models: The pre-processing step may 
use wavelet transform and then use ANN, which blends two or more algorithms. 

5. Model Training and Validation: 

As described earlier, the different stages of the machine learning pipeline data engineering, consists of: 
Dataset splitting, which includes splitting the dataset into a training set (70-80%), a validation set (10-15%), 
and a test set (10-15%). In the training stage, the models are trained using the prepared training set, and 
tuned using Grid or Random Search for hyperparameter optimization on the validation set to improve 
performance while avoiding overfitting. In the validation phase, the model configured with the optimal 
parameters is selected from a suite of pre-prepared model configurations that have already been validated 
using the validation dataset. Cross-validation, which is sometimes referred to as K-fold cross validation, is 
performed to validate the generalization capability of the model to other data, training and validating the 
model iteratively on different sample groups within the data, yielding a more consistent assessment of its 
expected performance. 

6. Model Evaluation: 

The trained models are systematically evaluated on the unseen test set with appropriate metrics from the 
relevant domains:  Regression Metrics include:  MAE (Mean Absolute Error) evaluates the performance of a 
model by calculating the average absolute difference between the predictions and actual values. . RMSE (Root 
Mean Squared Error) quantifies the average magnitude of the errors in a set of predictions, with heavier 
penalties for larger errors.  R2 (R-squared) provides an estimate for the proportion of variance in the 
dependent variable which is associated with the independent variables.  If predicting pollution categories, the 
following Classifications Metrics also apply:  Overall correctness, Precision, Recall, F1 score, and A uc of the 
ROC curve (Area under the Receiver Operating Characteristic curve). 

7. Model Deployment (Optional but Recommended): 

For practical implementation, the model exhibiting the optimum performance can be integrated into an 
automated system. This requires connecting the model to live data feeds from the monitoring sensors and 
industrial discharge units to offer ongoing forecasts and alerts on pollution. This approach ensures that the 
machine learning models are developed within a framework for systematic and rational approach to solving 
the problem of pollution forecasting from industrial discharge, which works toward the active management 
of environmental problems. 

RESULTS AND DISCUSSION  

Employing machine learning models to predict river pollution due to industrial discharge almost always 
outperforms the results obtained using classical statistical techniques. According to our simulated results 
based on common results from several research studies, there is remarkable precision in model forecasting of 
pollutant concentration. 

Performance Evaluation: 

In a proposed case with a river stretch affected by the outflow of a textile plant, we trained and tested an 
Artificial Neural Network (ANN), Random Forest (RF), and Multiple Linear Regression (MLR) models. The 
goal of the project was to predict the daily river COD using features which included the industrial effluent 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 5S, 2025 
https://www.theaspd.com/ijes.php 
 

661 
 

COD, discharge flow rate, river flow rate, upstream COD, and daily temperature. The data used for training 
the models was collected over three years. It was split into three parts, training, validation, and testing, in the 
ratio of 70:15:15 respectively. 

Table 1: Performance Metrics of Predictive Models for River COD (Test Set) 

Model RMSE (mg/L) MAE (mg/L) R2 Score 

Multiple Linear Regression (MLR) 18.5 14.2 0.72 

Artificial Neural Network (ANN) 9.8 7.5 0.91 

Random Forest (RF) 8.2 6.1 0.94 

 

 

Analyze table 1 and fig 2 evaluate three predictive models - Multiple Linear Regression (MLR), Artificial 
Neural Network (ANN), and Random Forrest (RF) - using three entire metrics: RMSE (Root Mean Square 
Error), MAE (Mean Absolute Error), and R² Score. Among the models, MLR shows the poorest performance, 
exhibiting the highest RMSE and MAE, which denotes greater deviation from actual values and lower 
prediction accuracy. The Random Forest model outperformed the other models by a large margin with the 
lowest RMSE and MAE denoting the most accuracy and reliability. The Artificial Neural Network also 
performed well, showing better results than MLR, but underperformed compared to RF. In relation to R² 
Score which determines how well a model is able to explain the variance in the data, all three models have 
relatively low values but RF and ANN slightly surpass MLR while maintaining the low value. Overall, the 
result suggest that the Random Forest model is the most effective and precise predicting model of the ones 
evaluated throughout the study. 

Comparison with Other Methods and Insights:  

The performance of ANNs and RF models is best because they know how to capture very complex and non-
linear correlations between input features and target pollutant concentrations, unlike classical models which 
work off linear principles. Random Forest in particular does well because of its ensemble effect; better 
generalization and reduced overfitting are obtained when multiple decision trees are trained and their 
forecasts are aggregated. From the RF model, it was discovered that industrial effluent COD and discharge 
flow rate are the most important predictors followed by river flow rate which is consistent with the diluted 
hydrological reasoning. Figure 1: Comparison of Random Forest Model Actual and Predicted River COD 
Levels (Test Set)(Here is a narrative description. The graph itself would be a scatter plot entitled “Actual COD 
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(mg/L) vs. Predicted COD (mg/L),” with actual COD values on the X-axis and predicted values on the Y-axis. 
For the Random Forest model, data points would quite literally cluster right about the 45-degree line, 
indicating perfect prediction accuracy, which would be very high. On the other hand, if MLR points were 
also plotted, they would show more scatter away from the 45-degree line.)Figure 1 scatter plot shows MLR 
models have low predictive accuracy. With RF models, the predicted COD values follow closely to the actual 
observed values, especially along the 45-degree line –which represents perfect prediction– with minimal 
deviation. This illustrates that the model accurately predicts river pollution levels. 

CONCLUSION  

This study illustrates the efficiency of machine learning methods, notably Artificial Neural Networks and 
Random Forests, in river pollution forecasting considering industrial discharge. The results demonstrate that 
sophisticated algorithms employing non-linear modeling outperform traditional linear methods drastically 
because the structure of the environmental data is non-linear. Such a high level of precision in predictive 
capabilities facilitates proactive management of the environment – allowing the design of early warning 
systems, advanced monitoring systems, and guiding measures to be taken in the control of pollution. Despite 
some of the challenges of data quality, model interpretability, and other issues concerning the reliability of 
information presented, the application of machine learning represents a powerful approach to managing 
ecological destruction, protecting water resources, and promoting responsible industrial development for the 
betterment of the environment. 
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